首页 > 最新文献

Advanced Materials Interfaces最新文献

英文 中文
High-Precision Silicon Microgrooves via Metal-Assisted Chemical Etching (MACE) Using Electrospun Nanofibers 利用静电纺纳米纤维制备金属辅助化学蚀刻(MACE)高精度硅微槽
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-09 DOI: 10.1002/admi.202500578
Mun Jeong Choi, Dong Ho Lee, Han Seul Kim, Geon Hwee Kim

Silicon nano/microstructures have attracted significant interest for their applications in electronics, sensors, and energy devices. However, conventional photolithography-based fabrication processes face challenges such as high cost, procedural complexity, and limited scalability for large-area patterning. In this study, we propose a novel and cost-effective fabrication method to precisely create silicon nano/microstructures by utilizing metal mask patterning based on electrospinning. The palladium (Pd) nanocluster patterns, with linewidths below 1 µm formed by electrospinning, act either as catalysts or protective masks depending on the etching environment. Under acidic conditions, Pd acts as a catalyst for metal-assisted chemical etching (MACE), forming semicircular silicon structures along the nanofiber patterns. In alkaline environments, the porous nature of the Pd clusters allow partial penetration of the etchant, enabling anisotropic etching and lift-off effects that produce pyramid-shaped microgrooves with crystallographic angles of 54.74°. This process achieves structures with 5–10 µm linewidths and feature spacing as narrow as 1 µm. Conducted under atmospheric pressure and without the need for expensive equipment, this technique presents strong potential for next-generation microelectronic and biosensing applications.

硅纳米/微结构因其在电子、传感器和能源器件中的应用而引起了人们的极大兴趣。然而,传统的基于光刻的制造工艺面临着诸如高成本、程序复杂性和大面积图案有限的可扩展性等挑战。在这项研究中,我们提出了一种新颖而经济的制造方法,利用基于静电纺丝的金属掩模图案来精确地制造硅纳米/微结构。通过静电纺丝形成的线宽小于1 μ m的钯纳米簇图案,根据蚀刻环境的不同,可以作为催化剂或保护掩膜。在酸性条件下,钯作为金属辅助化学蚀刻(MACE)的催化剂,沿着纳米纤维图案形成半圆形硅结构。在碱性环境中,Pd团簇的多孔特性允许蚀刻剂部分渗透,从而实现各向异性蚀刻和剥离效应,从而产生晶体角度为54.74°的金字塔形微槽。该工艺可实现线宽为5-10微米的结构,特征间距窄至1微米。该技术在大气压力下进行,不需要昂贵的设备,在下一代微电子和生物传感应用中具有强大的潜力。
{"title":"High-Precision Silicon Microgrooves via Metal-Assisted Chemical Etching (MACE) Using Electrospun Nanofibers","authors":"Mun Jeong Choi,&nbsp;Dong Ho Lee,&nbsp;Han Seul Kim,&nbsp;Geon Hwee Kim","doi":"10.1002/admi.202500578","DOIUrl":"https://doi.org/10.1002/admi.202500578","url":null,"abstract":"<p>Silicon nano/microstructures have attracted significant interest for their applications in electronics, sensors, and energy devices. However, conventional photolithography-based fabrication processes face challenges such as high cost, procedural complexity, and limited scalability for large-area patterning. In this study, we propose a novel and cost-effective fabrication method to precisely create silicon nano/microstructures by utilizing metal mask patterning based on electrospinning. The palladium (Pd) nanocluster patterns, with linewidths below 1 µm formed by electrospinning, act either as catalysts or protective masks depending on the etching environment. Under acidic conditions, Pd acts as a catalyst for metal-assisted chemical etching (MACE), forming semicircular silicon structures along the nanofiber patterns. In alkaline environments, the porous nature of the Pd clusters allow partial penetration of the etchant, enabling anisotropic etching and lift-off effects that produce pyramid-shaped microgrooves with crystallographic angles of 54.74°. This process achieves structures with 5–10 µm linewidths and feature spacing as narrow as 1 µm. Conducted under atmospheric pressure and without the need for expensive equipment, this technique presents strong potential for next-generation microelectronic and biosensing applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500578","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transparent Electrodes Composed of Organized Titania Nanotubes and Transition Metal Sulfides for the Oxygen Evolution Reaction 有机二氧化钛纳米管与过渡金属硫化物组成的析氧透明电极
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-08 DOI: 10.1002/admi.202500606
Wiktoria Lipińska, Emerson Coy, Katarzyna Grochowska, Justyna Gumieniak, Agnieszka Kramek, Ryan W. Crisp, Stefania Wolff, Katarzyna Siuzdak

Transition metal sulfides have been widely investigated as electrocatalysts for both the oxygen and hydrogen evolution reactions. Here, we synthesized copper, nickel, cobalt, and iron sulfides using a facile successive ionic layer adsorption reaction (SILAR) occurring in porous transparent titanium dioxide nanotubes. Nanotubes are fabricated by anodization of a titanium layer sputtered onto indium tin oxide-coated glass slides. X-ray photoelectron spectroscopy measurements confirmed the presence of copper oxides and sulfides, cobalt oxides and sulfides, nickel oxides and sulfides as well as iron oxides. Although the walls of the titania nanotubes are modified using 5 mm aqueous solutions containing the metal and sulfide ions, the initial transparency has been preserved. According to microscopic studies and elemental analysis, the sulfides are uniformly distributed on the walls forming a metal oxide/metal sulfide heterojunction. Among all investigated materials, titania overgrown by cobalt oxide and sulfide exhibits the highest current density of 28 mA cm−2 recorded at +2.1 V vs. RHE during oxygen evolution, while the non-modified electrode reached only 1.5 mA cm−2. Taking into account both the high transparency and activity toward oxygen evolution, the investigated electrodes are an important element for a semitransparent tandem device for overall water splitting.

过渡金属硫化物作为析氧和析氢反应的电催化剂已被广泛研究。在这里,我们利用发生在多孔透明二氧化钛纳米管中的简单连续离子层吸附反应(SILAR)合成了铜、镍、钴和铁的硫化物。纳米管是通过阳极氧化将钛层溅射到氧化铟锡镀膜玻片上制备的。x射线光电子能谱测量证实了铜氧化物和硫化物、钴氧化物和硫化物、镍氧化物和硫化物以及铁氧化物的存在。尽管使用含有金属和硫化物离子的5毫米水溶液对二氧化钛纳米管的壁进行了修饰,但仍保留了最初的透明度。微观研究和元素分析表明,硫化物均匀分布在壁上,形成金属氧化物/金属硫化物异质结。在所有被研究的材料中,氧化钴和硫化物覆盖的二氧化钛在+2.1 V相对于RHE的析氧过程中显示出最高的电流密度为28 mA cm−2,而未修饰的电极仅达到1.5 mA cm−2。考虑到高透明度和析氧活性,所研究的电极是用于整体水分解的半透明串联装置的重要元件。
{"title":"Transparent Electrodes Composed of Organized Titania Nanotubes and Transition Metal Sulfides for the Oxygen Evolution Reaction","authors":"Wiktoria Lipińska,&nbsp;Emerson Coy,&nbsp;Katarzyna Grochowska,&nbsp;Justyna Gumieniak,&nbsp;Agnieszka Kramek,&nbsp;Ryan W. Crisp,&nbsp;Stefania Wolff,&nbsp;Katarzyna Siuzdak","doi":"10.1002/admi.202500606","DOIUrl":"https://doi.org/10.1002/admi.202500606","url":null,"abstract":"<p>Transition metal sulfides have been widely investigated as electrocatalysts for both the oxygen and hydrogen evolution reactions. Here, we synthesized copper, nickel, cobalt, and iron sulfides using a facile successive ionic layer adsorption reaction (SILAR) occurring in porous transparent titanium dioxide nanotubes. Nanotubes are fabricated by anodization of a titanium layer sputtered onto indium tin oxide-coated glass slides. X-ray photoelectron spectroscopy measurements confirmed the presence of copper oxides and sulfides, cobalt oxides and sulfides, nickel oxides and sulfides as well as iron oxides. Although the walls of the titania nanotubes are modified using 5 m<span>m</span> aqueous solutions containing the metal and sulfide ions, the initial transparency has been preserved. According to microscopic studies and elemental analysis, the sulfides are uniformly distributed on the walls forming a metal oxide/metal sulfide heterojunction. Among all investigated materials, titania overgrown by cobalt oxide and sulfide exhibits the highest current density of 28 mA cm<sup>−2</sup> recorded at +2.1 V vs. RHE during oxygen evolution, while the non-modified electrode reached only 1.5 mA cm<sup>−2</sup>. Taking into account both the high transparency and activity toward oxygen evolution, the investigated electrodes are an important element for a semitransparent tandem device for overall water splitting.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 2","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146007522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing Vertical Etch Profiles in Fluorine-Rich Ar/CF4 Plasma 富氟Ar/CF4等离子体垂直蚀刻剖面的实现
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-08 DOI: 10.1002/admi.202500940
Junyoung Park, Nayeon Kim, Jung-Eun Choi, Yujin Yeo, Min-Seok Kim, Beom-Jun Seo, Chin-Wook Chung

The fabrication of next-generation semiconductor and quantum devices with complex 3D architectures requires etching processes that enable highly anisotropic profiles while minimizing plasma-induced damage. However, conventional plasma processes face fundamental limitations, including plasma-induced damage and limited control over etch anisotropy. In particular, fluorine-rich plasmas such as CF4 inherently struggle to achieve vertical profiles due to insufficient sidewall passivation. This study demonstrates that vertical etch profiles can be achieved under ultra-low electron temperature (ULET) conditions in fluorine-rich Ar/CF4 plasma. Under conventional high electron temperature (Te) conditions without radio-frequency (rf) bias power, Ar/CF4 plasma produces isotropic profiles characterized by undercut and a rounded trench bottom. When Te is reduced to ≈ 0.5 eV, the profile transitions from isotropic to anisotropic, resulting in suppressed undercut and a flattened trench bottom. This transition is attributed to enhanced sidewall passivation, driven by an increased CFx/F ratio at low-Te conditions. Moreover, applying moderate rf bias (7 W) to the ULET plasma improves the vertical etch rate and anisotropy without distortion. However, excessive bias power (>18 W) leads to electron heating, which reintroduces distortion. These findings establish Te as a decisive parameter and demonstrate that ULET plasma enables highly anisotropic etching with minimized distortion in fluorine-rich chemistries.

制造具有复杂3D结构的下一代半导体和量子器件需要蚀刻工艺,以实现高度各向异性的轮廓,同时最大限度地减少等离子体引起的损伤。然而,传统的等离子体工艺面临着基本的局限性,包括等离子体引起的损伤和对蚀刻各向异性的控制有限。特别是,富氟等离子体,如CF4,由于侧壁钝化不足,固有地难以获得垂直剖面。该研究表明,在富氟Ar/CF4等离子体中,在超低电子温度(ULET)条件下可以实现垂直蚀刻轮廓。在常规的高电子温度(Te)条件下,没有射频(rf)偏置功率,Ar/CF4等离子体产生具有凹边和圆形沟槽底部特征的各向同性剖面。当Te降至≈0.5 eV时,剖面由各向同性转变为各向异性,从而抑制了凹痕和平坦的沟槽底部。这种转变归因于低te条件下CFx/F比的增加,从而增强了侧壁钝化。此外,在ULET等离子体上施加适度的射频偏置(7w)可以提高垂直蚀刻速率和各向异性,而不会产生畸变。然而,过大的偏置功率(> 18w)会导致电子加热,从而重新引入畸变。这些发现确立了Te是一个决定性参数,并证明ULET等离子体在富氟化学物质中实现了高度各向异性的蚀刻,并最小化了畸变。
{"title":"Realizing Vertical Etch Profiles in Fluorine-Rich Ar/CF4 Plasma","authors":"Junyoung Park,&nbsp;Nayeon Kim,&nbsp;Jung-Eun Choi,&nbsp;Yujin Yeo,&nbsp;Min-Seok Kim,&nbsp;Beom-Jun Seo,&nbsp;Chin-Wook Chung","doi":"10.1002/admi.202500940","DOIUrl":"https://doi.org/10.1002/admi.202500940","url":null,"abstract":"<p>The fabrication of next-generation semiconductor and quantum devices with complex 3D architectures requires etching processes that enable highly anisotropic profiles while minimizing plasma-induced damage. However, conventional plasma processes face fundamental limitations, including plasma-induced damage and limited control over etch anisotropy. In particular, fluorine-rich plasmas such as CF<sub>4</sub> inherently struggle to achieve vertical profiles due to insufficient sidewall passivation. This study demonstrates that vertical etch profiles can be achieved under ultra-low electron temperature (ULET) conditions in fluorine-rich Ar/CF<sub>4</sub> plasma. Under conventional high electron temperature (<i>T</i><sub>e</sub>) conditions without radio-frequency (rf) bias power, Ar/CF<sub>4</sub> plasma produces isotropic profiles characterized by undercut and a rounded trench bottom. When <i>T</i><sub>e</sub> is reduced to ≈ 0.5 eV, the profile transitions from isotropic to anisotropic, resulting in suppressed undercut and a flattened trench bottom. This transition is attributed to enhanced sidewall passivation, driven by an increased CF<sub>x</sub>/F ratio at low-<i>T</i><sub>e</sub> conditions. Moreover, applying moderate rf bias (7 W) to the ULET plasma improves the vertical etch rate and anisotropy without distortion. However, excessive bias power (&gt;18 W) leads to electron heating, which reintroduces distortion. These findings establish<i> T</i><sub>e</sub> as a decisive parameter and demonstrate that ULET plasma enables highly anisotropic etching with minimized distortion in fluorine-rich chemistries.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500940","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Characterization of Carbon-Doped and Carbon-Coated TiO2 Core–Shell Nanoparticles 碳掺杂和碳包覆TiO2核壳纳米粒子的结构表征
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-08 DOI: 10.1002/admi.202500770
Dominik Eitel, Sabrina Panzer, Ulrich Hagemann, Markus Heidelmann, Fabio Joseph, Jens Helbig, Uta Helbig, Melanie Kaliwoda, Ulrich Teipel

Carbon-doped TiO2 nanoparticles were prepared by a facile carbothermal treatment at different temperatures. The synthesis was conducted in a rotary tube furnace under an acetylene/nitrogen gas flow. A detailed analysis of the morphology of the particles revealed a layered graphene structure surrounding the TiO2 core with a temperature-dependent shell thickness of 1–1.5 nm. The material exhibits a significant shift in the Raman Eg(1) mode toward higher wavenumbers. High carbon contents were determined by X-ray photoelectron spectroscopy. This led to the conclusion that in addition to the carbon in the shell, carbon is also incorporated into the TiO2 structure. Substitutional doping in favor of titanium or oxygen atoms could be excluded based on XPS measurements due to the absence of Ti–C bonds and the lack of changes in lattice parameters of the unit cell or microstrain. An interstitial incorporation of carbon is therefore most likely. Either the incorporation of carbon or the carbon shell suppressed the phase transition from anatase to the thermodynamically stable rutile which is expected above 600C$^{circ }{rm C}$. Additionally, the process inhibits the crystallite growth at higher treatment temperatures.

采用不同温度下的碳热处理法制备了碳掺杂TiO2纳米颗粒。在乙炔/氮气流下的转管炉中进行了合成。对颗粒形貌的详细分析表明,二氧化钛核心周围有层状石墨烯结构,其壳层厚度随温度变化为1-1.5 nm。该材料在拉曼Eg(1)模式中表现出向更高波数的显著转变。用x射线光电子能谱法测定高碳含量。由此得出结论,除了壳层中的碳外,碳也被掺入到TiO2结构中。由于缺乏Ti-C键,并且单元胞或微应变的晶格参数没有变化,因此基于XPS测量可以排除钛或氧原子的取代掺杂。因此,碳的间隙结合是最有可能的。碳的加入或碳壳抑制了从锐钛矿到热力学稳定的金红石的相变,金红石的相变预计在600°C $^{circ}{rm C}$以上。此外,该工艺在较高的处理温度下抑制了晶体的生长。
{"title":"Structural Characterization of Carbon-Doped and Carbon-Coated TiO2 Core–Shell Nanoparticles","authors":"Dominik Eitel,&nbsp;Sabrina Panzer,&nbsp;Ulrich Hagemann,&nbsp;Markus Heidelmann,&nbsp;Fabio Joseph,&nbsp;Jens Helbig,&nbsp;Uta Helbig,&nbsp;Melanie Kaliwoda,&nbsp;Ulrich Teipel","doi":"10.1002/admi.202500770","DOIUrl":"https://doi.org/10.1002/admi.202500770","url":null,"abstract":"<p>Carbon-doped TiO<sub>2</sub> nanoparticles were prepared by a facile carbothermal treatment at different temperatures. The synthesis was conducted in a rotary tube furnace under an acetylene/nitrogen gas flow. A detailed analysis of the morphology of the particles revealed a layered graphene structure surrounding the TiO<sub>2</sub> core with a temperature-dependent shell thickness of 1–1.5 nm. The material exhibits a significant shift in the Raman E<sub>g(1)</sub> mode toward higher wavenumbers. High carbon contents were determined by X-ray photoelectron spectroscopy. This led to the conclusion that in addition to the carbon in the shell, carbon is also incorporated into the TiO<sub>2</sub> structure. Substitutional doping in favor of titanium or oxygen atoms could be excluded based on XPS measurements due to the absence of Ti–C bonds and the lack of changes in lattice parameters of the unit cell or microstrain. An interstitial incorporation of carbon is therefore most likely. Either the incorporation of carbon or the carbon shell suppressed the phase transition from anatase to the thermodynamically stable rutile which is expected above 600<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow></mrow>\u0000 <mo>∘</mo>\u0000 </msup>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation>$^{circ }{rm C}$</annotation>\u0000 </semantics></math>. Additionally, the process inhibits the crystallite growth at higher treatment temperatures.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 2","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146007492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical Adsorption-Driven Assembly of Au-Locked Nucleic Acid (LNA) Probes on MoS2 Nanosheets for SERS-Based Detection of microRNAs (miRNAs) (Adv. Mater. Interfaces 23/2025) 在MoS2纳米片上物理吸附驱动的金锁核酸(LNA)探针组装用于基于sers的微rna (miRNAs)检测(Adv. Mater.)。接口23/2025)
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-08 DOI: 10.1002/admi.70252
Faith Mokobi Zablon, Md. Arifur Rahman Khan, Tetyana Ignatova, Kristen Dellinger, Shyam Aravamudhan

Nanohybrids

Cy3-labeled LNA–miRNA gold nanoprobes are physically adsorbed onto MoS2 nanosheets via sulfur vacancies and edge sites. Upon laser excitation, plasmonic gold nanoparticles amplify Raman scattering, yielding sharp Cy3-spectral peaks that reveal precise probe functionalization and sensitive miRNA detection. More details can be found in the Research Article by Faith Mokobi Zablon, Kristen Dellinger, Shyam Aravamudhan, and co-workers (DOI: 10.1002/admi.202500528).

nanohybridscy3标记的na - mirna金纳米探针通过硫空位和边缘位置物理吸附在MoS2纳米片上。在激光激发下,等离子体金纳米粒子放大拉曼散射,产生尖锐的cy3光谱峰,揭示了精确的探针功能化和敏感的miRNA检测。更多细节可以在Faith Mokobi Zablon, Kristen Dellinger, Shyam Aravamudhan及其同事的研究文章中找到(DOI: 10.1002/ admin .202500528)。
{"title":"Physical Adsorption-Driven Assembly of Au-Locked Nucleic Acid (LNA) Probes on MoS2 Nanosheets for SERS-Based Detection of microRNAs (miRNAs) (Adv. Mater. Interfaces 23/2025)","authors":"Faith Mokobi Zablon,&nbsp;Md. Arifur Rahman Khan,&nbsp;Tetyana Ignatova,&nbsp;Kristen Dellinger,&nbsp;Shyam Aravamudhan","doi":"10.1002/admi.70252","DOIUrl":"https://doi.org/10.1002/admi.70252","url":null,"abstract":"<p><b>Nanohybrids</b></p><p>Cy3-labeled LNA–miRNA gold nanoprobes are physically adsorbed onto MoS<sub>2</sub> nanosheets via sulfur vacancies and edge sites. Upon laser excitation, plasmonic gold nanoparticles amplify Raman scattering, yielding sharp Cy3-spectral peaks that reveal precise probe functionalization and sensitive miRNA detection. More details can be found in the Research Article by Faith Mokobi Zablon, Kristen Dellinger, Shyam Aravamudhan, and co-workers (DOI: 10.1002/admi.202500528).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 23","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overlapping Nanostacks Enable Direct Printing of Organic LEDs 重叠纳米堆实现有机led的直接打印
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-08 DOI: 10.1002/admi.202500501
Stefan Lux, Jannik Schlindwein, Martina Plank, Klaus-Martin Reichert, Liane Koker, Maria Rosa, Momina Amir, Benjamin Weber, Erich Müller, Alexander Welle, Nadezda Kuznetsova, Michael Kraft, Yolita M. Eggeler, Laura K. Weber, Daniela Mattes, Ulrich Gengenbach, Mareen Stahlberger, Jan G. Korvink, Frank Breitling, Dario Mager
<p>A custom-built laser-induced forward transfer (LIFT) setup was developed to fabricate multimaterial organic light emitting diode (OLED) stacks under ambient laboratory conditions without the use of a cleanroom or encapsulation. The process enables precise control of layer thickness through parameter tuning as confirmed by vertical scanning interferometry (VSI), yielding smooth and homogeneous layers with surface roughness values down to <span></span><math> <semantics> <mrow> <mn>2.78</mn> <mspace></mspace> <mi>n</mi> <mi>m</mi> </mrow> <annotation>$2.78 ,mathrm{n}mathrm{m}$</annotation> </semantics></math>. The process achieves tunable thicknesses between 19 nm and 45 nm, while the lateral resolution is limited to about <span></span><math> <semantics> <mrow> <mn>100</mn> <mspace></mspace> <mi>μ</mi> <mi>m</mi> </mrow> <annotation>$100 ,{umu }mathrm{m}$</annotation> </semantics></math>. A three-layer OLED stack (total thickness <span></span><math> <semantics> <mo>≈</mo> <annotation>$approx$</annotation> </semantics></math> <span></span><math> <semantics> <mrow> <mn>90</mn> <mspace></mspace> <mi>n</mi> <mi>m</mi> </mrow> <annotation>$90 ,mathrm{n}mathrm{m}$</annotation> </semantics></math>) was printed and structurally characterized using focused ion beam scanning electron microscopy (FIB-SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), revealing distinct, well-defined layer boundaries. First functional tests demonstrated electroluminescence at <span></span><math> <semantics> <mrow> <mn>580</mn> <mspace></mspace> <mi>n</mi> <mi>m</mi> </mrow> <annotation>$580 ,mathrm{n}mathrm{m}$</annotation> </semantics></math> with an operational lifetime of at least <span></span><math> <semantics> <mrow> <mn>20</mn> <mspace></mspace> <mi>min</mi> </mrow> <annotation>$20 ,mathrm{min}$</annotation> </semantics></math>. Despite the lack of encapsulation, the OLEDs remained stable under ambient conditions with a shelf life of up to <span></span><math> <semantics> <mrow> <mn>9</mn> </mrow>
开发了一种定制的激光诱导正向转移(LIFT)装置,用于在环境实验室条件下制造多材料有机发光二极管(OLED)堆叠,而无需使用洁净室或封装。该工艺可以通过垂直扫描干涉测量(VSI)确认的参数调整精确控制层厚,产生光滑均匀的层,表面粗糙度值低至2.78 n m $2.78 , mathm {n} mathm {m}$。该工艺实现了19 nm到45 nm之间的可调厚度,而横向分辨率限制在100 μ m $100 ,{umu} maththrm {m}$。打印了三层OLED堆栈(总厚度≈$ 约$ $90 n m $ $90 , mathm {n} mathm {m}$),并使用聚焦离子束扫描电子显微镜(FIB-SEM)和飞行时间二次离子质谱(ToF-SIMS)对其进行了结构表征。显示明显的、定义良好的层边界。第一次功能测试表明,电致发光强度为580 n m,工作寿命至少为20 min。尽管缺乏封装,但oled在环境条件下保持稳定,保质期高达9美元/小时。9美元一天。这些结果证实了LIFT作为柔性薄膜器件(如oled、太阳能电池和燃料电池)增材制造的可扩展和精确工具的潜力。
{"title":"Overlapping Nanostacks Enable Direct Printing of Organic LEDs","authors":"Stefan Lux,&nbsp;Jannik Schlindwein,&nbsp;Martina Plank,&nbsp;Klaus-Martin Reichert,&nbsp;Liane Koker,&nbsp;Maria Rosa,&nbsp;Momina Amir,&nbsp;Benjamin Weber,&nbsp;Erich Müller,&nbsp;Alexander Welle,&nbsp;Nadezda Kuznetsova,&nbsp;Michael Kraft,&nbsp;Yolita M. Eggeler,&nbsp;Laura K. Weber,&nbsp;Daniela Mattes,&nbsp;Ulrich Gengenbach,&nbsp;Mareen Stahlberger,&nbsp;Jan G. Korvink,&nbsp;Frank Breitling,&nbsp;Dario Mager","doi":"10.1002/admi.202500501","DOIUrl":"https://doi.org/10.1002/admi.202500501","url":null,"abstract":"&lt;p&gt;A custom-built laser-induced forward transfer (LIFT) setup was developed to fabricate multimaterial organic light emitting diode (OLED) stacks under ambient laboratory conditions without the use of a cleanroom or encapsulation. The process enables precise control of layer thickness through parameter tuning as confirmed by vertical scanning interferometry (VSI), yielding smooth and homogeneous layers with surface roughness values down to &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2.78&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$2.78 ,mathrm{n}mathrm{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The process achieves tunable thicknesses between 19 nm and 45 nm, while the lateral resolution is limited to about &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;100&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$100 ,{umu }mathrm{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. A three-layer OLED stack (total thickness &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mo&gt;≈&lt;/mo&gt;\u0000 &lt;annotation&gt;$approx$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;90&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$90 ,mathrm{n}mathrm{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) was printed and structurally characterized using focused ion beam scanning electron microscopy (FIB-SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), revealing distinct, well-defined layer boundaries. First functional tests demonstrated electroluminescence at &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;580&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$580 ,mathrm{n}mathrm{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with an operational lifetime of at least &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;20&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;min&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$20 ,mathrm{min}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Despite the lack of encapsulation, the OLEDs remained stable under ambient conditions with a shelf life of up to &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;9&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 ","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145842942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centrifugation Theory Revisited: Understanding and Modeling the Centrifugation of 2D Nanosheets 重新审视离心理论:理解和模拟二维纳米片的离心
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-07 DOI: 10.1002/admi.202500717
Stuart Goldie, Steffen Ott, Anthony Dawson, Tamara Starke, Cian Gabbett, Victor Vega-Mayoral, Kevin Synnatschke, Marilia Horn, Jonathan N. Coleman, Claudia Backes

Size selection of liquid-dispersed 2D nanomaterials is a prerequisite for size-dependent studies in earlier-stage research and for their targeted application in commercial settings. Centrifugation is the most widespread method for reliably sorting suspensions of polydisperse 2D nanosheets according to size. However, whilst centrifugation is effective, no a priori models are available to predict the outcome of centrifugation, making time-consuming iterative experiments necessary. Here, we present a simple model for the behavior of 2D nanosheets during centrifugation and benchmark its predictions against experiments. This model uses simple expressions, specific to 2D particles, for the hydrodynamic radius, effective density, and viscous resistance to generate the equation of motion of individual nanosheet during centrifugation. Critically, the equation of motion is then used to predict nanosheet size distributions within centrifugation products. This in turn leads to equations for easily measurable properties such as mean and maximum nanosheet sizes obtained during centrifugation-based fractionation. Comparison with experimental data demonstrates the robustness of this model for a range of 2D materials and solvent systems, and its ability to describe quite subtle effects. These results will enable more tailored size selection of nanosheets for specific applications and offer new mechanistic insights to optimize exfoliation conditions.

液体分散的二维纳米材料的尺寸选择是早期研究中依赖于尺寸的研究和它们在商业环境中的目标应用的先决条件。离心是根据大小可靠地分选多分散二维纳米片悬浮液的最广泛的方法。然而,虽然离心是有效的,但没有先验模型可用于预测离心的结果,这使得耗时的迭代实验成为必要。在这里,我们提出了一个简单的二维纳米片在离心过程中的行为模型,并根据实验对其预测进行了基准测试。该模型使用二维粒子的流体动力半径、有效密度和粘性阻力的简单表达式来生成离心过程中单个纳米片的运动方程。关键的是,运动方程被用来预测离心产物中的纳米片尺寸分布。这反过来又导致易于测量的性质,如平均和最大的纳米片尺寸在离心分离过程中获得的方程式。与实验数据的比较证明了该模型对一系列二维材料和溶剂系统的鲁棒性,以及它描述相当微妙效应的能力。这些结果将为特定应用提供更定制的纳米片尺寸选择,并为优化剥离条件提供新的机制见解。
{"title":"Centrifugation Theory Revisited: Understanding and Modeling the Centrifugation of 2D Nanosheets","authors":"Stuart Goldie,&nbsp;Steffen Ott,&nbsp;Anthony Dawson,&nbsp;Tamara Starke,&nbsp;Cian Gabbett,&nbsp;Victor Vega-Mayoral,&nbsp;Kevin Synnatschke,&nbsp;Marilia Horn,&nbsp;Jonathan N. Coleman,&nbsp;Claudia Backes","doi":"10.1002/admi.202500717","DOIUrl":"https://doi.org/10.1002/admi.202500717","url":null,"abstract":"<p>Size selection of liquid-dispersed 2D nanomaterials is a prerequisite for size-dependent studies in earlier-stage research and for their targeted application in commercial settings. Centrifugation is the most widespread method for reliably sorting suspensions of polydisperse 2D nanosheets according to size. However, whilst centrifugation is effective, no a priori models are available to predict the outcome of centrifugation, making time-consuming iterative experiments necessary. Here, we present a simple model for the behavior of 2D nanosheets during centrifugation and benchmark its predictions against experiments. This model uses simple expressions, specific to 2D particles, for the hydrodynamic radius, effective density, and viscous resistance to generate the equation of motion of individual nanosheet during centrifugation. Critically, the equation of motion is then used to predict nanosheet size distributions within centrifugation products. This in turn leads to equations for easily measurable properties such as mean and maximum nanosheet sizes obtained during centrifugation-based fractionation. Comparison with experimental data demonstrates the robustness of this model for a range of 2D materials and solvent systems, and its ability to describe quite subtle effects. These results will enable more tailored size selection of nanosheets for specific applications and offer new mechanistic insights to optimize exfoliation conditions.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145848095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Thermal Conductivity in Tough and Environmentally Resilient Hydrogels 增强韧性和环境弹性水凝胶的导热性
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-07 DOI: 10.1002/admi.202500752
Seokkyoon Hong, Jiwon Lee, Taewoong Park, Jinheon Jeong, Hyeonseo Joo, Juan C. Mesa, Claudia Benito Alston, Yuhyun Ji, Jonghun Yi, Youngjun Lee, Kate J. Won, Luis Solorio, Young L. Kim, Hyowon Lee, Dong Rip Kim, Chi Hwan Lee

Hydrogels, known for their biocompatibility and responsiveness to external stimuli, are promising candidates for wearable sensors and electronics. However, conventional hydrogels exhibit low thermal conductivity (0.2–0.6 W/m·K), which limits efficient heat dissipation and leads to performance degradation during continuous operation, such as in long-term wearable health monitors. Moreover, their weak mechanical and environmental stability further constrains their broader applications. In this study, we introduce a multiscale structural engineering approach that leverages the dynamics of pores, crystallization, and hydrogen bonding. Inspired by the design motifs of natural materials such as spider silk, we enhance the thermal conductivity of hydrogels to 1.5 W/m·K. This multiscale structural strategy also improves their mechanical strength and environmental resilience. Our findings provide a blueprint for understanding the process–structure–property relationships and offer a design framework for expanding the practical applications of hydrogels.

水凝胶以其生物相容性和对外部刺激的反应性而闻名,是可穿戴传感器和电子产品的有希望的候选者。然而,传统的水凝胶具有较低的导热系数(0.2-0.6 W/m·K),这限制了有效的散热,并导致连续运行时的性能下降,例如在长期可穿戴健康监测仪中。此外,它们较弱的机械稳定性和环境稳定性进一步限制了它们的广泛应用。在这项研究中,我们引入了一种多尺度结构工程方法,利用孔隙、结晶和氢键的动力学。受天然材料如蜘蛛丝的设计启发,我们将水凝胶的导热系数提高到1.5 W/m·K。这种多尺度结构策略也提高了它们的机械强度和环境弹性。我们的发现为理解工艺-结构-性质关系提供了蓝图,并为扩大水凝胶的实际应用提供了设计框架。
{"title":"Enhanced Thermal Conductivity in Tough and Environmentally Resilient Hydrogels","authors":"Seokkyoon Hong,&nbsp;Jiwon Lee,&nbsp;Taewoong Park,&nbsp;Jinheon Jeong,&nbsp;Hyeonseo Joo,&nbsp;Juan C. Mesa,&nbsp;Claudia Benito Alston,&nbsp;Yuhyun Ji,&nbsp;Jonghun Yi,&nbsp;Youngjun Lee,&nbsp;Kate J. Won,&nbsp;Luis Solorio,&nbsp;Young L. Kim,&nbsp;Hyowon Lee,&nbsp;Dong Rip Kim,&nbsp;Chi Hwan Lee","doi":"10.1002/admi.202500752","DOIUrl":"https://doi.org/10.1002/admi.202500752","url":null,"abstract":"<p>Hydrogels, known for their biocompatibility and responsiveness to external stimuli, are promising candidates for wearable sensors and electronics. However, conventional hydrogels exhibit low thermal conductivity (0.2–0.6 W/m·K), which limits efficient heat dissipation and leads to performance degradation during continuous operation, such as in long-term wearable health monitors. Moreover, their weak mechanical and environmental stability further constrains their broader applications. In this study, we introduce a multiscale structural engineering approach that leverages the dynamics of pores, crystallization, and hydrogen bonding. Inspired by the design motifs of natural materials such as spider silk, we enhance the thermal conductivity of hydrogels to 1.5 W/m·K. This multiscale structural strategy also improves their mechanical strength and environmental resilience. Our findings provide a blueprint for understanding the process–structure–property relationships and offer a design framework for expanding the practical applications of hydrogels.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 2","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500752","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146007208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Axial Heterostructures Grown by Molecular Beam Epitaxy 分子束外延生长自催化AlGaAs纳米线和AlGaAs/GaAs轴向异质结构
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-05 DOI: 10.1002/admi.202500938
Giorgos Boras, Haotian Zeng, Stephen Church, Raghavendra Juluri, Anton Velichko, Huiwen Deng, Hui Jia, Francisco Alvarado, Ziyue Yin, Chong Chen, Jaeseong Park, Mingchu Tang, David Mowbray, Ana M. Sanchez, Patrick Parkinson, Huiyun Liu

Self-catalyzed AlGaAs nanowires (NWs) offer advantageous properties, including lattice matching to GaAs, a wide range of electronic bandgaps, and monolithic integration with the mature Si platform due to elastic strain relaxation. However, the growth of self-catalyzed AlGaAs NWs is typically characterized by morphological challenges, such as branching and tapering. Here, we comprehensively investigate the optimization of the group III growth rate and V/III ratio. We demonstrate the growth of AlGaAs NWs using a Ga/Al alloy droplet as a co-catalyst, achieving minimal branching and NW uniformity with up to 40% nominal Al content. Embedding a single GaAs segment in an optimized NW structure results in QD-like properties, including strong spatially localized emission at room temperature. Our findings demonstrate the control of branching events in self-catalyzed AlGaAs NWs, highlighting their potential for applications including nanolasers and quantum light emitters.

自催化AlGaAs纳米线(NWs)具有许多优点,包括与GaAs的晶格匹配,广泛的电子带隙,以及由于弹性应变弛豫而与成熟的Si平台集成。然而,自催化AlGaAs NWs的生长通常以形态挑战为特征,如分支和锥形。在此,我们综合研究了III族生长速率和V/III比的优化。我们展示了使用Ga/Al合金液滴作为助催化剂的AlGaAs NWs的生长,在高达40%标称Al含量的情况下,实现了最小分支和NW均匀性。在优化的NW结构中嵌入单个GaAs片段可以获得类似量子点的特性,包括在室温下强的空间局域发光。我们的研究结果证明了自催化AlGaAs NWs中分支事件的控制,突出了它们在纳米激光器和量子光发射器等应用中的潜力。
{"title":"Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Axial Heterostructures Grown by Molecular Beam Epitaxy","authors":"Giorgos Boras,&nbsp;Haotian Zeng,&nbsp;Stephen Church,&nbsp;Raghavendra Juluri,&nbsp;Anton Velichko,&nbsp;Huiwen Deng,&nbsp;Hui Jia,&nbsp;Francisco Alvarado,&nbsp;Ziyue Yin,&nbsp;Chong Chen,&nbsp;Jaeseong Park,&nbsp;Mingchu Tang,&nbsp;David Mowbray,&nbsp;Ana M. Sanchez,&nbsp;Patrick Parkinson,&nbsp;Huiyun Liu","doi":"10.1002/admi.202500938","DOIUrl":"https://doi.org/10.1002/admi.202500938","url":null,"abstract":"<p>Self-catalyzed AlGaAs nanowires (NWs) offer advantageous properties, including lattice matching to GaAs, a wide range of electronic bandgaps, and monolithic integration with the mature Si platform due to elastic strain relaxation. However, the growth of self-catalyzed AlGaAs NWs is typically characterized by morphological challenges, such as branching and tapering. Here, we comprehensively investigate the optimization of the group III growth rate and V/III ratio. We demonstrate the growth of AlGaAs NWs using a Ga/Al alloy droplet as a co-catalyst, achieving minimal branching and NW uniformity with up to 40% nominal Al content. Embedding a single GaAs segment in an optimized NW structure results in QD-like properties, including strong spatially localized emission at room temperature. Our findings demonstrate the control of branching events in self-catalyzed AlGaAs NWs, highlighting their potential for applications including nanolasers and quantum light emitters.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145931123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Interface Engineering Unlocks Native-Like Mechanics in Biomimetic Intervertebral Discs 结构界面工程解锁仿生椎间盘的原生力学
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-04 DOI: 10.1002/admi.202500894
Haim S. Mordechai, Javad Tavakoli, Sarit S. Sivan, Mirit Sharabi

The exceptional biomechanical performance of the intervertebral disc (IVD) arises from its complex hierarchical structure, where interlamellar and radial fiber networks play critical roles in load transfer and mechanical resilience. However, the precise contribution of these fiber networks remains incompletely understood. Here, we present a biomimetic strategy that replicates these native interfacial architectures using silk-based suture reinforcement, forming annulus fibrosus–nucleus pulposus (AF–NP) constructs designed to emulate native IVD functionality. Mechanical testing revealed that suture-reinforced laminates achieved superior shear resistance (0.87 ± 0.06 MPa) while reducing modulus variability from 43% to 4%, indicating enhanced interlamellar cohesion. Radial fibers further improved compressive performance, limiting radial expansion and maintaining internal pressurization under load. Finite element modeling demonstrated that radial fibers redistributed interfacial stresses, reduced peak stress concentrations, and enhanced circumferential fiber activation, promoting more uniform load distribution. These findings establish that interlamellar and radial fibers are essential for maintaining IVD structural integrity and optimizing load distribution. Our biomimetic design offers a robust framework for developing next-generation IVD repair and replacement constructs, providing insights that may advance clinical strategies for IVD degeneration and improve the durability of soft tissue implants.

椎间盘(IVD)独特的生物力学性能源于其复杂的分层结构,其中板间和径向纤维网络在载荷传递和机械弹性中起着关键作用。然而,这些光纤网络的确切贡献仍然不完全清楚。在这里,我们提出了一种仿生策略,使用基于丝绸的缝线增强复制这些天然界面结构,形成纤维环-髓核(AF-NP)结构,旨在模拟天然IVD功能。力学测试表明,缝线增强的层合板具有优异的抗剪切性能(0.87±0.06 MPa),同时将模量变异性从43%降低到4%,表明层间凝聚力增强。径向纤维进一步改善了抗压性能,限制了径向膨胀并在负载下保持内部加压。有限元模拟表明,径向纤维重新分配界面应力,降低峰值应力集中,增强周向纤维激活,促进更均匀的负载分布。这些发现表明,层间纤维和径向纤维对于维持IVD结构完整性和优化负载分布至关重要。我们的仿生设计为开发下一代IVD修复和替换结构提供了一个强大的框架,提供了可能推进IVD变性的临床策略和提高软组织植入物耐久性的见解。
{"title":"Structural Interface Engineering Unlocks Native-Like Mechanics in Biomimetic Intervertebral Discs","authors":"Haim S. Mordechai,&nbsp;Javad Tavakoli,&nbsp;Sarit S. Sivan,&nbsp;Mirit Sharabi","doi":"10.1002/admi.202500894","DOIUrl":"https://doi.org/10.1002/admi.202500894","url":null,"abstract":"<p>The exceptional biomechanical performance of the intervertebral disc (IVD) arises from its complex hierarchical structure, where interlamellar and radial fiber networks play critical roles in load transfer and mechanical resilience. However, the precise contribution of these fiber networks remains incompletely understood. Here, we present a biomimetic strategy that replicates these native interfacial architectures using silk-based suture reinforcement, forming annulus fibrosus–nucleus pulposus (AF–NP) constructs designed to emulate native IVD functionality. Mechanical testing revealed that suture-reinforced laminates achieved superior shear resistance (0.87 ± 0.06 MPa) while reducing modulus variability from 43% to 4%, indicating enhanced interlamellar cohesion. Radial fibers further improved compressive performance, limiting radial expansion and maintaining internal pressurization under load. Finite element modeling demonstrated that radial fibers redistributed interfacial stresses, reduced peak stress concentrations, and enhanced circumferential fiber activation, promoting more uniform load distribution. These findings establish that interlamellar and radial fibers are essential for maintaining IVD structural integrity and optimizing load distribution. Our biomimetic design offers a robust framework for developing next-generation IVD repair and replacement constructs, providing insights that may advance clinical strategies for IVD degeneration and improve the durability of soft tissue implants.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500894","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Materials Interfaces
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1