首页 > 最新文献

Advanced Materials Interfaces最新文献

英文 中文
Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1002/admi.202400600
Umay Sevgi Vardar, Johannes H. Bitter, Constantinos V. Nikiforidis

Lipid Droplets (LDs) or as also called oleosomes are lipid storage organelles in eukaryotic cells. Besides storing lipids, LDs can fuse their core into other intracellular organelles, but the mechanism remains unknown. In this work, this is aimed to understand the effect of cargo's polarity on the transportation of the cargo from LDs to lipid bilayers using liposomes. LDs are loaded with curcumin and Nile red, two lipophilic molecules with similar log P values. The loaded LDs are blended with liposomes, while curcumin and Nile red are tracked using confocal microscopy and spectroscopy. LDs remained intact, while curcumin was transferred in 5 min from LDs to liposomes. Nile red remained in LDs. The difference between curcumin and Nile red is attributed to the amphiphilicity of curcumin, which allowed its adsorption in the LD monolayer and the subsequent transportation to the liposome bilayer upon contact. The unique selectivity of LDs is shown as carriers since lipophilic cargo is transferred to the lipid bilayer only when participating in the LD membrane. The understanding of the transportation mechanism of molecules from LDs to bilayers helps the exploitation of LDs as natural lipid carriers.

{"title":"Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers","authors":"Umay Sevgi Vardar,&nbsp;Johannes H. Bitter,&nbsp;Constantinos V. Nikiforidis","doi":"10.1002/admi.202400600","DOIUrl":"https://doi.org/10.1002/admi.202400600","url":null,"abstract":"<p>Lipid Droplets (LDs) or as also called oleosomes are lipid storage organelles in eukaryotic cells. Besides storing lipids, LDs can fuse their core into other intracellular organelles, but the mechanism remains unknown. In this work, this is aimed to understand the effect of cargo's polarity on the transportation of the cargo from LDs to lipid bilayers using liposomes. LDs are loaded with curcumin and Nile red, two lipophilic molecules with similar log P values. The loaded LDs are blended with liposomes, while curcumin and Nile red are tracked using confocal microscopy and spectroscopy. LDs remained intact, while curcumin was transferred in 5 min from LDs to liposomes. Nile red remained in LDs. The difference between curcumin and Nile red is attributed to the amphiphilicity of curcumin, which allowed its adsorption in the LD monolayer and the subsequent transportation to the liposome bilayer upon contact. The unique selectivity of LDs is shown as carriers since lipophilic cargo is transferred to the lipid bilayer only when participating in the LD membrane. The understanding of the transportation mechanism of molecules from LDs to bilayers helps the exploitation of LDs as natural lipid carriers.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passivated Zn Powders as Metal Anode
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-12 DOI: 10.1002/admi.202400643
Yiming Sun, Yanting Jin, Jiaxing Huang

Impacted by heavy corrosion and poor connections, zinc (Zn) powders have rarely been considered as the raw materials of Zn-ion aqueous batteries (ZABs). Nonetheless, the ease of controlling loadings of Zn powders entitles ZABs to better capacity match between negative and positive electrodes. Here, a simple and rapid chemical solution passivation method is reported, which leads to a thin, dense, and conformal passivation layer on Zn powder surface. The passivation layer suppresses parasitic reactions of Zn powder anode, mitigates corrosions, and extends the calendar life. Mixing with well-dispersed carbon nanotubes, the passivated Zn powder anode is able to cycle 100 h under 3 mA cm−2 and 3 mAh cm−2 at depth of discharge of 41.3%. Besides, the anode with negative/positive electrode capacity ratio of 5.95 improves the energy density of the Zn powder||MnO2 full cell to 70 Wh Kg−1. Such a simple “one-step” passivation method is believed to be a “drop-in” technique applied in the scalable manufacture of ZABs.

{"title":"Passivated Zn Powders as Metal Anode","authors":"Yiming Sun,&nbsp;Yanting Jin,&nbsp;Jiaxing Huang","doi":"10.1002/admi.202400643","DOIUrl":"https://doi.org/10.1002/admi.202400643","url":null,"abstract":"<p>Impacted by heavy corrosion and poor connections, zinc (Zn) powders have rarely been considered as the raw materials of Zn-ion aqueous batteries (ZABs). Nonetheless, the ease of controlling loadings of Zn powders entitles ZABs to better capacity match between negative and positive electrodes. Here, a simple and rapid chemical solution passivation method is reported, which leads to a thin, dense, and conformal passivation layer on Zn powder surface. The passivation layer suppresses parasitic reactions of Zn powder anode, mitigates corrosions, and extends the calendar life. Mixing with well-dispersed carbon nanotubes, the passivated Zn powder anode is able to cycle 100 h under 3 mA cm<sup>−2</sup> and 3 mAh cm<sup>−2</sup> at depth of discharge of 41.3%. Besides, the anode with negative/positive electrode capacity ratio of 5.95 improves the energy density of the Zn powder||MnO<sub>2</sub> full cell to 70 Wh Kg<sup>−1</sup>. Such a simple “one-step” passivation method is believed to be a “drop-in” technique applied in the scalable manufacture of ZABs.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400643","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Droplet Microarrays for Miniaturized and High-Throughput Experiments: Progress and Prospectives
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1002/admi.202400905
D.D. Kartsev, Urrutia Gómez Joaquin E, Popova A. Anna, Pavel A. Levkin

Miniaturization in life sciences and chemical sciences offers substantial advantages to experimental workflows, such as increased throughput, reduced costs, and lower environmental impact. While microtiter plates are effective, further miniaturization is necessary to enhance efficiency and throughput. However, microtiter plates cannot be easily miniaturized to volumes below 5 µL, primarily because adhesive and capillary forces become stronger than the gravitational forces needed to confine the liquid within the wells. To overcome this, the droplet microarray (DMA) is developed, utilizing patterned adhesive regions on a liquid-repellent background to immobilize and confine sub-microliter droplets without physical barriers. This unique format enables novel applications such as droplet merging and parallel ultra-high-throughput manipulations. This review provides an overview of DMA's diverse applications and highlights the new experimental opportunities it offers, establishing it as a versatile tool for highly miniaturized, high-throughput biological and chemical experiments. The evolving requirements and future applications of the DMA approach are also discussed.

{"title":"Droplet Microarrays for Miniaturized and High-Throughput Experiments: Progress and Prospectives","authors":"D.D. Kartsev,&nbsp;Urrutia Gómez Joaquin E,&nbsp;Popova A. Anna,&nbsp;Pavel A. Levkin","doi":"10.1002/admi.202400905","DOIUrl":"https://doi.org/10.1002/admi.202400905","url":null,"abstract":"<p>Miniaturization in life sciences and chemical sciences offers substantial advantages to experimental workflows, such as increased throughput, reduced costs, and lower environmental impact. While microtiter plates are effective, further miniaturization is necessary to enhance efficiency and throughput. However, microtiter plates cannot be easily miniaturized to volumes below 5 µL, primarily because adhesive and capillary forces become stronger than the gravitational forces needed to confine the liquid within the wells. To overcome this, the droplet microarray (DMA) is developed, utilizing patterned adhesive regions on a liquid-repellent background to immobilize and confine sub-microliter droplets without physical barriers. This unique format enables novel applications such as droplet merging and parallel ultra-high-throughput manipulations. This review provides an overview of DMA's diverse applications and highlights the new experimental opportunities it offers, establishing it as a versatile tool for highly miniaturized, high-throughput biological and chemical experiments. The evolving requirements and future applications of the DMA approach are also discussed.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superior Hydrazine Electrooxidation Activities on Tin and Zirconium Promoted ZSM-5 Zeolite Catalyst
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1002/admi.202400609
Derya Yıldız, Şefika Kaya, Omruye Ozok-Arici, Aykut Caglar, Arif Kivrak, Hilal Kivrak

Direct fuel cells, such as direct hydrazine fuel cells (DHFC), are considered environmentally friendly alternative energy technologies with great potential for the future. Hydrazine, used as a liquid fuel, is particularly advantageous due to its high cell voltage and energy density. In this study, the electrocatalytic potential of SnZr/ZSM-5 catalysts synthesized with wet impregnation at various molar ratios is investigated for hydrazine oxidation. The catalyst is characterized by XPS, ICP-MS, XRD, FTIR, SEM-EDX, and TEM techniques. Additionally, thermal characterization of this catalyst is performed with temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), and temperature-programmed desorption (TPD). The catalytic activities of ZSM-5-supported monometallic and bimetallic catalysts are determined using electrochemical measurements such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) for direct hydrazine fuel cell (DHFC). The highest catalytic activity achieved is 44.874 mA cm−2 for SnZr(50:50)/ZSM-5 catalyst, revealing that Zr addition to Sn improves the electrocatalytic activity of bimetallic catalysts compared to monometallic catalysts. The long-term current density and stability of SnZr(50:50)/ZSM-5 catalyst are taken at 0.6 V. EIS measurements indicated that the lowest charge transfer resistance is at 0.6 V, consistent with CV and CA measurements. SnZr(50:50)/ZSM-5 provides a new perspective as an anode catalyst for DHFC applications.

{"title":"Superior Hydrazine Electrooxidation Activities on Tin and Zirconium Promoted ZSM-5 Zeolite Catalyst","authors":"Derya Yıldız,&nbsp;Şefika Kaya,&nbsp;Omruye Ozok-Arici,&nbsp;Aykut Caglar,&nbsp;Arif Kivrak,&nbsp;Hilal Kivrak","doi":"10.1002/admi.202400609","DOIUrl":"https://doi.org/10.1002/admi.202400609","url":null,"abstract":"<p>Direct fuel cells, such as direct hydrazine fuel cells (DHFC), are considered environmentally friendly alternative energy technologies with great potential for the future. Hydrazine, used as a liquid fuel, is particularly advantageous due to its high cell voltage and energy density. In this study, the electrocatalytic potential of SnZr/ZSM-5 catalysts synthesized with wet impregnation at various molar ratios is investigated for hydrazine oxidation. The catalyst is characterized by XPS, ICP-MS, XRD, FTIR, SEM-EDX, and TEM techniques. Additionally, thermal characterization of this catalyst is performed with temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), and temperature-programmed desorption (TPD). The catalytic activities of ZSM-5-supported monometallic and bimetallic catalysts are determined using electrochemical measurements such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) for direct hydrazine fuel cell (DHFC). The highest catalytic activity achieved is 44.874 mA cm<sup>−2</sup> for SnZr(50:50)/ZSM-5 catalyst, revealing that Zr addition to Sn improves the electrocatalytic activity of bimetallic catalysts compared to monometallic catalysts. The long-term current density and stability of SnZr(50:50)/ZSM-5 catalyst are taken at 0.6 V. EIS measurements indicated that the lowest charge transfer resistance is at 0.6 V, consistent with CV and CA measurements. SnZr(50:50)/ZSM-5 provides a new perspective as an anode catalyst for DHFC applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric Water Sorption Kinetics in Powder and Monolithic Metal–Organic Frameworks
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-07 DOI: 10.1002/admi.202400628
Jiawang Li, Guang Wang, Hongzhao Fan, Zhigang Li, Chi Yan Tso, Yanguang Zhou

Metal–organic frameworks (MOFs) have been widely applied for adsorption applications owing to their high surface area and porosity. In this paper, the atmospheric water adsorption kinetics in a prototypical MOF with two forms, that is, powder and monolithic MOF-801, are systematically investigated. It is shown that the total pore volume (average pore diameter) of the monolithic MOF-801 is 0.831 cm3 g−1 (5.20 nm) which is much larger than that of powder MOF-801, that is, 0.488 cm3 g−1 (1.95 nm). Monolithic MOF-801 absorbs more water than powder MOF-801 at a relative humidity (RH) above 90%. However, between the RH ranges from 10% to 90%, its water uptake is significantly lower than that of the powder form. Molecular dynamics simulations demonstrate that the unexpected water uptake capacity of monolithic MOF-801 at RH of 10%∼90% is caused by the water film formed by the capillary condensation in these mesopores of monolithic MOF-801. The capillary force of the formed film can be overcome by water vapor pressure when RH is over 90%. These findings reveal the underlying mechanisms for water adsorption kinetics in both powder and monolithic MOFs, which can motivate and benefit the new passive cooling or water harvesting system design based on MOFs.

{"title":"Atmospheric Water Sorption Kinetics in Powder and Monolithic Metal–Organic Frameworks","authors":"Jiawang Li,&nbsp;Guang Wang,&nbsp;Hongzhao Fan,&nbsp;Zhigang Li,&nbsp;Chi Yan Tso,&nbsp;Yanguang Zhou","doi":"10.1002/admi.202400628","DOIUrl":"https://doi.org/10.1002/admi.202400628","url":null,"abstract":"<p>Metal–organic frameworks (MOFs) have been widely applied for adsorption applications owing to their high surface area and porosity. In this paper, the atmospheric water adsorption kinetics in a prototypical MOF with two forms, that is, powder and monolithic MOF-801, are systematically investigated. It is shown that the total pore volume (average pore diameter) of the monolithic MOF-801 is 0.831 cm<sup>3</sup> g<sup>−1</sup> (5.20 nm) which is much larger than that of powder MOF-801, that is, 0.488 cm<sup>3</sup> g<sup>−1</sup> (1.95 nm). Monolithic MOF-801 absorbs more water than powder MOF-801 at a relative humidity (RH) above 90%. However, between the RH ranges from 10% to 90%, its water uptake is significantly lower than that of the powder form. Molecular dynamics simulations demonstrate that the unexpected water uptake capacity of monolithic MOF-801 at RH of 10%∼90% is caused by the water film formed by the capillary condensation in these mesopores of monolithic MOF-801. The capillary force of the formed film can be overcome by water vapor pressure when RH is over 90%. These findings reveal the underlying mechanisms for water adsorption kinetics in both powder and monolithic MOFs, which can motivate and benefit the new passive cooling or water harvesting system design based on MOFs.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Coated CoFe2O4 Nanoparticles with Biocompatible Compounds and In Vitro Toxicity Assessment on Glioma Cell Lines
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-05 DOI: 10.1002/admi.202400613
Sevil Ozer, Nurcan Dogan, Sezen Canim-Ates, Ayhan Bingolbali

Rapid advances in the development of nanotechnology in recent years have led to functional magnetic nanoparticle types (MNPs) with different properties. The diverse applications of these nanoparticles make them a desirable candidate for use in biomedical areas due to their exclusive chemical and physical properties. The present work is conducted to study the in vitro biocompatibility of CoFe2O4@shell with different surface coatings (shell: ascorbic acid (AA), dextran (DEX), and polyethyleneimine (PEI). The cytotoxicity of coated nanoparticles is screened toward the glioma cancer line (C6) and fibroblast cell line (L929) using an MTT assay. CoFe2O4 NPs are synthesized using the co-precipitation method together with hydrothermal synthesis and characterized regarding their structural and magnetic properties using state-of-the-art techniques. Results showed the particles are consistent with the crystal structure of CoFe2O4 and the average crystallite size in the range of 16–18 nm. For the coated NPs, only a slight increase in the Hc is found except for the CoFe2O4@PEI NPs. The comparative analysis of the cytotoxic effects of CoFe2O4@shell NPs on L929 fibroblast and glioma cells shows that the cytotoxicity of samples is much more specific in brain tumor cells, especially it also indicates the significant efficacy of CoFe2O4@PEI in cancer cells.

近年来,纳米技术的发展突飞猛进,催生了具有不同特性的功能性磁性纳米粒子(MNPs)。由于这些纳米粒子具有独特的化学和物理性质,其多样化的应用使其成为生物医学领域的理想候选材料。本研究旨在研究具有不同表面涂层(外壳:抗坏血酸(AA)、右旋糖酐(DEX)和聚乙烯亚胺(PEI))的 CoFe2O4@shell 的体外生物相容性。利用 MTT 试验筛选了涂层纳米粒子对胶质瘤癌细胞株(C6)和成纤维细胞株(L929)的细胞毒性。CoFe2O4 NPs 采用共沉淀法和水热合成法合成,并利用最先进的技术对其结构和磁性能进行了表征。结果表明,这些粒子符合 CoFe2O4 的晶体结构,平均晶粒大小在 16-18 nm 之间。除了 CoFe2O4@PEI NPs 外,其他镀膜 NPs 的 Hc 值仅略有增加。CoFe2O4@shell NPs 对 L929 成纤维细胞和神经胶质瘤细胞的细胞毒性比较分析表明,样品对脑肿瘤细胞的细胞毒性更具特异性,这也表明 CoFe2O4@PEI 对癌细胞具有显著的疗效。
{"title":"Synthesis and Characterization of Coated CoFe2O4 Nanoparticles with Biocompatible Compounds and In Vitro Toxicity Assessment on Glioma Cell Lines","authors":"Sevil Ozer,&nbsp;Nurcan Dogan,&nbsp;Sezen Canim-Ates,&nbsp;Ayhan Bingolbali","doi":"10.1002/admi.202400613","DOIUrl":"https://doi.org/10.1002/admi.202400613","url":null,"abstract":"<p>Rapid advances in the development of nanotechnology in recent years have led to functional magnetic nanoparticle types (MNPs) with different properties. The diverse applications of these nanoparticles make them a desirable candidate for use in biomedical areas due to their exclusive chemical and physical properties. The present work is conducted to study the in vitro biocompatibility of CoFe<sub>2</sub>O<sub>4</sub>@shell with different surface coatings (shell: ascorbic acid (AA), dextran (DEX), and polyethyleneimine (PEI). The cytotoxicity of coated nanoparticles is screened toward the glioma cancer line (C6) and fibroblast cell line (L929) using an MTT assay. CoFe<sub>2</sub>O<sub>4</sub> NPs are synthesized using the co-precipitation method together with hydrothermal synthesis and characterized regarding their structural and magnetic properties using state-of-the-art techniques. Results showed the particles are consistent with the crystal structure of CoFe<sub>2</sub>O<sub>4</sub> and the average crystallite size in the range of 16–18 nm. For the coated NPs, only a slight increase in the Hc is found except for the CoFe<sub>2</sub>O<sub>4</sub>@PEI NPs. The comparative analysis of the cytotoxic effects of CoFe<sub>2</sub>O<sub>4</sub>@shell NPs on L929 fibroblast and glioma cells shows that the cytotoxicity of samples is much more specific in brain tumor cells, especially it also indicates the significant efficacy of CoFe<sub>2</sub>O<sub>4</sub>@PEI in cancer cells.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Easy Direct Functionalization of 2D MoS2 Applied in Covalent Hybrids with PANI as Dual Blend Supercapacitive Materials (Adv. Mater. Interfaces 1/2025)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-03 DOI: 10.1002/admi.202570001
Matteo Crisci, Felix Boll, Sara Domenici, Jaime Gallego, Bernd Smarsly, Mengjiao Wang, Francesco Lamberti, Andrea Rubino, Teresa Gatti

Capacitive Material

In article 2400621, Teresa Gatti and co-workers present a novel method for covalent anchoring of polyaniline chains to 2D MoS2 nanosheets. The resulting covalently grafted hybrids are employed as active materials in electrochemical supercapacitors, providing improved performance and stability compared to the non-covalently grafted alternatives.

{"title":"Easy Direct Functionalization of 2D MoS2 Applied in Covalent Hybrids with PANI as Dual Blend Supercapacitive Materials (Adv. Mater. Interfaces 1/2025)","authors":"Matteo Crisci,&nbsp;Felix Boll,&nbsp;Sara Domenici,&nbsp;Jaime Gallego,&nbsp;Bernd Smarsly,&nbsp;Mengjiao Wang,&nbsp;Francesco Lamberti,&nbsp;Andrea Rubino,&nbsp;Teresa Gatti","doi":"10.1002/admi.202570001","DOIUrl":"https://doi.org/10.1002/admi.202570001","url":null,"abstract":"<p><b>Capacitive Material</b></p><p>In article 2400621, Teresa Gatti and co-workers present a novel method for covalent anchoring of polyaniline chains to 2D MoS<sub>2</sub> nanosheets. The resulting covalently grafted hybrids are employed as active materials in electrochemical supercapacitors, providing improved performance and stability compared to the non-covalently grafted alternatives.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Your Clean Graphene is Still Not Clean (Adv. Mater. Interfaces 1/2025)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-03 DOI: 10.1002/admi.202570004
Ondrej Dyck, Aisha Okmi, Kai Xiao, Sidong Lei, Andrew R. Lupini, Stephen Jesse

Invisible Hydrocarbons on Graphene

Rapidly diffusing hydrocarbons on graphene are revealed through direct detection in image intensity. The graphene appears to be clean on a microscopic level but is shown to still harbor contamination in a non-solid form, loosely adhered to the graphene surface. This work updates the conceptual model of surface hydrocarbons on graphene. More details can be found in article 2400598 by Ondrej Dyck and co-workers.

{"title":"Your Clean Graphene is Still Not Clean (Adv. Mater. Interfaces 1/2025)","authors":"Ondrej Dyck,&nbsp;Aisha Okmi,&nbsp;Kai Xiao,&nbsp;Sidong Lei,&nbsp;Andrew R. Lupini,&nbsp;Stephen Jesse","doi":"10.1002/admi.202570004","DOIUrl":"https://doi.org/10.1002/admi.202570004","url":null,"abstract":"<p><b>Invisible Hydrocarbons on Graphene</b></p><p>Rapidly diffusing hydrocarbons on graphene are revealed through direct detection in image intensity. The graphene appears to be clean on a microscopic level but is shown to still harbor contamination in a non-solid form, loosely adhered to the graphene surface. This work updates the conceptual model of surface hydrocarbons on graphene. More details can be found in article 2400598 by Ondrej Dyck and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optoelectric-Driven Wetting Transition on Artificially Micropatterned Surfaces With Long-Range Virtual Electrodes (Adv. Mater. Interfaces 1/2025)
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-03 DOI: 10.1002/admi.202570002
Riccardo Zamboni, Debdatta Ray, Cornelia Denz, Jörg Imbrock

Optoelectric Superwetting

In article 2400459, Riccardo Zamboni and co-workers develop an optoelectric method for droplet manipulation on artificially micropatterned surfaces. It relies solely on optically induced virtual electrodes on photovoltaic crystals. Selective droplet transport and superhydrophobic wetting states are optically controlled on various patterns and substrates.

{"title":"Optoelectric-Driven Wetting Transition on Artificially Micropatterned Surfaces With Long-Range Virtual Electrodes (Adv. Mater. Interfaces 1/2025)","authors":"Riccardo Zamboni,&nbsp;Debdatta Ray,&nbsp;Cornelia Denz,&nbsp;Jörg Imbrock","doi":"10.1002/admi.202570002","DOIUrl":"https://doi.org/10.1002/admi.202570002","url":null,"abstract":"<p><b>Optoelectric Superwetting</b></p><p>In article 2400459, Riccardo Zamboni and co-workers develop an optoelectric method for droplet manipulation on artificially micropatterned surfaces. It relies solely on optically induced virtual electrodes on photovoltaic crystals. Selective droplet transport and superhydrophobic wetting states are optically controlled on various patterns and substrates.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt-Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-02 DOI: 10.1002/admi.202400633
Müslüm Kaplan, Emre Alp, Beate Krause, Regine Boldt, Petra Pötschke

Studies have increasingly aimed at improving the piezoresistive behavior of polymer-based conductive composites (CPCs) for strain-sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one-step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi-walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS0.96O0.04 and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15-cycle strain sensing up to 3% strain, ZnS NSs-enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.

{"title":"Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt-Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites","authors":"Müslüm Kaplan,&nbsp;Emre Alp,&nbsp;Beate Krause,&nbsp;Regine Boldt,&nbsp;Petra Pötschke","doi":"10.1002/admi.202400633","DOIUrl":"https://doi.org/10.1002/admi.202400633","url":null,"abstract":"<p>Studies have increasingly aimed at improving the piezoresistive behavior of polymer-based conductive composites (CPCs) for strain-sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one-step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi-walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS<sub>0.96</sub>O<sub>0.04</sub> and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15-cycle strain sensing up to 3% strain, ZnS NSs-enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Materials Interfaces
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1