Pub Date : 2024-10-19DOI: 10.1016/j.epsl.2024.119084
Jia-Min Wang , Daniela Rubatto , Pierre Lanari , Yu-Lu Tian , Yi Chen , Fu-Yuan Wu
Exhumation rates of high-pressure rocks are paramount in determining plate tectonic processes, which requires absolute chronology of metamorphic stages. U-Pb geochronology of zircon and other accessory minerals has proven successful in dating different metamorphic stages, thus constraining geological rates. A common strategy to link U-Pb ages to metamorphic stages uses rare earth element (REE) patterns in the dated minerals. In this study, the changes in the REE composition of accessory and rock-forming minerals in response to changing assemblages have been investigated in granulitized eclogites and gneisses from the Ama Drime Massif, central Himalaya. Phase equilibrium modelling shows that the eclogite-facies assemblage formed at 660–720 °C and 1.6–1.9 GPa (M1), was overprinted at high-pressure granulite-facies (M2) and then ultra-high temperature conditions of >900 °C and 0.8–1.1 GPa (M3) and finally re-equilibrated at conditions of 780–810 °C and 0.8–1.0 GPa (M4). In the countryrock orthogneisses, monazite records partial resetting during granulite-facies overprinting at 26–19 Ma and melt crystallisation at 16–13 Ma, supported by textures, mineral inclusions and trace elements. In the associated granulitized eclogites, zircon records only granulite/amphibolite facies overprinting at ∼14 Ma, and titanite and rutile record cooling to 580–630 °C at 12.5–9 Ma. Granulite/amphibolite facies zircon has a low total REE relative to the protolith zircon, primarily due to the growth of REE-rich hornblende (total REE 80–260 μg/g), which removed 67–92% of the REE from the system. The low total REE of granulite/amphibolite facies zircon is comparable to the flat HREE reported for garnet-rich eclogite-facies zircon, and distinguishing these zircon types requires quantitative mineral volume estimates and other criteria. These findings may imply slower exhumation rates for some eclogite-facies terranes, such as the Tso Morari Himalaya and Papua New Guinea, than previously reported.
{"title":"Low total REE zircon formed in equilibrium with hornblende in granulitized eclogites: Implications for exhumation rates","authors":"Jia-Min Wang , Daniela Rubatto , Pierre Lanari , Yu-Lu Tian , Yi Chen , Fu-Yuan Wu","doi":"10.1016/j.epsl.2024.119084","DOIUrl":"10.1016/j.epsl.2024.119084","url":null,"abstract":"<div><div>Exhumation rates of high-pressure rocks are paramount in determining plate tectonic processes, which requires absolute chronology of metamorphic stages. U-Pb geochronology of zircon and other accessory minerals has proven successful in dating different metamorphic stages, thus constraining geological rates. A common strategy to link U-Pb ages to metamorphic stages uses rare earth element (REE) patterns in the dated minerals. In this study, the changes in the REE composition of accessory and rock-forming minerals in response to changing assemblages have been investigated in granulitized eclogites and gneisses from the Ama Drime Massif, central Himalaya. Phase equilibrium modelling shows that the eclogite-facies assemblage formed at 660–720 °C and 1.6–1.9 GPa (M1), was overprinted at high-pressure granulite-facies (M2) and then ultra-high temperature conditions of >900 °C and 0.8–1.1 GPa (M3) and finally re-equilibrated at conditions of 780–810 °C and 0.8–1.0 GPa (M4). In the countryrock orthogneisses, monazite records partial resetting during granulite-facies overprinting at 26–19 Ma and melt crystallisation at 16–13 Ma, supported by textures, mineral inclusions and trace elements. In the associated granulitized eclogites, zircon records only granulite/amphibolite facies overprinting at ∼14 Ma, and titanite and rutile record cooling to 580–630 °C at 12.5–9 Ma. Granulite/amphibolite facies zircon has a low total REE relative to the protolith zircon, primarily due to the growth of REE-rich hornblende (total REE 80–260 μg/g), which removed 67–92% of the REE from the system. The low total REE of granulite/amphibolite facies zircon is comparable to the flat HREE reported for garnet-rich eclogite-facies zircon, and distinguishing these zircon types requires quantitative mineral volume estimates and other criteria. These findings may imply slower exhumation rates for some eclogite-facies terranes, such as the Tso Morari Himalaya and Papua New Guinea, than previously reported.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119084"},"PeriodicalIF":4.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.epsl.2024.119072
Sen Hu , Mahesh Anand , Ian A. Franchi , Xuchao Zhao , Alice Stephant , Magali Bonifacie , Huicun He , Wei Yang , Jialong Hao , Yangting Lin
The chassignites and nakhlites could have co-magmatic origin but display distinct hydrogen and chlorine isotopic compositions, indicating that they may have experienced distinct hydrothermal activities on Mars. However, the details are not yet fully understood. Here, we performed H and Cl isotopic investigations on hydrous minerals (kaersutite and apatite) and glass-bearing melt inclusions from chassignite NWA 2737 to unravel the details of the hydrothermal events experienced by chassignites on Mars. Our results demonstrate that at least two hydrothermal events on Mars have been recorded in NWA 2737. A D- and 37Cl-rich martian crustal/underground fluid was added to the parent magma of NWA 2737 prior to the entrapment of melt inclusions and later interaction of the parent rock with a D-poor fluid, probably deriving from magma degassing. The notable high-δD values (up to 6239‰) of kaersutite in NWA 2737 are comparable with those recorded in younger shergottites, suggesting that the martian exchangeable water reservoir has retained a nearly constant δD value over the past 1.3 Ga.
{"title":"Multiple hydrothermal events at martian surface revealed by H and Cl isotope systematics of melt inclusions and hydrous minerals from chassignite NWA 2737","authors":"Sen Hu , Mahesh Anand , Ian A. Franchi , Xuchao Zhao , Alice Stephant , Magali Bonifacie , Huicun He , Wei Yang , Jialong Hao , Yangting Lin","doi":"10.1016/j.epsl.2024.119072","DOIUrl":"10.1016/j.epsl.2024.119072","url":null,"abstract":"<div><div>The chassignites and nakhlites could have co-magmatic origin but display distinct hydrogen and chlorine isotopic compositions, indicating that they may have experienced distinct hydrothermal activities on Mars. However, the details are not yet fully understood. Here, we performed H and Cl isotopic investigations on hydrous minerals (kaersutite and apatite) and glass-bearing melt inclusions from chassignite NWA 2737 to unravel the details of the hydrothermal events experienced by chassignites on Mars. Our results demonstrate that at least two hydrothermal events on Mars have been recorded in NWA 2737. A D- and <sup>37</sup>Cl-rich martian crustal/underground fluid was added to the parent magma of NWA 2737 prior to the entrapment of melt inclusions and later interaction of the parent rock with a D-poor fluid, probably deriving from magma degassing. The notable high-δD values (up to 6239‰) of kaersutite in NWA 2737 are comparable with those recorded in younger shergottites, suggesting that the martian exchangeable water reservoir has retained a nearly constant δD value over the past 1.3 Ga.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119072"},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.epsl.2024.119068
Ya-Nan Shi , Jason P. Morgan , Chao Shi
We explore the conditions necessary for mantle flow to include a plume-fed asthenosphere (PFA) as a key structure within its large-scale flow pattern. Using 2D finite element-based experiments, we examine temperature-dependent rheological effects of ridge accretion, plate cooling, and numerically well-resolved ∼10–30 km-thick asthenosphere dragdown by subducting slabs. We find that an average plume flux ∼1.2 times big as the average slab flux is needed to maintain a persistent PFA. These numerical experiments also demonstrate that, instead of generating dynamic topography on the sea floor, flow-induced dynamic relief due to sub-asthenospheric density anomalies will preferentially form at the buoyancy contrast associated with the base of a buoyant asthenosphere. This mode of dynamic internal relief may contribute significantly to near-surface density anomalies that are associated with Earth's low-order geoid, and local relief at the base of the asthenosphere near plumes, ridges, and trenches that can be imaged in seismic experiments.
{"title":"2D numerical experiments on a plume-fed asthenosphere: Necessary preconditions and implications for geoid and dynamic topography","authors":"Ya-Nan Shi , Jason P. Morgan , Chao Shi","doi":"10.1016/j.epsl.2024.119068","DOIUrl":"10.1016/j.epsl.2024.119068","url":null,"abstract":"<div><div>We explore the conditions necessary for mantle flow to include a plume-fed asthenosphere (PFA) as a key structure within its large-scale flow pattern. Using 2D finite element-based experiments, we examine temperature-dependent rheological effects of ridge accretion, plate cooling, and numerically well-resolved ∼10–30 km-thick asthenosphere dragdown by subducting slabs. We find that an average plume flux ∼1.2 times big as the average slab flux is needed to maintain a persistent PFA. These numerical experiments also demonstrate that, instead of generating dynamic topography on the sea floor, flow-induced dynamic relief due to sub-asthenospheric density anomalies will preferentially form at the buoyancy contrast associated with the base of a buoyant asthenosphere. This mode of dynamic internal relief may contribute significantly to near-surface density anomalies that are associated with Earth's low-order geoid, and local relief at the base of the asthenosphere near plumes, ridges, and trenches that can be imaged in seismic experiments.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119068"},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Processes of water (OH and H2O) migration on the Moon remain unclear, prompting active research. Understanding lunar water migration requires investigation of the trapping and diffusion properties of water at various latitudes and local times. This study analyzed visible to near-infrared spectral data obtained by the Spectral Profiler (SP) onboard SELENE for shadowed regions at various local times and latitudes, not limited to the polar permanently shadowed regions. We assessed SP data for shadowed regions in 60 areas, each spanning a 10° × 10° latitude–longitude grid. Of the 1,061,907 analyzed shadowed-region data, 41,385 at various latitudes exhibited significant absorption in the 1.25 and 1.5 µm bands, indicating water ice particles. Data with the two absorption features suggest the presence of a water ice frost layer covering the lunar surface or suspended water ice particles above the lunar surface, at various latitude shadowed regions. Our spectral simulations have quantified the ice particles as being 0.1–1 µm in diameter, with a column density of 10–4–10–3 kg/m2. The spectral parameters for band absorption at the 1.5 µm band show symmetry between morning and evening sides, which is potentially attributed to the absence of variations in ice grain size and quantity. The 1.5 µm band absorption shows an increasing trend toward terminator regions, indicating variation in the water ice distribution and likely reflecting temperature conditions for water retention. The latitudinal trend of ice grain size and quantity remains uncertain because of the observed noise levels. Observations of water ice particles in shadowed regions at various latitudes and local times can provide new constraints on trapping and diffusion processes of lunar water migration.
{"title":"Water ice particles detected by SELENE's Spectral Profiler at lunar shadowed regions in various local times and latitudes","authors":"Kosei Toyokawa , Junichi Haruyama , Takahiro Iwata , Hitoshi Nozawa","doi":"10.1016/j.epsl.2024.119065","DOIUrl":"10.1016/j.epsl.2024.119065","url":null,"abstract":"<div><div>Processes of water (OH and H<sub>2</sub>O) migration on the Moon remain unclear, prompting active research. Understanding lunar water migration requires investigation of the trapping and diffusion properties of water at various latitudes and local times. This study analyzed visible to near-infrared spectral data obtained by the Spectral Profiler (SP) onboard SELENE for shadowed regions at various local times and latitudes, not limited to the polar permanently shadowed regions. We assessed SP data for shadowed regions in 60 areas, each spanning a 10° × 10° latitude–longitude grid. Of the 1,061,907 analyzed shadowed-region data, 41,385 at various latitudes exhibited significant absorption in the 1.25 and 1.5 µm bands, indicating water ice particles. Data with the two absorption features suggest the presence of a water ice frost layer covering the lunar surface or suspended water ice particles above the lunar surface, at various latitude shadowed regions. Our spectral simulations have quantified the ice particles as being 0.1–1 µm in diameter, with a column density of 10<sup>–4</sup>–10<sup>–3</sup> kg/m<sup>2</sup>. The spectral parameters for band absorption at the 1.5 µm band show symmetry between morning and evening sides, which is potentially attributed to the absence of variations in ice grain size and quantity. The 1.5 µm band absorption shows an increasing trend toward terminator regions, indicating variation in the water ice distribution and likely reflecting temperature conditions for water retention. The latitudinal trend of ice grain size and quantity remains uncertain because of the observed noise levels. Observations of water ice particles in shadowed regions at various latitudes and local times can provide new constraints on trapping and diffusion processes of lunar water migration.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119065"},"PeriodicalIF":4.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.epsl.2024.119067
L.M. Spencer , C. Albert , H.M. Williams , O. Nebel , I.J. Parkinson , R.H. Smithies , H. Bruno , M. Fowler , H. Moreira , C.J. Lissenberg , M.-A. Millet
Sanukitoids are unique Archean and early Proterozoic igneous rocks. They contain high amounts of Mg, Ni and Cr, showing they are mantle-derived melts, while they are also enriched in Sr and Ba and have relatively high K contents, requiring the involvement of an incompatible element-enriched component likely derived from recycled crustal material. The appearance of sanukitoids in the geological record coincides with a shift in continental crust composition, and both events have been linked to a change in geodynamic processes on Earth. However, uncertainties remain about sanukitoid petrogenesis, in particular whether their mantle source was metasomatised by a metabasite-derived silicate melt or by an aqueous fluid. Titanium (Ti) stable isotopes can trace magmatic processes where silicate melts are in equilibrium with Fe-Ti oxides and amphibole but are insensitive to fluid-driven processes, making them a suitable tool to investigate not only the formation of sanukitoid magmas but also their subsequent evolution. Here we present Ti isotope data (δ49Ti) for a series of Neoarchean sanukitoids from the Yilgarn Craton that continuously covers the full compositional range of sanukitoids. These are complemented by Mesoarchean sanukitoids and Paleoarchean “sanukitoid-like” rocks from the Pilbara Craton, and by Paleoproterozoic sanukitoids from the São Francisco Craton/Paleocontinent. In addition, we analysed Paleozoic high Ba-Sr granite suites from Scotland, which are proposed to be Phanerozoic sanukitoid analogues.
Evolved sanukitoids, which formed after Fe-Ti oxide saturation, show a more muted δ49Ti increase during differentiation compared to currently analysed modern calc-alkaline suites. This difference is best explained by removal of significant proportions of Ti during sanukitoid differentiation by magmatic hornblende, which fractionates Ti isotopes less strongly than Fe-Ti oxides. Combined with early oxide saturation at high Mg#, this suggests that sanukitoid parental magmas had H2O contents and fO2 at least as high as modern arc magmas. Primitive (pre-oxide saturation) sanukitoids, however, have significantly higher δ49Ti (0.11–0.20‰) than modern arc basalts, the depleted mantle and the bulk silicate Earth (BSE). Their elevated δ49Ti values cannot be explained by aqueous fluids alone in their mantle source, and instead require the involvement of a hydrous eclogite melt component formed in equilibrium with residual rutile. We favour generation of this metasomatic melt by fluid-fluxed eclogite partial melting, demonstrating that both metabasite melts and aqueous fluids are important for sanukitoid formation. The Ti isotope compositions of Archean and Paleoproterozoic sanukitoids therefore favour formation of the sanukitoid mantle source by a subduction-like process at least ∼2.7 Ga.
{"title":"Tracing hydrous eclogite melts in the source of sanukitoids","authors":"L.M. Spencer , C. Albert , H.M. Williams , O. Nebel , I.J. Parkinson , R.H. Smithies , H. Bruno , M. Fowler , H. Moreira , C.J. Lissenberg , M.-A. Millet","doi":"10.1016/j.epsl.2024.119067","DOIUrl":"10.1016/j.epsl.2024.119067","url":null,"abstract":"<div><div>Sanukitoids are unique Archean and early Proterozoic igneous rocks. They contain high amounts of Mg, Ni and Cr, showing they are mantle-derived melts, while they are also enriched in Sr and Ba and have relatively high K contents, requiring the involvement of an incompatible element-enriched component likely derived from recycled crustal material. The appearance of sanukitoids in the geological record coincides with a shift in continental crust composition, and both events have been linked to a change in geodynamic processes on Earth. However, uncertainties remain about sanukitoid petrogenesis, in particular whether their mantle source was metasomatised by a metabasite-derived silicate melt or by an aqueous fluid. Titanium (Ti) stable isotopes can trace magmatic processes where silicate melts are in equilibrium with Fe-Ti oxides and amphibole but are insensitive to fluid-driven processes, making them a suitable tool to investigate not only the formation of sanukitoid magmas but also their subsequent evolution. Here we present Ti isotope data (δ<sup>49</sup>Ti) for a series of Neoarchean sanukitoids from the Yilgarn Craton that continuously covers the full compositional range of sanukitoids. These are complemented by Mesoarchean sanukitoids and Paleoarchean “sanukitoid-like” rocks from the Pilbara Craton, and by Paleoproterozoic sanukitoids from the São Francisco Craton/Paleocontinent. In addition, we analysed Paleozoic high Ba-Sr granite suites from Scotland, which are proposed to be Phanerozoic sanukitoid analogues.</div><div>Evolved sanukitoids, which formed after Fe-Ti oxide saturation, show a more muted δ<sup>49</sup>Ti increase during differentiation compared to currently analysed modern calc-alkaline suites. This difference is best explained by removal of significant proportions of Ti during sanukitoid differentiation by magmatic hornblende, which fractionates Ti isotopes less strongly than Fe-Ti oxides. Combined with early oxide saturation at high Mg#, this suggests that sanukitoid parental magmas had H<sub>2</sub>O contents and fO<sub>2</sub> at least as high as modern arc magmas. Primitive (pre-oxide saturation) sanukitoids, however, have significantly higher δ<sup>49</sup>Ti (0.11–0.20‰) than modern arc basalts, the depleted mantle and the bulk silicate Earth (BSE). Their elevated δ<sup>49</sup>Ti values cannot be explained by aqueous fluids alone in their mantle source, and instead require the involvement of a hydrous eclogite melt component formed in equilibrium with residual rutile. We favour generation of this metasomatic melt by fluid-fluxed eclogite partial melting, demonstrating that both metabasite melts and aqueous fluids are important for sanukitoid formation. The Ti isotope compositions of Archean and Paleoproterozoic sanukitoids therefore favour formation of the sanukitoid mantle source by a subduction-like process at least ∼2.7 Ga.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119067"},"PeriodicalIF":4.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.epsl.2024.119060
Z. Molitor , T. Mittal , O. Jagoutz
Orogenic plateaus (e.g., Tibet, Altiplano) are characterized by broad, flat-top topography at high elevation and significantly increased crustal thickness. Partial melt is thought to weaken the middle crust of orogenic plateaus, and thus reduce the viscosity of the crust; however, the amount of partial melt and the magnitude of associated weakening remain unconstrained. The New England Appalachians represent an exposed mid- to lower crustal section of a paleo-orogenic plateau, similar to modern-day Tibet. In this study, we utilize the relationship between the spacing of deformation bands and the compaction length to constrain mid-crustal shear viscosity in a late Devonian migmatite. We find that the viscosity of the middle orogenic crust in the paleo-orogenic plateau of the New England Appalachians is 1017–18 Pa∙s at ∼3–9% melt. This finding is consistent with geophysical models of orogenic channel flow and provides field-based evidence for a significant rheologic transition at low melt-fraction. Our results suggest that the key elements for the formation of a weak, mid-crustal layer in orogenic plateaus are an influx of water and temperatures near the hydrous granite solidus.
{"title":"The viscosity of a partially molten layer in a paleo-orogenic plateau","authors":"Z. Molitor , T. Mittal , O. Jagoutz","doi":"10.1016/j.epsl.2024.119060","DOIUrl":"10.1016/j.epsl.2024.119060","url":null,"abstract":"<div><div>Orogenic plateaus (e.g., Tibet, Altiplano) are characterized by broad, flat-top topography at high elevation and significantly increased crustal thickness. Partial melt is thought to weaken the middle crust of orogenic plateaus, and thus reduce the viscosity of the crust; however, the amount of partial melt and the magnitude of associated weakening remain unconstrained. The New England Appalachians represent an exposed mid- to lower crustal section of a paleo-orogenic plateau, similar to modern-day Tibet. In this study, we utilize the relationship between the spacing of deformation bands and the compaction length to constrain mid-crustal shear viscosity in a late Devonian migmatite. We find that the viscosity of the middle orogenic crust in the paleo-orogenic plateau of the New England Appalachians is 10<sup>17–18</sup> Pa∙s at ∼3–9% melt. This finding is consistent with geophysical models of orogenic channel flow and provides field-based evidence for a significant rheologic transition at low melt-fraction. Our results suggest that the key elements for the formation of a weak, mid-crustal layer in orogenic plateaus are an influx of water and temperatures near the hydrous granite solidus.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119060"},"PeriodicalIF":4.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.epsl.2024.119028
Carl Martin , Stuart Russell , Sanne Cottaar
In recent decades, ultra-low velocity zones (ULVZs) – thin patches of strongly reduced seismic velocity atop the core-mantle boundary (CMB) – have been inferred from observations of a variety of seismic phases. One such phase is Sdiff and its out-of-plane postcursory energy, Sdiff+. In this study, we present a high quality dataset of Sdiff and Sdiff+ which shows evidence of a ULVZ in the central Pacific, roughly between Hawaii and Marquesas. The observed Sdiff+ have an unusually short dominant period (5–12 seconds) compared to previous Sdiff+ observations, which is indicative of a ULVZ that is approximately 10–15 km thick. We analyse this high frequency dataset using the 2D Wavefront Tracker (2DWT) Bayesian inversion methodology to generate a probabilistic ensemble of ULVZ models. As a result of the uniazimuthal coverage of data, there is a strong southwest-northeast trade-off, but there is a slight preference for the ULVZ to be located just outside the Pacific large low velocity province (LLVP) boundary, roughly centred 20° north of Marquesas and 20° southeast of Hawaii. The 2DWT inversion of Sdiff+ travel times suggest that the ULVZ can be approximated as a cylindrical structure; either as a larger and weaker anomaly (radius 280 km, dVs -20%) close to the LLVP, or a smaller and stronger anomaly (radius 180 km, dVs -30%) further away from the LLVP. Unlike previous broad-scale ULVZs modelled with Sdiff+, this ULVZ is thinner, might lie outside of an LLVP, and lacks a potential relationship to a mantle plume.
{"title":"Detection of a ULVZ in the Central Pacific using high frequency Sdiff postcursors","authors":"Carl Martin , Stuart Russell , Sanne Cottaar","doi":"10.1016/j.epsl.2024.119028","DOIUrl":"10.1016/j.epsl.2024.119028","url":null,"abstract":"<div><div>In recent decades, ultra-low velocity zones (ULVZs) – thin patches of strongly reduced seismic velocity atop the core-mantle boundary (CMB) – have been inferred from observations of a variety of seismic phases. One such phase is Sdiff and its out-of-plane postcursory energy, Sdiff+. In this study, we present a high quality dataset of Sdiff and Sdiff+ which shows evidence of a ULVZ in the central Pacific, roughly between Hawaii and Marquesas. The observed Sdiff+ have an unusually short dominant period (5–12 seconds) compared to previous Sdiff+ observations, which is indicative of a ULVZ that is approximately 10–15 km thick. We analyse this high frequency dataset using the 2D Wavefront Tracker (2DWT) Bayesian inversion methodology to generate a probabilistic ensemble of ULVZ models. As a result of the uniazimuthal coverage of data, there is a strong southwest-northeast trade-off, but there is a slight preference for the ULVZ to be located just outside the Pacific large low velocity province (LLVP) boundary, roughly centred 20° north of Marquesas and 20° southeast of Hawaii. The 2DWT inversion of Sdiff+ travel times suggest that the ULVZ can be approximated as a cylindrical structure; either as a larger and weaker anomaly (radius 280 km, dVs -20%) close to the LLVP, or a smaller and stronger anomaly (radius 180 km, dVs -30%) further away from the LLVP. Unlike previous broad-scale ULVZs modelled with Sdiff+, this ULVZ is thinner, might lie outside of an LLVP, and lacks a potential relationship to a mantle plume.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119028"},"PeriodicalIF":4.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.epsl.2024.119026
E. Jacques , R. Hoste-Colomer , N. Feuillet , A. Lemoine , J. van der Woerd , W.C. Crawford , C. Berthod , P. Bachèlery
The basaltic submarine eruption offshore the island of Mayotte between July 2018 and January 2021 is one of the largest documented underwater eruptions. One of the most striking differences between this eruption and most documented eruptions is the exceptional depth of the associated seismicity, which is limited almost exclusively to the lithospheric mantle. This seismicity probably outlines magma reservoirs and dyking zones.
In order to better understand the deep processes driving the eruption, we analyze precise earthquake locations and focal mechanisms associated with this event. We present a set of 2677 accurate earthquake relocations and 300 focal mechanisms determined from data collected over the first 9 months of ocean bottom seismometer deployments, starting in February 2019.
Our relocations refine the structure of two swarms (Proximal and Distal with respect to Mayotte), and reveal well-defined mantle structures between 20 and 55 km below sea level, which we interpret as a ring-fault zone and a dyke, respectively. The Proximal swarm outlines a ring-fault zone as the locus of a large piston collapse caused by the deflation of an underlying magma reservoir. Deformation around the piston is driven by normal faulting on a set of inward dipping patches surrounding the piston. Locally, collapse of the conical shaped piston causes a radial extensional stress field with strike-slip and normal faulting ruptures accommodating the relaxation of the damaged zone around the piston.
This piston collapse allowed the transfer of lava to the eruption site via the dyke highlighted by the Distal earthquake swarm. The link between the swarms is thus magmatic, in agreement with petrological analyses of lava from the new volcano.
This is the first time that piston collapse and localized dyking have been documented in the mantle. The pattern of deformation documented here could apply to shallower, crustal piston collapses, such as in Iceland.
{"title":"Ring faulting and piston collapse in the mantle sustained the largest submarine eruption ever documented","authors":"E. Jacques , R. Hoste-Colomer , N. Feuillet , A. Lemoine , J. van der Woerd , W.C. Crawford , C. Berthod , P. Bachèlery","doi":"10.1016/j.epsl.2024.119026","DOIUrl":"10.1016/j.epsl.2024.119026","url":null,"abstract":"<div><div>The basaltic submarine eruption offshore the island of Mayotte between July 2018 and January 2021 is one of the largest documented underwater eruptions. One of the most striking differences between this eruption and most documented eruptions is the exceptional depth of the associated seismicity, which is limited almost exclusively to the lithospheric mantle. This seismicity probably outlines magma reservoirs and dyking zones.</div><div>In order to better understand the deep processes driving the eruption, we analyze precise earthquake locations and focal mechanisms associated with this event. We present a set of 2677 accurate earthquake relocations and 300 focal mechanisms determined from data collected over the first 9 months of ocean bottom seismometer deployments, starting in February 2019.</div><div>Our relocations refine the structure of two swarms (Proximal and Distal with respect to Mayotte), and reveal well-defined mantle structures between 20 and 55 km below sea level, which we interpret as a ring-fault zone and a dyke, respectively. The Proximal swarm outlines a ring-fault zone as the locus of a large piston collapse caused by the deflation of an underlying magma reservoir. Deformation around the piston is driven by normal faulting on a set of inward dipping patches surrounding the piston. Locally, collapse of the conical shaped piston causes a radial extensional stress field with strike-slip and normal faulting ruptures accommodating the relaxation of the damaged zone around the piston.</div><div>This piston collapse allowed the transfer of lava to the eruption site via the dyke highlighted by the Distal earthquake swarm. The link between the swarms is thus magmatic, in agreement with petrological analyses of lava from the new volcano.</div><div>This is the first time that piston collapse and localized dyking have been documented in the mantle. The pattern of deformation documented here could apply to shallower, crustal piston collapses, such as in Iceland.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119026"},"PeriodicalIF":4.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.epsl.2024.119030
Y. Datu Adiatma , Matthew R. Saltzman , Xiao-Ming Liu , Xi-Kai Wang , Cole T. Edwards
Understanding the role of silicate weathering in controlling the long-term carbon cycle is essential in exploring multi-million-year scale climate variabilities and links to tectonics and changes in biodiversity. The lithium isotopic composition of carbonate rocks (δ7Li) is a non-traditional proxy that offers a more comprehensive understanding of silicate weathering dynamics in the geologic past in combination with traditional weathering proxies such as strontium isotopes (87Sr/86Sr). However, questions related to the effects of diagenesis and the relationship between changes in δ7Li and CO2 consumption during silicate rock weathering hamper the use of this novel proxy to its full potential. Here we present measurements of bulk carbonate δ7Li that span the Ordovician Period from six sections across the Laurentian paleocontinent. Using a rigorous textural and geochemical screening, we produce the first high-resolution seawater δ7Li (δ7Lisw) curve that spans the Tremadocian to Sandbian of the Ordovician Period (∼487 – 453 Ma). The δ7Lisw curve produced in this study exhibits a ∼4‰ negative shift during the Early to Middle Ordovician. Using comparisons to existing weathering proxies and a numerical modeling approach, we suggest a progressive change toward a low-intensity, congruent weathering regime was a likely driver for the observed trend. This finding highlights potential links between island arc migration toward the tropics, global increase in exposed landmass, possible terrestrialization by non-vascular land plants and changes in silicate weathering.
{"title":"Lithium isotope stratigraphy and Ordovician weathering","authors":"Y. Datu Adiatma , Matthew R. Saltzman , Xiao-Ming Liu , Xi-Kai Wang , Cole T. Edwards","doi":"10.1016/j.epsl.2024.119030","DOIUrl":"10.1016/j.epsl.2024.119030","url":null,"abstract":"<div><div>Understanding the role of silicate weathering in controlling the long-term carbon cycle is essential in exploring multi-million-year scale climate variabilities and links to tectonics and changes in biodiversity. The lithium isotopic composition of carbonate rocks (δ<sup>7</sup>Li) is a non-traditional proxy that offers a more comprehensive understanding of silicate weathering dynamics in the geologic past in combination with traditional weathering proxies such as strontium isotopes (<sup>87</sup>Sr/<sup>86</sup>Sr). However, questions related to the effects of diagenesis and the relationship between changes in δ<sup>7</sup>Li and CO<sub>2</sub> consumption during silicate rock weathering hamper the use of this novel proxy to its full potential. Here we present measurements of bulk carbonate δ<sup>7</sup>Li that span the Ordovician Period from six sections across the Laurentian paleocontinent. Using a rigorous textural and geochemical screening, we produce the first high-resolution seawater δ<sup>7</sup>Li (δ<sup>7</sup>Li<sub>sw</sub>) curve that spans the Tremadocian to Sandbian of the Ordovician Period (∼487 – 453 Ma). The δ<sup>7</sup>Li<sub>sw</sub> curve produced in this study exhibits a ∼4‰ negative shift during the Early to Middle Ordovician. Using comparisons to existing weathering proxies and a numerical modeling approach, we suggest a progressive change toward a low-intensity, congruent weathering regime was a likely driver for the observed trend. This finding highlights potential links between island arc migration toward the tropics, global increase in exposed landmass, possible terrestrialization by non-vascular land plants and changes in silicate weathering.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119030"},"PeriodicalIF":4.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.epsl.2024.119046
Wenhao Wang , Alexander J. Dickson , Mathieu Dellinger , Kevin W. Burton , Deirdre E. Clark , Guðjón Helgi Eggertsson , Íris Eva Einarsdóttir , Heimir Ingimarsson , Kiflom Gebrehiwot Mesfin , Robert G. Hilton , Julie Prytulak
The isotopic composition of rhenium (Re) has potential for use as a proxy to infer changes in seafloor redox and/or global oxidative weathering intensity. Despite an emerging dataset on this nascent isotope system in Earth's surficial environments, very little is known about processes that control Re isotope fractionation, nor the isotopic composition of hydrothermal systems. Here we present Re concentrations and Re isotopic compositions (reported as δ187Re, relative to NIST 3143) of groundwaters and hydrothermal fluids from three Icelandic settings. First, we show that high-temperature fluids that have experienced vapour-phase segregation (boiling) from the Reykjanes peninsula and the Hengill volcanic system have the highest δ187Re values (−0.01 to +0.34 ‰) observed to date, inferred to result from Re isotope fractionation during incorporation of Re into secondary reduced minerals. Second, we examine the Mývatn area in northern Iceland, which has both cold and warm groundwaters. Cold groundwaters (< 10 °C) have δ187Re values indistinguishable from Icelandic basalts (−0.36 to −0.32 ‰) whilst warm waters have higher δ187Re (−0.31 to +0.19 ‰) which increase with increasing temperature (up to 45 °C). The variation of δ187Re in Mývatn groundwaters is closely mirrored by variations in δ98Mo, consistent with mixing between compositionally distinct water end-members. Finally, geothermal waters from the Geysir field have variable Re concentrations and δ187Re values (−0.23 to +0.34 ‰), likely reflecting multiple physico-chemical processes. Using these results, we show that hydrothermal activity is unlikely to exert a large net impact on the seawater Re budget, nor the secular changes in seawater δ187Re. These findings also point toward developing a novel Re isotope tracer for redox processes.
铼(Re)的同位素组成有可能被用作推断海底氧化还原和/或全球氧化风化强度变化的替代物。尽管有关地球表面环境中这一新生同位素系统的数据集正在不断涌现,但人们对控制铼同位素分馏的过程以及热液系统的同位素组成知之甚少。在这里,我们介绍了冰岛三种环境中地下水和热液的 Re 浓度和 Re 同位素组成(以 δ187Re 报告,相对于 NIST 3143)。首先,我们展示了雷克雅未克半岛和亨吉尔火山系统中经历过汽相分离(沸腾)的高温流体具有迄今为止观测到的最高δ187Re值(-0.01 至 +0.34‰),推断这是由于Re在融入二次还原矿物的过程中发生了同位素分馏。其次,我们考察了冰岛北部的 Mývatn 地区,该地区既有冷地下水,也有暖地下水。冷地下水(< 10 °C)的δ187Re值与冰岛玄武岩无异(-0.36 至 -0.32 ‰),而暖地下水的δ187Re值则更高(-0.31 至 +0.19 ‰),并随着温度的升高而增加(最高可达 45 °C)。Mývatn 地下水中 δ187Re 的变化与 δ98Mo 的变化密切相关,这与成分不同的水末端分子之间的混合是一致的。最后,盖希尔气田的地热水具有不同的 Re 浓度和 δ187Re 值(-0.23 至 +0.34‰),可能反映了多种物理化学过程。利用这些结果,我们表明热液活动不太可能对海水 Re 预算产生巨大的净影响,也不太可能对海水 δ187Re 的长期变化产生巨大的净影响。这些发现也为开发氧化还原过程的新型 Re 同位素示踪剂指明了方向。
{"title":"Rhenium isotope variations in Icelandic groundwaters and hydrothermal systems","authors":"Wenhao Wang , Alexander J. Dickson , Mathieu Dellinger , Kevin W. Burton , Deirdre E. Clark , Guðjón Helgi Eggertsson , Íris Eva Einarsdóttir , Heimir Ingimarsson , Kiflom Gebrehiwot Mesfin , Robert G. Hilton , Julie Prytulak","doi":"10.1016/j.epsl.2024.119046","DOIUrl":"10.1016/j.epsl.2024.119046","url":null,"abstract":"<div><div>The isotopic composition of rhenium (Re) has potential for use as a proxy to infer changes in seafloor redox and/or global oxidative weathering intensity. Despite an emerging dataset on this nascent isotope system in Earth's surficial environments, very little is known about processes that control Re isotope fractionation, nor the isotopic composition of hydrothermal systems. Here we present Re concentrations and Re isotopic compositions (reported as δ<sup>187</sup>Re, relative to NIST 3143) of groundwaters and hydrothermal fluids from three Icelandic settings. First, we show that high-temperature fluids that have experienced vapour-phase segregation (boiling) from the Reykjanes peninsula and the Hengill volcanic system have the highest δ<sup>187</sup>Re values (−0.01 to +0.34 ‰) observed to date, inferred to result from Re isotope fractionation during incorporation of Re into secondary reduced minerals. Second, we examine the Mývatn area in northern Iceland, which has both cold and warm groundwaters. Cold groundwaters (< 10 °C) have δ<sup>187</sup>Re values indistinguishable from Icelandic basalts (−0.36 to −0.32 ‰) whilst warm waters have higher δ<sup>187</sup>Re (−0.31 to +0.19 ‰) which increase with increasing temperature (up to 45 °C). The variation of δ<sup>187</sup>Re in Mývatn groundwaters is closely mirrored by variations in δ<sup>98</sup>Mo, consistent with mixing between compositionally distinct water end-members. Finally, geothermal waters from the Geysir field have variable Re concentrations and δ<sup>187</sup>Re values (−0.23 to +0.34 ‰), likely reflecting multiple physico-chemical processes. Using these results, we show that hydrothermal activity is unlikely to exert a large net impact on the seawater Re budget, nor the secular changes in seawater δ<sup>187</sup>Re. These findings also point toward developing a novel Re isotope tracer for redox processes.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119046"},"PeriodicalIF":4.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}