Chemically modified graphene is an attractive electrode material for electrocatalysis, energy devices, and sensors, whereas pristine graphene is electrochemically passive. The remarkable anisotropic electrochemical nature of graphene is uncovered by π–π interaction, making pristine graphene more active than bare Au. The π–π stacking during redox reaction “dopes” the graphene, disrupting the passivating hydration layer, making it a facile electrochemical electrode. The structure during π–π stacking-mediated redox of methylene blue (MB) is quantitatively measured by the differential reflectivity of a polarized laser on a ≈100 micron spot. The local redox reaction current varies over fourfold due to the orientation of the ≈10 micron size grains. The mosaic-grain anisotropy on each spot shows local uniaxial orientation. The redox signal at the optimum orientation is over 2.5-fold greater than that for bare Au on the same electrode. The redox signal is over fivefold greater at the edges of graphene compared bare Au. Remarkably, the π–π interaction increases chemical stability significantly, leading to negligible photo-degradation at the approximate absorption wavelength of MB. The exclusive redox activity due to π–π interaction on pristine graphene adds to the toolbox of making exotic opto-electrochemical electrode materials for electrocatalysis, sensing, and electronics.
{"title":"Anisotropic Redox on Pristine Graphene","authors":"Akshat R. Saraf, Jay Min Lim, Ravi F. Saraf","doi":"10.1002/admi.202400374","DOIUrl":"https://doi.org/10.1002/admi.202400374","url":null,"abstract":"<p>Chemically modified graphene is an attractive electrode material for electrocatalysis, energy devices, and sensors, whereas pristine graphene is electrochemically passive. The remarkable anisotropic electrochemical nature of graphene is uncovered by <i>π–π</i> interaction, making pristine graphene more active than bare Au. The <i>π–π</i> stacking during redox reaction “dopes” the graphene, disrupting the passivating hydration layer, making it a facile electrochemical electrode. The structure during <i>π–π</i> stacking-mediated redox of methylene blue (MB) is quantitatively measured by the differential reflectivity of a polarized laser on a ≈100 micron spot. The local redox reaction current varies over fourfold due to the orientation of the ≈10 micron size grains. The mosaic-grain anisotropy on each spot shows local uniaxial orientation. The redox signal at the optimum orientation is over 2.5-fold greater than that for bare Au on the same electrode. The redox signal is over fivefold greater at the edges of graphene compared bare Au. Remarkably, the <i>π–π</i> interaction increases chemical stability significantly, leading to negligible photo-degradation at the approximate absorption wavelength of MB. The exclusive redox activity due to <i>π–π</i> interaction on pristine graphene adds to the toolbox of making exotic opto-electrochemical electrode materials for electrocatalysis, sensing, and electronics.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 32","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nafise Elahpour, Isabella Niesner, Nora Abdellaoui, Boris Michael Holzapfel, Lukas Gritsch, Edouard Jallot, Susanne Mayer-Wagner, Jonathan Lao
This work focuses on combating bacterial infections in bone tissue using metal elements embedded in bioactive glass. While there is an urgent need for alternative methods with a shrinking number of effective treatment options untouched by antimicrobial resistance, it is crucial to first understand the mechanisms of pathogenesis, persistence, and bacterial resistance in skeletal infection, and then develop effective counterstrategies and innovative alternatives. This review considers the role of antimicrobial metal ions, their mechanism of action, and their incorporation into bioactive glass formulations as these materials can serve as delivery platforms with the least possible complexities. Furthermore, the bacterial infection risk in bone is also examined with specific attention to antibiotic resistance and biofilm formation. This review sheds light on the most promising materials as novel antibacterial agents by presenting a wide range of possible bioactive glass formulations equipped with potential antibacterial ions and in vitro/ in vivo insights, and it also reinforces the importance of continuing studies to develop multi-faceted antibacterial bioactive glasses.
{"title":"Antibacterial Therapeutic Ions Incorporation into Bioactive Glasses as a Winning Strategy against Antibiotic Resistance","authors":"Nafise Elahpour, Isabella Niesner, Nora Abdellaoui, Boris Michael Holzapfel, Lukas Gritsch, Edouard Jallot, Susanne Mayer-Wagner, Jonathan Lao","doi":"10.1002/admi.202400068","DOIUrl":"https://doi.org/10.1002/admi.202400068","url":null,"abstract":"<p>This work focuses on combating bacterial infections in bone tissue using metal elements embedded in bioactive glass. While there is an urgent need for alternative methods with a shrinking number of effective treatment options untouched by antimicrobial resistance, it is crucial to first understand the mechanisms of pathogenesis, persistence, and bacterial resistance in skeletal infection, and then develop effective counterstrategies and innovative alternatives. This review considers the role of antimicrobial metal ions, their mechanism of action, and their incorporation into bioactive glass formulations as these materials can serve as delivery platforms with the least possible complexities. Furthermore, the bacterial infection risk in bone is also examined with specific attention to antibiotic resistance and biofilm formation. This review sheds light on the most promising materials as novel antibacterial agents by presenting a wide range of possible bioactive glass formulations equipped with potential antibacterial ions and in vitro/ in vivo insights, and it also reinforces the importance of continuing studies to develop multi-faceted antibacterial bioactive glasses.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 32","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael McKinlay, Lewis Fleming, Manuel Pelayo García, Lucía Nieto Sierra, Pilar Villar Castro, Daniel Araujo, Basilio Javier García, Des Gibson, Carlos García Nuñez
This work presents a study of piezoelectric zinc oxide (ZnO) thin films deposited by a novel post-reactive sputtering method. The process utilizes a rotating drum with DC magnetron sputtering deposition onto substrates with subsequent DC plasma-assisted oxidation of the deposited metal to metal oxide. The paper analyzes the influence of plasmaassisted magnetron sputtering (PA-MS) deposition parameters (O2 plasma source power, O2 flow, and Ar flow) on the morphological, structural, optical, and piezoelectric properties of ZnO thin films. Design of experiments has been utilized to evaluate the role of these parameters on the growth rate (rg) and the properties of resulting films. Results indicate a predominant influence of the plasma power on the rg over other parameters. Among the eight tested samples, three of them show high crystal quality with high intensity (0001) diffraction peak, characteristic of the wurtzite crystalline structure of ZnO, and one of them exhibits piezoelectric coefficient values of ≈11pC N−1. That sample corresponding to a ZnO film deposited at the lowest rg of 0.075 nm s−1, confirmed the key role of the deposition parameters on the piezoelectric response of films, and demonstrated PA-MS as a promising technique to produce high-quality piezoelectric thin films.
{"title":"On the Piezoelectric Properties of Zinc Oxide Thin Films Synthesized by Plasma Assisted DC Sputter Deposition","authors":"Michael McKinlay, Lewis Fleming, Manuel Pelayo García, Lucía Nieto Sierra, Pilar Villar Castro, Daniel Araujo, Basilio Javier García, Des Gibson, Carlos García Nuñez","doi":"10.1002/admi.202400252","DOIUrl":"https://doi.org/10.1002/admi.202400252","url":null,"abstract":"<p>This work presents a study of piezoelectric zinc oxide (ZnO) thin films deposited by a novel post-reactive sputtering method. The process utilizes a rotating drum with DC magnetron sputtering deposition onto substrates with subsequent DC plasma-assisted oxidation of the deposited metal to metal oxide. The paper analyzes the influence of plasmaassisted magnetron sputtering (PA-MS) deposition parameters (O<sub>2</sub> plasma source power, O<sub>2</sub> flow, and Ar flow) on the morphological, structural, optical, and piezoelectric properties of ZnO thin films. Design of experiments has been utilized to evaluate the role of these parameters on the growth rate (<i>r</i><sub>g</sub>) and the properties of resulting films. Results indicate a predominant influence of the plasma power on the <i>r</i><sub>g</sub> over other parameters. Among the eight tested samples, three of them show high crystal quality with high intensity (0001) diffraction peak, characteristic of the wurtzite crystalline structure of ZnO, and one of them exhibits piezoelectric coefficient values of ≈11pC N<sup>−1</sup>. That sample corresponding to a ZnO film deposited at the lowest <i>r</i><sub>g</sub> of 0.075 nm s<sup>−1</sup>, confirmed the key role of the deposition parameters on the piezoelectric response of films, and demonstrated PA-MS as a promising technique to produce high-quality piezoelectric thin films.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 32","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudheer Kumar Yadav, Daniel Deckenbach, Sandeep Yadav, Christian Njel, Vanessa Trouillet, Jörg J. Schneider
Bifunctional Catalysts
Cobalt ferrite nanoparticle catalysts generated from homoleptic iron and cobalt urea complexes and deposited onto dahlia like arrangements of nitrogen doped carbon nanohorns are shown on the le: side. These carbon/ferrite composites convert molecular oxygen into hydroxyl ions and back to oxygen (right side) and are thus efficient catalysts to drive a secondary zinc/air battery with high efficiency. More details can be found in article 2400415 by Jörg J. Schneider and co-workers. Image art by Dr. Sherif Okeil.