Allison M. Louthan, Melina Keighron, Elsita Kiekebusch, Heather Cayton, Adam Terando, William F. Morris
Disturbances elicit both positive and negative effects on organisms; these effects vary in their strength and their timing. Effects of disturbance interval (i.e., the length of time between disturbances) on population growth will depend on both the timing and strength of positive and negative effects of disturbances. Climate change can modify the relative strengths of these positive and negative effects, leading to altered optimal disturbance intervals (the disturbance interval at which population growth rate is highest) and changes in the sensitivity of population growth rate to disturbance interval. While we know that climate may alter impacts of disturbance in some systems, we have a poor understanding of which effects of disturbance and which vital rates might drive an altered response to disturbance interval in a changing climate. We use demographic monitoring of natural populations of Dionaea muscipula, the Venus flytrap, that have experienced natural and managed fires, combined with realistic past and future climate projections, to construct climate- and fire-driven integral projection models (IPMs). We use these IPMs to compare the effect of fire return interval (FRI) on population growth rate in past and future climates. To dissect the mechanisms driving FRI response, we then construct IPMs with demographic data from an experimental manipulation of fire effects (ash addition, neighbor removal) and an accidental fire. Our results show that an FRI of 10 years is optimal for D. muscipula in past climate conditions, but a longer FRI (12 years) is optimal in future climate conditions. Further, deviations from optimal FRI reduce population growth rate dramatically in the past climate, but this reduction is muted in a future climate (future minus past sensitivity = 0.006, 95% CI [0.002, 0.011]). Finally, our experimental work suggests that fire effects are driven in part by positive, additive effects of competitor removal and ash addition immediately following a fire; for one population, both these treatments significantly increased population growth rate. Our work suggests that climate change can alter the response of populations to disturbance, highlighting the need to consider the interacting effects of multiple abiotic drivers when projecting future population growth and geographical distributions.
{"title":"Climate change weakens the impact of disturbance interval on the growth rate of natural populations of Venus flytrap","authors":"Allison M. Louthan, Melina Keighron, Elsita Kiekebusch, Heather Cayton, Adam Terando, William F. Morris","doi":"10.1002/ecm.1528","DOIUrl":"10.1002/ecm.1528","url":null,"abstract":"<p>Disturbances elicit both positive and negative effects on organisms; these effects vary in their strength and their timing. Effects of disturbance interval (i.e., the length of time between disturbances) on population growth will depend on both the timing and strength of positive and negative effects of disturbances. Climate change can modify the relative strengths of these positive and negative effects, leading to altered optimal disturbance intervals (the disturbance interval at which population growth rate is highest) and changes in the sensitivity of population growth rate to disturbance interval. While we know that climate may alter impacts of disturbance in some systems, we have a poor understanding of which effects of disturbance and which vital rates might drive an altered response to disturbance interval in a changing climate. We use demographic monitoring of natural populations of <i>Dionaea muscipula</i>, the Venus flytrap, that have experienced natural and managed fires, combined with realistic past and future climate projections, to construct climate- and fire-driven integral projection models (IPMs). We use these IPMs to compare the effect of fire return interval (FRI) on population growth rate in past and future climates. To dissect the mechanisms driving FRI response, we then construct IPMs with demographic data from an experimental manipulation of fire effects (ash addition, neighbor removal) and an accidental fire. Our results show that an FRI of 10 years is optimal for <i>D. muscipula</i> in past climate conditions, but a longer FRI (12 years) is optimal in future climate conditions. Further, deviations from optimal FRI reduce population growth rate dramatically in the past climate, but this reduction is muted in a future climate (future minus past sensitivity = 0.006, 95% CI [0.002, 0.011]). Finally, our experimental work suggests that fire effects are driven in part by positive, additive effects of competitor removal and ash addition immediately following a fire; for one population, both these treatments significantly increased population growth rate. Our work suggests that climate change can alter the response of populations to disturbance, highlighting the need to consider the interacting effects of multiple abiotic drivers when projecting future population growth and geographical distributions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45574302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vascular epiphytes are an important component of many ecosystems and constitute a substantial part of global plant diversity. In this context, accidental epiphytism, that is, the opportunistic epiphytic growth of typically terrestrial species, deserves special attention because it provides crucial insights into the global distribution of vascular epiphytes and the initial evolution of epiphytic lineages. Even though accidental epiphytes have been mentioned in the literature for more than a century, they have been neglected in most epiphyte studies. Only recently has accidental epiphytism been investigated more thoroughly. Therefore, the aim of this article is to provide a comprehensive review of the ecological basis and evolutionary relevance of this common but largely neglected phenomenon and to highlight open questions and promising research directions. Our central statement—that any species has the potential to grow epiphytically given the availability of suitable microhabitats and successful dispersal—is backed up by a compilation of observations of accidental epiphytes from numerous ecosystems with diverse climates, even including semiarid Mediterranean ones. A variety of arboreal microhabitats and environmental conditions conform to the ecological niche of typical terrestrial species, with the availability of such microhabitats depending on the interaction of local climate conditions, host tree age, and host species identity. Whenever suitable microhabitats are available in tree crowns, accidental epiphytism is limited primarily by dispersal. In an evolutionary context, the conquest of forest canopy represents an ecological opportunity where accidental epiphytes act as links between terrestrial and epiphytic life forms. We discuss two fundamental scenarios with sympatric speciation, selective pressure, autopolyploidy, and allopatric speciation as underlying mechanisms in the transition from terrestrial to epiphytic growth. In conclusion, we argue that accidental epiphytism is a substrate and dispersal-dependent phenomenon and that, both from an individual perspective and an evolutionary perspective, epiphytism reflects the occupation of suitable but previously unexploited arboreal microhabitats. Acknowledging the fundamental principles that plant growth is opportunistic and that dispersal is a stochastic process can decisively improve our understanding of species distributions and other ecological patterns, as in the case of accidental epiphytism.
{"title":"Accidental epiphytes: Ecological insights and evolutionary implications","authors":"Vincent Hoeber, Gerhard Zotz","doi":"10.1002/ecm.1527","DOIUrl":"10.1002/ecm.1527","url":null,"abstract":"<p>Vascular epiphytes are an important component of many ecosystems and constitute a substantial part of global plant diversity. In this context, accidental epiphytism, that is, the opportunistic epiphytic growth of typically terrestrial species, deserves special attention because it provides crucial insights into the global distribution of vascular epiphytes and the initial evolution of epiphytic lineages. Even though accidental epiphytes have been mentioned in the literature for more than a century, they have been neglected in most epiphyte studies. Only recently has accidental epiphytism been investigated more thoroughly. Therefore, the aim of this article is to provide a comprehensive review of the ecological basis and evolutionary relevance of this common but largely neglected phenomenon and to highlight open questions and promising research directions. Our central statement—that any species has the potential to grow epiphytically given the availability of suitable microhabitats and successful dispersal—is backed up by a compilation of observations of accidental epiphytes from numerous ecosystems with diverse climates, even including semiarid Mediterranean ones. A variety of arboreal microhabitats and environmental conditions conform to the ecological niche of typical terrestrial species, with the availability of such microhabitats depending on the interaction of local climate conditions, host tree age, and host species identity. Whenever suitable microhabitats are available in tree crowns, accidental epiphytism is limited primarily by dispersal. In an evolutionary context, the conquest of forest canopy represents an ecological opportunity where accidental epiphytes act as links between terrestrial and epiphytic life forms. We discuss two fundamental scenarios with sympatric speciation, selective pressure, autopolyploidy, and allopatric speciation as underlying mechanisms in the transition from terrestrial to epiphytic growth. In conclusion, we argue that accidental epiphytism is a substrate and dispersal-dependent phenomenon and that, both from an individual perspective and an evolutionary perspective, epiphytism reflects the occupation of suitable but previously unexploited arboreal microhabitats. Acknowledging the fundamental principles that plant growth is opportunistic and that dispersal is a stochastic process can decisively improve our understanding of species distributions and other ecological patterns, as in the case of accidental epiphytism.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51637975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yen-Hua Huang, Kyrre Kausrud, Ayesha Hassim, Sunday O. Ochai, O. Louis van Schalkwyk, Edgar H. Dekker, Alexander Buyantuev, Claudine C. Cloete, J. Werner Kilian, John K. E. Mfune, Pauline L. Kamath, Henriette van Heerden, Wendy C. Turner
Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within- and between-species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (Equus quagga) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (Tragelaphus strepsiceros), was replaced by impala (Aepyceros melampus). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (Antidorcas marsupialis), wildebeest (Connochaetes taurinus), and impala cases peaked in wet seasons, while elephant (Loxodonta africana), kudu, and buffalo (Syncerus caffer) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.
{"title":"Environmental drivers of biseasonal anthrax outbreak dynamics in two multihost savanna systems","authors":"Yen-Hua Huang, Kyrre Kausrud, Ayesha Hassim, Sunday O. Ochai, O. Louis van Schalkwyk, Edgar H. Dekker, Alexander Buyantuev, Claudine C. Cloete, J. Werner Kilian, John K. E. Mfune, Pauline L. Kamath, Henriette van Heerden, Wendy C. Turner","doi":"10.1002/ecm.1526","DOIUrl":"10.1002/ecm.1526","url":null,"abstract":"<p>Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within- and between-species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (<i>Equus quagga</i>) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (<i>Tragelaphus strepsiceros</i>), was replaced by impala (<i>Aepyceros melampus</i>). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (<i>Antidorcas marsupialis</i>), wildebeest (<i>Connochaetes taurinus</i>), and impala cases peaked in wet seasons, while elephant (<i>Loxodonta africana</i>), kudu, and buffalo (<i>Syncerus caffer</i>) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44967517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José L. Hierro, Özkan Eren, Jan Čuda, Laura A. Meyerson
The evolution of increased competitive ability (EICA) hypothesis encapsulates the importance of evolution and ecology for biological invasions. According to this proposition, leaving specialist herbivores at home frees introduced plant species from investing limited resources in defense to instead use those resources for growth, selecting for individuals with reduced defense, enhanced growth, and, consequently, increased competitive ability. We took a multispecies approach, including ancestral and non-native populations of seven weeds, as well as seven coexisting local weeds, to explore all three predictions (i.e., lower defense, greater growth, and better ability to compete in non-native than ancestral populations), the generality as an invasion mechanism for a given system, and community-level consequences of EICA. We assessed plant defenses by conducting herbivory trials with a generalist herbivore. Therefore, finding that non-native populations are better defended than ancestral populations would lend support to the shifting defense (SD) hypothesis, an extension of EICA that incorporates the observation that introduced species escape specialists, but encounter generalists. We also manipulated water additions to evaluate how resource availability influences competition in the context of EICA and plant plasticity in our semiarid system. We found that non-native populations of one study species, Centaurea solstitialis, were better defended, grew faster, and exerted stronger suppression on locals than ancestral populations, offering support to EICA through the SD hypothesis. The other species also displayed variation in trait attributes between ancestral and non-native populations, but they did not fully comply with the three predictions of EICA. Notably, differences between those populations generally favored the non-natives. Moreover, non-native populations were, overall, superior at suppressing locals relative to ancestral populations under low water conditions. There were no differences in plasticity among all three groups. These results suggest that evolutionary change between ancestral and non-native populations is widespread and could have facilitated invasion in our system. Additionally, although trading growth for shifted defense does not seem to be the main operational path for evolutionary change, it may explain the dominance of some introduced species in ruderal communities. Because introduced species dominate communities in disturbed environments around the world, our results are likely generalizable to other systems.
{"title":"Evolution of increased competitive ability may explain dominance of introduced species in ruderal communities","authors":"José L. Hierro, Özkan Eren, Jan Čuda, Laura A. Meyerson","doi":"10.1002/ecm.1524","DOIUrl":"10.1002/ecm.1524","url":null,"abstract":"<p>The evolution of increased competitive ability (EICA) hypothesis encapsulates the importance of evolution and ecology for biological invasions. According to this proposition, leaving specialist herbivores at home frees introduced plant species from investing limited resources in defense to instead use those resources for growth, selecting for individuals with reduced defense, enhanced growth, and, consequently, increased competitive ability. We took a multispecies approach, including ancestral and non-native populations of seven weeds, as well as seven coexisting local weeds, to explore all three predictions (i.e., lower defense, greater growth, and better ability to compete in non-native than ancestral populations), the generality as an invasion mechanism for a given system, and community-level consequences of EICA. We assessed plant defenses by conducting herbivory trials with a generalist herbivore. Therefore, finding that non-native populations are better defended than ancestral populations would lend support to the shifting defense (SD) hypothesis, an extension of EICA that incorporates the observation that introduced species escape specialists, but encounter generalists. We also manipulated water additions to evaluate how resource availability influences competition in the context of EICA and plant plasticity in our semiarid system. We found that non-native populations of one study species, <i>Centaurea solstitialis</i>, were better defended, grew faster, and exerted stronger suppression on locals than ancestral populations, offering support to EICA through the SD hypothesis. The other species also displayed variation in trait attributes between ancestral and non-native populations, but they did not fully comply with the three predictions of EICA. Notably, differences between those populations generally favored the non-natives. Moreover, non-native populations were, overall, superior at suppressing locals relative to ancestral populations under low water conditions. There were no differences in plasticity among all three groups. These results suggest that evolutionary change between ancestral and non-native populations is widespread and could have facilitated invasion in our system. Additionally, although trading growth for shifted defense does not seem to be the main operational path for evolutionary change, it may explain the dominance of some introduced species in ruderal communities. Because introduced species dominate communities in disturbed environments around the world, our results are likely generalizable to other systems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48695616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan B. Stephens, Andrew P. Ouimette, Erik A. Hobbie, Rebecca J. Rowe
Stable isotope analysis is increasingly being used to assess diet and trophic positions of animals. Such assessments require estimates of trophic discrimination factors (TDFs)—offset between the isotopic composition of diet and animal tissues—with imprecise applications of TDFs leading to biased conclusions in resource use. Because TDFs are unavailable for most species, ecologists often apply values from taxonomically similar species or use trophic step increases of approximately 1‰ for carbon (TDF-δ13C) and 3‰ for nitrogen (TDF-δ15N). Such practices may yield inaccuracies since TDFs vary greatly, even within a species. To better understand the factors that influence TDFs, we conducted a meta-analysis of TDF-δ13C and TDF-δ15N for mammals and quantified variation in relation to consumer type (herbivore, omnivore, carnivore) and diet source (C3-based, C4-based, marine-based, mixture). Additionally, to guide TDF choice, we used an isotopic data set of small mammal tissues and diet items to assess how predicted dietary contributions vary with TDFs estimated using (1) taxonomic relatedness, (2) consumer type and diet source, or (3) values derived from wild animals eating natural diets. Our meta-analysis revealed that metabolic routing and interactions between consumer class, dietary source, and the protein versus energy content of diets best explained variation in TDF-δ13C values (−1.5‰ to 7.3‰), whereas consumer class best explained variation in TDF-δ15N values (−0.5‰ to 7.1‰). Our test of methods to estimate TDFs indicated that ecologists should avoid relying on taxonomic relatedness when selecting TDF-δ13C because mixed-diet lab studies may produce misleading results for herbivores and omnivores. Additionally, field-derived estimates could help fill TDF gaps where diets within a consumer class are absent. Overall, we suggest that using standard TDF trophic step values should be abandoned, because feeding studies are often poor proxies for natural diets, particularly for herbivores and omnivores. Instead, we make recommendations on how to select TDFs, along with a range of TDF-δ13C and TDF-δ15N values depending on diet source, consumer class, and tissue type. Use of these more refined recommendations and TDF values in isotopic assessments will improve estimates of diets and trophic interactions in natural systems, leading to a better understanding of ecological interactions and communities.
{"title":"Reevaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction","authors":"Ryan B. Stephens, Andrew P. Ouimette, Erik A. Hobbie, Rebecca J. Rowe","doi":"10.1002/ecm.1525","DOIUrl":"10.1002/ecm.1525","url":null,"abstract":"<p>Stable isotope analysis is increasingly being used to assess diet and trophic positions of animals. Such assessments require estimates of trophic discrimination factors (TDFs)—offset between the isotopic composition of diet and animal tissues—with imprecise applications of TDFs leading to biased conclusions in resource use. Because TDFs are unavailable for most species, ecologists often apply values from taxonomically similar species or use trophic step increases of approximately 1‰ for carbon (TDF-δ<sup>13</sup>C) and 3‰ for nitrogen (TDF-δ<sup>15</sup>N). Such practices may yield inaccuracies since TDFs vary greatly, even within a species. To better understand the factors that influence TDFs, we conducted a meta-analysis of TDF-δ<sup>13</sup>C and TDF-δ<sup>15</sup>N for mammals and quantified variation in relation to consumer type (herbivore, omnivore, carnivore) and diet source (C<sub>3</sub>-based, C<sub>4</sub>-based, marine-based, mixture). Additionally, to guide TDF choice, we used an isotopic data set of small mammal tissues and diet items to assess how predicted dietary contributions vary with TDFs estimated using (1) taxonomic relatedness, (2) consumer type and diet source, or (3) values derived from wild animals eating natural diets. Our meta-analysis revealed that metabolic routing and interactions between consumer class, dietary source, and the protein versus energy content of diets best explained variation in TDF-δ<sup>13</sup>C values (−1.5‰ to 7.3‰), whereas consumer class best explained variation in TDF-δ<sup>15</sup>N values (−0.5‰ to 7.1‰). Our test of methods to estimate TDFs indicated that ecologists should avoid relying on taxonomic relatedness when selecting TDF-δ<sup>13</sup>C because mixed-diet lab studies may produce misleading results for herbivores and omnivores. Additionally, field-derived estimates could help fill TDF gaps where diets within a consumer class are absent. Overall, we suggest that using standard TDF trophic step values should be abandoned, because feeding studies are often poor proxies for natural diets, particularly for herbivores and omnivores. Instead, we make recommendations on how to select TDFs, along with a range of TDF-δ<sup>13</sup>C and TDF-δ<sup>15</sup>N values depending on diet source, consumer class, and tissue type. Use of these more refined recommendations and TDF values in isotopic assessments will improve estimates of diets and trophic interactions in natural systems, leading to a better understanding of ecological interactions and communities.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48175808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruijiao Sun, Christophe Barbraud, Henri Weimerskirch, Karine Delord, Samantha C. Patrick, Hal Caswell, Stephanie Jenouvrier
Many animals form long-term monogamous pair bonds, and the disruption of a pair bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success [LRS], life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, so the population is male-skewed. Therefore, we first posited that males would show higher widowhood rates negatively correlated with fishing effort and females would have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce could be an adaptive strategy, whereby individuals improved breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions could reduce survival and breeding probabilities owing to the cost of remating processes, with important consequences for life-history outcomes. As expected, we showed that males had higher widowhood rates than females and females had higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce was likely nonadaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the so-called forced divorce hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in LRS only for divorced and widowed males, respectively, owing to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals were more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation.
{"title":"Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird","authors":"Ruijiao Sun, Christophe Barbraud, Henri Weimerskirch, Karine Delord, Samantha C. Patrick, Hal Caswell, Stephanie Jenouvrier","doi":"10.1002/ecm.1522","DOIUrl":"10.1002/ecm.1522","url":null,"abstract":"<p>Many animals form long-term monogamous pair bonds, and the disruption of a pair bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success [LRS], life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (<i>Diomedea exulans</i>). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, so the population is male-skewed. Therefore, we first posited that males would show higher widowhood rates negatively correlated with fishing effort and females would have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce could be an adaptive strategy, whereby individuals improved breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions could reduce survival and breeding probabilities owing to the cost of remating processes, with important consequences for life-history outcomes. As expected, we showed that males had higher widowhood rates than females and females had higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce was likely nonadaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the so-called forced divorce hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in LRS only for divorced and widowed males, respectively, owing to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals were more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/12/ECM-92-e1522.PMC9539511.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33544140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Ionescu, M. Bizic, R. Karnatak, C. L. Musseau, G. Onandia, M. Kasada, S. A. Berger, J. C. Nejstgaard, M. Ryo, G. Lischeid, M. O. Gessner, S. Wollrab, H.-P. Grossart
Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (α- and β-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, Bacteria, and Archaea in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the Bacteria, Archaea, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.
{"title":"From microbes to mammals: Pond biodiversity homogenization across different land-use types in an agricultural landscape","authors":"D. Ionescu, M. Bizic, R. Karnatak, C. L. Musseau, G. Onandia, M. Kasada, S. A. Berger, J. C. Nejstgaard, M. Ryo, G. Lischeid, M. O. Gessner, S. Wollrab, H.-P. Grossart","doi":"10.1002/ecm.1523","DOIUrl":"https://doi.org/10.1002/ecm.1523","url":null,"abstract":"<p>Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (α- and β-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, <i>Bacteria</i>, and <i>Archaea</i> in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the <i>Bacteria</i>, <i>Archaea</i>, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138016195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seraina L. Cappelli, Noémie A. Pichon, Tosca Mannall, Eric Allan
Biodiversity effects on ecosystem functioning can be partitioned into complementarity effects, driven by many species, and selection effects, driven by few. Selection effects occur through interspecific abundance shifts (dominance) and intraspecific shifts in functioning. Complementarity and selection effects are often calculated for biomass, but very rarely for secondary productivity, that is, energy transfer to higher trophic levels. We calculated diversity effects for three functions: aboveground biomass, insect herbivory and pathogen infection, the latter two as proxies for energy transfer to higher trophic levels, in a grassland experiment (PaNDiv) manipulating species richness, functional composition, nitrogen enrichment, and fungicide treatment. Complementarity effects were, on average, positive and selection effects negative for biomass production and pathogen infection and multiple species contributed to diversity effects in mixtures. Diversity effects were, on average, less pronounced for herbivory. Diversity effects for the three functions were not correlated, because different species drove the different effects. Benefits (and costs) from growing in diverse communities, be it reduced herbivore or pathogen damage or increased productivity either due to abundance increases or increased productivity per area were distributed across different plant species, leading to highly variable contributions of single species to effects of diversity on different functions. These results show that different underlying ecological mechanisms can result in similar overall diversity effects across functions.
{"title":"Partitioning the effects of plant diversity on ecosystem functions at different trophic levels","authors":"Seraina L. Cappelli, Noémie A. Pichon, Tosca Mannall, Eric Allan","doi":"10.1002/ecm.1521","DOIUrl":"10.1002/ecm.1521","url":null,"abstract":"<p>Biodiversity effects on ecosystem functioning can be partitioned into complementarity effects, driven by many species, and selection effects, driven by few. Selection effects occur through interspecific abundance shifts (dominance) and intraspecific shifts in functioning. Complementarity and selection effects are often calculated for biomass, but very rarely for secondary productivity, that is, energy transfer to higher trophic levels. We calculated diversity effects for three functions: aboveground biomass, insect herbivory and pathogen infection, the latter two as proxies for energy transfer to higher trophic levels, in a grassland experiment (PaNDiv) manipulating species richness, functional composition, nitrogen enrichment, and fungicide treatment. Complementarity effects were, on average, positive and selection effects negative for biomass production and pathogen infection and multiple species contributed to diversity effects in mixtures. Diversity effects were, on average, less pronounced for herbivory. Diversity effects for the three functions were not correlated, because different species drove the different effects. Benefits (and costs) from growing in diverse communities, be it reduced herbivore or pathogen damage or increased productivity either due to abundance increases or increased productivity per area were distributed across different plant species, leading to highly variable contributions of single species to effects of diversity on different functions. These results show that different underlying ecological mechanisms can result in similar overall diversity effects across functions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1521","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46157255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew D. Green, Kurt E. Anderson, David B. Herbst, Marko J. Spasojevic
A major goal of community ecology is understanding the processes responsible for generating biodiversity patterns along spatial and environmental gradients. In stream ecosystems, system-specific conceptual frameworks have dominated research describing biodiversity change along longitudinal gradients of river networks. However, support for these conceptual frameworks has been mixed, mainly applicable to specific stream ecosystems and biomes, and these frameworks have placed less emphasis on general mechanisms driving biodiversity patterns. Rethinking biodiversity patterns and processes in stream ecosystems with a focus on the overarching mechanisms common across ecosystems will provide a more holistic understanding of why biodiversity patterns vary along river networks. In this study, we apply the theory of ecological communities (TEC) conceptual framework to stream ecosystems to focus explicitly on the core ecological processes structuring communities: dispersal, speciation, niche selection, and ecological drift. Using a unique case study from high-elevation networks of connected lakes and streams, we sampled stream invertebrate communities in the Sierra Nevada, California, USA to test established stream ecology frameworks and compared them with the TEC framework. Local diversity increased and β-diversity decreased moving downstream from the headwaters, consistent with the river continuum concept and the small but mighty framework of mountain stream biodiversity. Local diversity was also structured by distance below upstream lakes, where diversity increased with distance below upstream lakes, in support of the serial discontinuity concept. Despite some support for the biodiversity patterns predicted from the stream ecology frameworks, no single framework was fully supported, suggesting “context dependence.” By framing our results under the TEC, we found that species diversity was structured by niche selection, where local diversity was highest in environmentally favorable sites. Local diversity was also highest in sites with small community sizes, countering the predicted effects of ecological drift. Moreover, higher β-diversity in the headwaters was influenced by dispersal and niche selection, where environmentally harsh and spatially isolated sites exhibit higher community variation. Taken together our results suggest that combining system-specific ecological frameworks with the TEC provides a powerful approach for inferring the mechanisms driving biodiversity patterns and provides a path toward generalization of biodiversity research across ecosystems.
{"title":"Rethinking biodiversity patterns and processes in stream ecosystems","authors":"Matthew D. Green, Kurt E. Anderson, David B. Herbst, Marko J. Spasojevic","doi":"10.1002/ecm.1520","DOIUrl":"10.1002/ecm.1520","url":null,"abstract":"<p>A major goal of community ecology is understanding the processes responsible for generating biodiversity patterns along spatial and environmental gradients. In stream ecosystems, system-specific conceptual frameworks have dominated research describing biodiversity change along longitudinal gradients of river networks. However, support for these conceptual frameworks has been mixed, mainly applicable to specific stream ecosystems and biomes, and these frameworks have placed less emphasis on general mechanisms driving biodiversity patterns. Rethinking biodiversity patterns and processes in stream ecosystems with a focus on the overarching mechanisms common across ecosystems will provide a more holistic understanding of why biodiversity patterns vary along river networks. In this study, we apply the theory of ecological communities (TEC) conceptual framework to stream ecosystems to focus explicitly on the core ecological processes structuring communities: dispersal, speciation, niche selection, and ecological drift. Using a unique case study from high-elevation networks of connected lakes and streams, we sampled stream invertebrate communities in the Sierra Nevada, California, USA to test established stream ecology frameworks and compared them with the TEC framework. Local diversity increased and β-diversity decreased moving downstream from the headwaters, consistent with the river continuum concept and the small but mighty framework of mountain stream biodiversity. Local diversity was also structured by distance below upstream lakes, where diversity increased with distance below upstream lakes, in support of the serial discontinuity concept. Despite some support for the biodiversity patterns predicted from the stream ecology frameworks, no single framework was fully supported, suggesting “context dependence.” By framing our results under the TEC, we found that species diversity was structured by niche selection, where local diversity was highest in environmentally favorable sites. Local diversity was also highest in sites with small community sizes, countering the predicted effects of ecological drift. Moreover, higher β-diversity in the headwaters was influenced by dispersal and niche selection, where environmentally harsh and spatially isolated sites exhibit higher community variation. Taken together our results suggest that combining system-specific ecological frameworks with the TEC provides a powerful approach for inferring the mechanisms driving biodiversity patterns and provides a path toward generalization of biodiversity research across ecosystems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48708305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Payne, O. Spiegel, D. L. Sinn, S. T. Leu, M. G. Gardner, S. S. Godfrey, C. Wohlfeil, A. Sih
Home ranges (HRs), the regions within which animals interact with their environment, constitute a fundamental aspect of their ecology. HR sizes and locations commonly reflect costs and benefits associated with diverse social, biotic, and abiotic factors. Less is known, however, about how these factors affect intraspecific variation in HR size or fidelity (the individual's tendency to maintain the same HR location over time) or whether variation in these features emerge from consistent differences among individuals or among the sites they occupy. To address this knowledge gap, we used an extensive GPS-tracking data set of a long-lived lizard, the sleepy lizard (Tiliqua rugosa), which included repeated observations of multiple individuals across years. We tested how three categories of predictors—(1) lizard characteristics (sex, aggressiveness, and parasitic tick counts), (2) environmental characteristics (precipitation, food, and refuge quality), and (3) social conditions (conspecific overlap and number of neighbors)—affected HR size and fidelity. We found that individuals differed consistently in the size and fidelity of annual HRs (with a repeatability of 0.58 and 0.33, respectively), and that all three categories of predictors affected both HR size and fidelity. For example, HRs were smaller in areas with more food, and males had larger HRs than females. In addition, more aggressive lizards tended to have larger HRs. Conspecific overlap and number of individuals that a lizard interacted with (social network degree) had an interactive effect on HR size where individuals whose HRs overlapped more with neighbors had larger HRs, and this effect was particularly strong for individuals that interacted with more neighbors. HR fidelity declined over time (HR locations drifted from year to year), but individuals differed consistently in this rate of drift. The fact that HR size was consistent despite drifting locations suggests that lizard HRs reflect individual traits (e.g., habitat choice criteria that differ among individuals), rather than simple heterogeneity among sites. Overall, these findings demonstrate (1) both strong, long-term, within-individual consistency and between-individual differences in space use and (2) combined effects of individual traits, social conditions, and environmental characteristics on animal HRs, with implications for diverse ecological processes.
{"title":"Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards","authors":"E. Payne, O. Spiegel, D. L. Sinn, S. T. Leu, M. G. Gardner, S. S. Godfrey, C. Wohlfeil, A. Sih","doi":"10.1002/ecm.1519","DOIUrl":"10.1002/ecm.1519","url":null,"abstract":"<p>Home ranges (HRs), the regions within which animals interact with their environment, constitute a fundamental aspect of their ecology. HR sizes and locations commonly reflect costs and benefits associated with diverse social, biotic, and abiotic factors. Less is known, however, about how these factors affect intraspecific variation in HR size or fidelity (the individual's tendency to maintain the same HR location over time) or whether variation in these features emerge from consistent differences among individuals or among the sites they occupy. To address this knowledge gap, we used an extensive GPS-tracking data set of a long-lived lizard, the sleepy lizard (<i>Tiliqua rugosa</i>), which included repeated observations of multiple individuals across years. We tested how three categories of predictors—(1) lizard characteristics (sex, aggressiveness, and parasitic tick counts), (2) environmental characteristics (precipitation, food, and refuge quality), and (3) social conditions (conspecific overlap and number of neighbors)—affected HR size and fidelity. We found that individuals differed consistently in the size and fidelity of annual HRs (with a repeatability of 0.58 and 0.33, respectively), and that all three categories of predictors affected both HR size and fidelity. For example, HRs were smaller in areas with more food, and males had larger HRs than females. In addition, more aggressive lizards tended to have larger HRs. Conspecific overlap and number of individuals that a lizard interacted with (social network degree) had an interactive effect on HR size where individuals whose HRs overlapped more with neighbors had larger HRs, and this effect was particularly strong for individuals that interacted with more neighbors. HR fidelity declined over time (HR locations drifted from year to year), but individuals differed consistently in this rate of drift. The fact that HR size was consistent despite drifting locations suggests that lizard HRs reflect individual traits (e.g., habitat choice criteria that differ among individuals), rather than simple heterogeneity among sites. Overall, these findings demonstrate (1) both strong, long-term, within-individual consistency and between-individual differences in space use and (2) combined effects of individual traits, social conditions, and environmental characteristics on animal HRs, with implications for diverse ecological processes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45727369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}