首页 > 最新文献

Advanced Materials Interfaces最新文献

英文 中文
Exploring Wettability of Re-Entrant Microstructures: Effects of Geometry and Material Composition (Adv. Mater. Interfaces 35/2024)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-23 DOI: 10.1002/admi.202470085
Hoang Huy Vu, Nhat-Khuong Nguyen, Pradip Singha, Glenn Walker, Nam-Trung Nguyen, Navid Kashaninejad

Wetting Characteristics of Microstructures

The cover of the article 2400626 by Nam-Trung Nguyen, Navid Kashaninejad, and co-workers showcases the interplay between silicon carbide and silicon dioxide re-entrant microstructures, represented by the molecule models resting on mushroom-shaped structures. The scene highlights their hydrophobic behavior, with a large water droplet demonstrating surface tension. The varying cap shapes signify different material properties and geometry effects, advancing surface science and microstructure design.

{"title":"Exploring Wettability of Re-Entrant Microstructures: Effects of Geometry and Material Composition (Adv. Mater. Interfaces 35/2024)","authors":"Hoang Huy Vu,&nbsp;Nhat-Khuong Nguyen,&nbsp;Pradip Singha,&nbsp;Glenn Walker,&nbsp;Nam-Trung Nguyen,&nbsp;Navid Kashaninejad","doi":"10.1002/admi.202470085","DOIUrl":"https://doi.org/10.1002/admi.202470085","url":null,"abstract":"<p><b>Wetting Characteristics of Microstructures</b></p><p>The cover of the article 2400626 by Nam-Trung Nguyen, Navid Kashaninejad, and co-workers showcases the interplay between silicon carbide and silicon dioxide re-entrant microstructures, represented by the molecule models resting on mushroom-shaped structures. The scene highlights their hydrophobic behavior, with a large water droplet demonstrating surface tension. The varying cap shapes signify different material properties and geometry effects, advancing surface science and microstructure design.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 35","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202470085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progresses and Frontiers in Ultrawide Bandgap Semiconductors
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-23 DOI: 10.1002/admi.202400993
Xiaohang Li, Siddharth Rajan
<p>Ultrawide bandgap (UWBG) semiconductors are paving the way for a new era of high-performance electronic and photonic devices. Characterized by their large bandgaps, UWBG materials can withstand higher electric fields, operate at elevated temperatures, and achieve greater efficiencies compared to more established semiconductors like silicon and GaAs. These unique properties position UWBG semiconductors as crucial materials for next-generation power electronics, deep-ultraviolet (UV) photodetectors, and high-frequency communication systems.</p><p>In recent years, materials such as gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), aluminum gallium nitride (Al(Ga)N), and diamond have demonstrated remarkable potential in applications requiring high voltage, high power, and extreme environmental stability. Advances in processing techniques, defect management, and heterostructure design are driving this field forward, enabling devices that are more robust, efficient, and scalable. However, achieving the full potential of UWBG materials still presents significant challenges, including the need for improved material quality, better surface processing techniques, and innovative device architectures.</p><p>This special issue of <i>Progresses and Frontiers in Ultrawide Bandgap Semiconductors</i> brings together seven outstanding contributions that address these challenges and highlight recent breakthroughs in the field. The papers in this issue cover a range of topics, including advanced processing techniques, novel device fabrication methods, defect characterization, and the development of heterostructures for enhanced performance. Together, these works provide a comprehensive snapshot of the state-of-the-art in UWBG semiconductor research and offer insights that will guide future developments.</p><p>The following summaries highlight each of these contributions, illustrating the diversity of approaches and the depth of innovation in UWBG semiconductor research.</p><p>Brianna Klein and her team from Sandia National Lab and the Ohio State University present an innovative approach in their paper, “Al-Rich AlGaN Transistors with Regrown p-AlGaN Gate Layers and Ohmic Contacts.” This work focuses on fabricating Al-rich AlGaN high electron mobility transistors (HEMTs) with enhancement-mode operation. By employing a deep gate recess etch and epitaxial regrowth of p-AlGaN gate structures, they achieve a large positive threshold voltage (<i>V</i><sub>TH</sub> = +3.5 V) and negligible gate leakage. Additionally, low-resistance Ohmic contacts are realized using regrown, heavily doped, reverse compositionally graded n-type structures, achieving a specific contact resistance as low as 4 × 10<sup>−6</sup> Ω cm<sup>2</sup>. These advancements provide a viable pathway for developing high-current, low-leakage, enhancement-mode AlGaN-based ultra-wide bandgap transistors, crucial for future high-power and high-frequency applications.</p><p>Xuanyi Zhao and her colleagues from Sha
{"title":"Progresses and Frontiers in Ultrawide Bandgap Semiconductors","authors":"Xiaohang Li,&nbsp;Siddharth Rajan","doi":"10.1002/admi.202400993","DOIUrl":"https://doi.org/10.1002/admi.202400993","url":null,"abstract":"&lt;p&gt;Ultrawide bandgap (UWBG) semiconductors are paving the way for a new era of high-performance electronic and photonic devices. Characterized by their large bandgaps, UWBG materials can withstand higher electric fields, operate at elevated temperatures, and achieve greater efficiencies compared to more established semiconductors like silicon and GaAs. These unique properties position UWBG semiconductors as crucial materials for next-generation power electronics, deep-ultraviolet (UV) photodetectors, and high-frequency communication systems.&lt;/p&gt;&lt;p&gt;In recent years, materials such as gallium oxide (Ga&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;), aluminum gallium nitride (Al(Ga)N), and diamond have demonstrated remarkable potential in applications requiring high voltage, high power, and extreme environmental stability. Advances in processing techniques, defect management, and heterostructure design are driving this field forward, enabling devices that are more robust, efficient, and scalable. However, achieving the full potential of UWBG materials still presents significant challenges, including the need for improved material quality, better surface processing techniques, and innovative device architectures.&lt;/p&gt;&lt;p&gt;This special issue of &lt;i&gt;Progresses and Frontiers in Ultrawide Bandgap Semiconductors&lt;/i&gt; brings together seven outstanding contributions that address these challenges and highlight recent breakthroughs in the field. The papers in this issue cover a range of topics, including advanced processing techniques, novel device fabrication methods, defect characterization, and the development of heterostructures for enhanced performance. Together, these works provide a comprehensive snapshot of the state-of-the-art in UWBG semiconductor research and offer insights that will guide future developments.&lt;/p&gt;&lt;p&gt;The following summaries highlight each of these contributions, illustrating the diversity of approaches and the depth of innovation in UWBG semiconductor research.&lt;/p&gt;&lt;p&gt;Brianna Klein and her team from Sandia National Lab and the Ohio State University present an innovative approach in their paper, “Al-Rich AlGaN Transistors with Regrown p-AlGaN Gate Layers and Ohmic Contacts.” This work focuses on fabricating Al-rich AlGaN high electron mobility transistors (HEMTs) with enhancement-mode operation. By employing a deep gate recess etch and epitaxial regrowth of p-AlGaN gate structures, they achieve a large positive threshold voltage (&lt;i&gt;V&lt;/i&gt;&lt;sub&gt;TH&lt;/sub&gt; = +3.5 V) and negligible gate leakage. Additionally, low-resistance Ohmic contacts are realized using regrown, heavily doped, reverse compositionally graded n-type structures, achieving a specific contact resistance as low as 4 × 10&lt;sup&gt;−6&lt;/sup&gt; Ω cm&lt;sup&gt;2&lt;/sup&gt;. These advancements provide a viable pathway for developing high-current, low-leakage, enhancement-mode AlGaN-based ultra-wide bandgap transistors, crucial for future high-power and high-frequency applications.&lt;/p&gt;&lt;p&gt;Xuanyi Zhao and her colleagues from Sha","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Adv. Mater. Interfaces 35/2024)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-23 DOI: 10.1002/admi.202470086
{"title":"Masthead: (Adv. Mater. Interfaces 35/2024)","authors":"","doi":"10.1002/admi.202470086","DOIUrl":"https://doi.org/10.1002/admi.202470086","url":null,"abstract":"","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 35","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202470086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of a Nanostructured Ti-Si-C-N Coating by Self-Organization with Reduced Amorphous Matrix
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.1002/admi.202400644
Alexander Thewes, Lars Bröcker, Phillip Marvin Reinders, Hanno Paschke, Tristan Brückner, Wolfgang Tillmann, Julia Urbanczyk, Nelson Filipe Lopes Dias, Michael Paulus, Christian Sternemann

A Ti-Si-C-N coating is deposited on AISI H11 hot working steel by plasma-enhanced chemical vapor deposition (PECVD) to investigate its micro- and nanostructure as well as its mechanical and thermal properties. Instead of a nanocomposite structure consisting of randomly oriented nanocrystalline (nc-) grains < 10 nm surround by an amorphous (a-) matrix, as usually found for these systems, this Ti-Si-C-N coating shows much larger Ti(C,N)-grains with a preferred (200) orientation identify by X-ray diffraction analysis. The strong texturing and grain sizes > 10 nm of the coating are confirmed by high-resolution transmission electron microscopy images. The coating's hardness is 46.3 GPa, making it equally hard to, e.g., nanocomposite Ti-Si-N coatings. These hardness values can only be achieved by a strong interface between a-matrix and nc-grains and small grain size. Despite 41.1 at.% carbon content, no significant quantity of a-C is found, as evidenced by Raman spectroscopy analysis. In order to investigate the oxidation behavior of the coatings, X-ray diffraction experiments are carried out at room temperature and in-situ in ambient atmosphere at elevated temperatures. The room temperature measurement shows a strong texturing of the Ti(C,N) lattice and yielded additional information on an anisotropic grain size.

{"title":"Formation of a Nanostructured Ti-Si-C-N Coating by Self-Organization with Reduced Amorphous Matrix","authors":"Alexander Thewes,&nbsp;Lars Bröcker,&nbsp;Phillip Marvin Reinders,&nbsp;Hanno Paschke,&nbsp;Tristan Brückner,&nbsp;Wolfgang Tillmann,&nbsp;Julia Urbanczyk,&nbsp;Nelson Filipe Lopes Dias,&nbsp;Michael Paulus,&nbsp;Christian Sternemann","doi":"10.1002/admi.202400644","DOIUrl":"https://doi.org/10.1002/admi.202400644","url":null,"abstract":"<p>A Ti-Si-C-N coating is deposited on AISI H11 hot working steel by plasma-enhanced chemical vapor deposition (PECVD) to investigate its micro- and nanostructure as well as its mechanical and thermal properties. Instead of a nanocomposite structure consisting of randomly oriented nanocrystalline (nc-) grains &lt; 10 nm surround by an amorphous (a-) matrix, as usually found for these systems, this Ti-Si-C-N coating shows much larger Ti(C,N)-grains with a preferred (200) orientation identify by X-ray diffraction analysis. The strong texturing and grain sizes &gt; 10 nm of the coating are confirmed by high-resolution transmission electron microscopy images. The coating's hardness is 46.3 GPa, making it equally hard to, e.g., nanocomposite Ti-Si-N coatings. These hardness values can only be achieved by a strong interface between a-matrix and nc-grains and small grain size. Despite 41.1 at.% carbon content, no significant quantity of a-C is found, as evidenced by Raman spectroscopy analysis. In order to investigate the oxidation behavior of the coatings, X-ray diffraction experiments are carried out at room temperature and in-situ in ambient atmosphere at elevated temperatures. The room temperature measurement shows a strong texturing of the Ti(C,N) lattice and yielded additional information on an anisotropic grain size.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400644","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recyclable Multifunctional PSOGs for Rapid Removal of Wastewater Pollutants (Oily and Dye)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.1002/admi.202400525
Wannian Zhang, Yingquan Du, Zhigang Gao, Fang Yu, Yu-Peng He

The treatment of contaminants in water has become one of the most critical environmental issues today, especially oil- and dye-pollutants in water, for which there is still no efficient and economical solution. A multifunctional phase-selective organogel (tert-butyl (S)-(5-amino-1,5-dioxo-1-(tetradecylamino)pentan-2-yl)carbamate, TBTC) is developed to remove oils and dyes from water. Benefiting from the significant van der Waals interaction between the long alkyl chain of TBTC and the oil, TBTC can rapidly disperse into the oil phase. Then, TBTC aggregates into fibers and solidifies oil through a repairable, dynamic, and balanced hydrogen bonding network, which can solidify and recover the spilled oil at room temperature. TBTC can also efficiently remove more than a dozen typical dye contaminants through a host–guest recognition mode. The mechanism of host–guest recognition is studied by experiment combined with multiscale calculations. Partial 1H VT NMR, FTIR, and XRD experiments have shown that the main driving force for TBTC gelation and host–guest recognition originates from interaction hydrogen bonding, are TBTC specifically recognizes dye molecules through weak hydrogen bonding interactions and rapidly aggregates to form precipitates. TBTC-based organogel provides a potential solution for oil spill recovery and removal of dyes from water.

{"title":"Recyclable Multifunctional PSOGs for Rapid Removal of Wastewater Pollutants (Oily and Dye)","authors":"Wannian Zhang,&nbsp;Yingquan Du,&nbsp;Zhigang Gao,&nbsp;Fang Yu,&nbsp;Yu-Peng He","doi":"10.1002/admi.202400525","DOIUrl":"https://doi.org/10.1002/admi.202400525","url":null,"abstract":"<p>The treatment of contaminants in water has become one of the most critical environmental issues today, especially oil- and dye-pollutants in water, for which there is still no efficient and economical solution. A multifunctional phase-selective organogel (tert-butyl (<i>S</i>)-(5-amino-1,5-dioxo-1-(tetradecylamino)pentan-2-yl)carbamate, <b>TBTC</b>) is developed to remove oils and dyes from water. Benefiting from the significant van der Waals interaction between the long alkyl chain of <b>TBTC</b> and the oil, <b>TBTC</b> can rapidly disperse into the oil phase. Then, <b>TBTC</b> aggregates into fibers and solidifies oil through a repairable, dynamic, and balanced hydrogen bonding network, which can solidify and recover the spilled oil at room temperature. <b>TBTC</b> can also efficiently remove more than a dozen typical dye contaminants through a host–guest recognition mode. The mechanism of host–guest recognition is studied by experiment combined with multiscale calculations. Partial <sup>1</sup>H VT NMR, FTIR, and XRD experiments have shown that the main driving force for <b>TBTC</b> gelation and host–guest recognition originates from interaction hydrogen bonding, are <b>TBTC</b> specifically recognizes dye molecules through weak hydrogen bonding interactions and rapidly aggregates to form precipitates. <b>TBTC</b>-based organogel provides a potential solution for oil spill recovery and removal of dyes from water.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong, Reversible, Heat-Activated Adhesion from Liquid Crystal Polymer Networks (Adv. Mater. Interfaces 36/2024) 液晶聚合物网络的强力、可逆、热激活附着力(Adv. Mater. Interfaces 36/2024)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.1002/admi.202470088
Hongye Gou, Shenghui Hou, Mohand O. Saed

Liquid Crystal Elastomers

In article 2400488, Mohand O. Saed and co-workers develop reusable liquid crystal adhesives with controlled transition temperatures (Tg and Ti). These adhesives show low tackiness in the glassy and isotropic phases, becoming activated between Tg and Ti. They are reusable across multiple heating and cooling cycles, resistant to contamination, and offer lap shear and peel strengths comparable to traditional pressure-sensitive adhesives (PSAs).

在文章2400488中,Mohand O. Saed及其同事开发了具有可控制转变温度(Tg和Ti)的可重复使用的液晶粘合剂。这些胶粘剂在玻璃相和各向同性相表现出低粘性,在Tg和Ti之间被激活。它们可以在多个加热和冷却循环中重复使用,耐污染,并具有与传统压敏胶(psa)相当的剪切和剥离强度。
{"title":"Strong, Reversible, Heat-Activated Adhesion from Liquid Crystal Polymer Networks (Adv. Mater. Interfaces 36/2024)","authors":"Hongye Gou,&nbsp;Shenghui Hou,&nbsp;Mohand O. Saed","doi":"10.1002/admi.202470088","DOIUrl":"https://doi.org/10.1002/admi.202470088","url":null,"abstract":"<p><b>Liquid Crystal Elastomers</b></p><p>In article 2400488, Mohand O. Saed and co-workers develop reusable liquid crystal adhesives with controlled transition temperatures (Tg and Ti). These adhesives show low tackiness in the glassy and isotropic phases, becoming activated between Tg and Ti. They are reusable across multiple heating and cooling cycles, resistant to contamination, and offer lap shear and peel strengths comparable to traditional pressure-sensitive adhesives (PSAs).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202470088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Decorated With Mo3S7 Clusters for Sensing CO2 (Adv. Mater. Interfaces 36/2024) 石墨烯修饰Mo3S7簇传感CO2(Adv)板牙。接口36/2024)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.1002/admi.202470087
Juan Casanova-Chafer, Eduard Llobet, Marta Feliz

Metal Cluster-Based Chemical Sensor

The development of a nanohybrid based on trinuclear molybdenum sulfido clusters supported onto graphene and its application to detect toxic and harmful gaseous molecules is described. The outstanding sensing performance toward CO2 makes these materials promising for a new generation of molybdenum resistive interrogators for the control of air quality. More details can be found in article 2400590 by Juan Casanova-Chafer, Eduard Llobet, and Marta Feliz.

本文介绍了基于石墨烯支撑的三核硫化钼簇纳米杂化材料的研制及其在有毒有害气体分子检测中的应用。优异的CO2传感性能使这些材料有望成为新一代钼电阻式空气质量控制询问器。更多细节可以在Juan Casanova-Chafer, edward Llobet和Marta Feliz的文章2400590中找到。
{"title":"Graphene Decorated With Mo3S7 Clusters for Sensing CO2\t(Adv. Mater. Interfaces 36/2024)","authors":"Juan Casanova-Chafer,&nbsp;Eduard Llobet,&nbsp;Marta Feliz","doi":"10.1002/admi.202470087","DOIUrl":"https://doi.org/10.1002/admi.202470087","url":null,"abstract":"<p><b>Metal Cluster-Based Chemical Sensor</b></p><p>The development of a nanohybrid based on trinuclear molybdenum sulfido clusters supported onto graphene and its application to detect toxic and harmful gaseous molecules is described. The outstanding sensing performance toward CO<sub>2</sub> makes these materials promising for a new generation of molybdenum resistive interrogators for the control of air quality. More details can be found in article 2400590 by Juan Casanova-Chafer, Eduard Llobet, and Marta Feliz.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202470087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconvoluting Effects of Lithium Morphology and SEI Stability at Moderate Current Density Using Interface Engineering (Adv. Mater. Interfaces 36/2024) 应用界面工程研究中等电流密度下锂形态和SEI稳定性的反卷积效应。接口36/2024)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.1002/admi.202470090
Sanzeeda Baig Shuchi, Solomon T. Oyakhire, Wenbo Zhang, Philaphon Sayavong, Yusheng Ye, Yuelang Chen, Zhiao Yu, Yi Cui, Stacey F. Bent

Planetary Lithium Islands

The cover image of the article 2400693 by Yi Cui, Stacey F. Bent, and co-workers depicts a unique planetary-like microstructure with lithium islands achieved by resistive hafnia coating on copper. The work introduces an interface engineering approach that allows the decoupling of two critical lithium (Li)-metal battery parameters—Li-morphology and solid electrolyte interphase (SEI)—in their kinetically convoluted regime. The article highlights that Li morphological control is more practical due to the challenges in SEI preservation.

行星锂岛:Yi Cui、Stacey F. Bent 及其合作者撰写的 2400693 号文章的封面图片描绘了一种独特的行星状微结构,这种微结构通过在铜上进行电阻哈夫纳涂层而形成锂岛。该研究介绍了一种界面工程方法,该方法可以将两个关键的锂(Li)金属电池参数--锂形态和固体电解质相间层(SEI)--在其动力学迂回机制中解耦。文章强调,由于 SEI 保存方面的挑战,锂形态控制更为实用。
{"title":"Deconvoluting Effects of Lithium Morphology and SEI Stability at Moderate Current Density Using Interface Engineering (Adv. Mater. Interfaces 36/2024)","authors":"Sanzeeda Baig Shuchi,&nbsp;Solomon T. Oyakhire,&nbsp;Wenbo Zhang,&nbsp;Philaphon Sayavong,&nbsp;Yusheng Ye,&nbsp;Yuelang Chen,&nbsp;Zhiao Yu,&nbsp;Yi Cui,&nbsp;Stacey F. Bent","doi":"10.1002/admi.202470090","DOIUrl":"https://doi.org/10.1002/admi.202470090","url":null,"abstract":"<p><b>Planetary Lithium Islands</b></p><p>The cover image of the article 2400693 by Yi Cui, Stacey F. Bent, and co-workers depicts a unique planetary-like microstructure with lithium islands achieved by resistive hafnia coating on copper. The work introduces an interface engineering approach that allows the decoupling of two critical lithium (Li)-metal battery parameters—Li-morphology and solid electrolyte interphase (SEI)—in their kinetically convoluted regime. The article highlights that Li morphological control is more practical due to the challenges in SEI preservation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202470090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Adv. Mater. Interfaces 36/2024) 报头:(Adv. Mater)接口36/2024)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.1002/admi.202470089
{"title":"Masthead: (Adv. Mater. Interfaces 36/2024)","authors":"","doi":"10.1002/admi.202470089","DOIUrl":"https://doi.org/10.1002/admi.202470089","url":null,"abstract":"","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202470089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport of Hydrogen Through Anion Exchange Membranes in Water Electrolysis
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.1002/admi.202400515
Andre Klinger, Oscar Strobl, Hannes Michaels, Michael Kress, Nemanja Martic, Anna Maltenberger, Benjamin Britton, Andrew Belletti, Rüdiger-A. Eichel, Guenter Schmid

The transport of hydrogen through an anion-exchange membrane (AEM) is analyzed by in-line product gas analysis in a large dynamic range (0.1–2 Acm−2) at ambient pressure and correlated to ex situ membrane properties, including volumetric electrolyte uptake, dimensional swelling and diffusivities. A commercial AF3-HWK9-75-X membrane from Ionomr Innovations Inc. is characterized and employed in a 25 cm2 electrolyzer cell, which is operated for 56 h at 60 °C in 1 M KOH solution. A model of the membrane is developed, based on a combination of existing theoretical knowledge regarding liquid electrolytes and measured properties of the membrane. The model is employed to quantify the transport parameters through the membrane and the porous electrode. The hydrogen transport through the membrane is 770 times slower than through the electrode. The anion-exchange membrane permits a low degree of gas crossover, with a hydrogen-in-oxygen concentration of 0.37%$0.37,%$ at 2 Acm−2. The model indicates that modifying the membrane's microstructure has a more pronounced effect on the gas crossover than altering the swollen thickness. A correlation is derived to estimate the polymer diffusivity from the derived effective diffusivity through the membrane, which allows the determination of preferred membrane properties to lower hydrogen crossover.

{"title":"Transport of Hydrogen Through Anion Exchange Membranes in Water Electrolysis","authors":"Andre Klinger,&nbsp;Oscar Strobl,&nbsp;Hannes Michaels,&nbsp;Michael Kress,&nbsp;Nemanja Martic,&nbsp;Anna Maltenberger,&nbsp;Benjamin Britton,&nbsp;Andrew Belletti,&nbsp;Rüdiger-A. Eichel,&nbsp;Guenter Schmid","doi":"10.1002/admi.202400515","DOIUrl":"https://doi.org/10.1002/admi.202400515","url":null,"abstract":"<p>The transport of hydrogen through an anion-exchange membrane (AEM) is analyzed by <i>in</i>-<i>line</i> product gas analysis in a large dynamic range (0.1–2 <i>Acm</i><sup>−2</sup>) at ambient pressure and correlated to <i>ex</i> <i>situ</i> membrane properties, including volumetric electrolyte uptake, dimensional swelling and diffusivities. A commercial AF3-HWK9-75-X membrane from Ionomr Innovations Inc. is characterized and employed in a 25 <i>cm</i><sup>2</sup> electrolyzer cell, which is operated for 56 <i>h</i> at 60 °<i>C</i> in 1 <i>M</i> KOH solution. A model of the membrane is developed, based on a combination of existing theoretical knowledge regarding liquid electrolytes and measured properties of the membrane. The model is employed to quantify the transport parameters through the membrane and the porous electrode. The hydrogen transport through the membrane is 770 times slower than through the electrode. The anion-exchange membrane permits a low degree of gas crossover, with a hydrogen-in-oxygen concentration of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0.37</mn>\u0000 <mspace></mspace>\u0000 <mo>%</mo>\u0000 </mrow>\u0000 <annotation>$0.37,%$</annotation>\u0000 </semantics></math> at 2 <i>Acm</i><sup>−2</sup>. The model indicates that modifying the membrane's microstructure has a more pronounced effect on the gas crossover than altering the swollen thickness. A correlation is derived to estimate the polymer diffusivity from the derived effective diffusivity through the membrane, which allows the determination of preferred membrane properties to lower hydrogen crossover.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400515","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Materials Interfaces
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1