首页 > 最新文献

Emerging Microbes & Infections最新文献

英文 中文
West Nile Virus in a changing climate: epidemiology, pathology, advances in diagnosis and treatment, vaccine designing and control strategies, emerging public health challenges - a comprehensive review. 气候变化中的西尼罗病毒:流行病学、病理学、诊断和治疗进展、疫苗设计和控制策略、新出现的公共卫生挑战——全面审查。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-02 DOI: 10.1080/22221751.2024.2437244
Parminder Singh, Mahalaqua Nazli Khatib, Suhas Ballal, Mandeep Kaur, Deepak Nathiya, Shilpa Sharma, G V Siva Prasad, Aashna Sinha, Abhay M Gaidhane, Priyanka Mohapatra, Amit Varma, Sorabh Lakhanpal, Muhammed Shabil, Ganesh Bushi, Sanjit Sah, Hashem Abu Serhan

ABSTRACTWest Nile Virus (WNV), first identified in Uganda in 1937, remains a significant global health threat, adapting across diverse ecosystems and expanding geographically, particularly into temperate regions of Europe and North America. This review provides a comprehensive exploration of the latest insights and challenges in WNV management, focusing on epidemiological trends, molecular advancements, and public health implications. Recent data highlight WNV's expansion, driven by climate changes such as milder winters and longer warm seasons that increase mosquito activity and enable the virus to overwinter within mosquito populations. This facilitates year-round transmission and challenges current control strategies. Molecularly, advancements in genomic and proteomic technologies have deepened our understanding of WNV's replication and pathogenesis, identifying new therapeutic targets and improving diagnostic methods. However, the absence of an approved human vaccine leaves management dependent on supportive care, particularly for severe neurological cases. Effective vector control remains crucial, with innovative strategies including genetically modified mosquitoes and novel insecticides being pivotal. Furthermore, environmental factors like climate change and urbanization are altering vector behaviors and WNV transmission dynamics, necessitating adaptive public health strategies to manage these evolving threats. The review underscores the need for ongoing research, vaccine and therapeutic development, and enhanced public health infrastructures to better respond to WNV challenges. It stresses the critical role of integrating scientific research, public health policy, and community engagement to effectively address the persistent threat of WNV.

西尼罗河病毒(WNV)于1937年首次在乌干达被发现,仍然是一个重大的全球健康威胁,它在不同的生态系统中适应,并在地理上扩大,特别是在欧洲和北美的温带地区。这篇综述全面探讨了西尼罗河病毒管理的最新见解和挑战,重点是流行病学趋势、分子进展和公共卫生影响。最近的数据突出了西尼罗河病毒的扩张,这是由气候变化驱动的,如暖冬和暖季延长,这些变化增加了蚊子的活动,使病毒能够在蚊子种群中越冬。这促进了全年传播,并对当前的控制战略提出了挑战。分子方面,基因组学和蛋白质组学技术的进步加深了我们对西尼罗河病毒复制和发病机制的理解,确定了新的治疗靶点,改进了诊断方法。然而,由于缺乏批准的人用疫苗,使得管理依赖于支持性护理,特别是对严重的神经系统病例。有效的病媒控制仍然至关重要,包括转基因蚊子和新型杀虫剂在内的创新战略至关重要。此外,气候变化和城市化等环境因素正在改变病媒行为和西尼罗河病毒传播动态,因此需要采取适应性公共卫生战略来管理这些不断演变的威胁。该审查强调需要继续进行研究、开发疫苗和治疗方法,并加强公共卫生基础设施,以更好地应对西尼罗河病毒的挑战。它强调综合科学研究、公共卫生政策和社区参与的关键作用,以有效应对西尼罗河病毒的持续威胁。
{"title":"West Nile Virus in a changing climate: epidemiology, pathology, advances in diagnosis and treatment, vaccine designing and control strategies, emerging public health challenges - a comprehensive review.","authors":"Parminder Singh, Mahalaqua Nazli Khatib, Suhas Ballal, Mandeep Kaur, Deepak Nathiya, Shilpa Sharma, G V Siva Prasad, Aashna Sinha, Abhay M Gaidhane, Priyanka Mohapatra, Amit Varma, Sorabh Lakhanpal, Muhammed Shabil, Ganesh Bushi, Sanjit Sah, Hashem Abu Serhan","doi":"10.1080/22221751.2024.2437244","DOIUrl":"10.1080/22221751.2024.2437244","url":null,"abstract":"<p><p><b>ABSTRACT</b>West Nile Virus (WNV), first identified in Uganda in 1937, remains a significant global health threat, adapting across diverse ecosystems and expanding geographically, particularly into temperate regions of Europe and North America. This review provides a comprehensive exploration of the latest insights and challenges in WNV management, focusing on epidemiological trends, molecular advancements, and public health implications. Recent data highlight WNV's expansion, driven by climate changes such as milder winters and longer warm seasons that increase mosquito activity and enable the virus to overwinter within mosquito populations. This facilitates year-round transmission and challenges current control strategies. Molecularly, advancements in genomic and proteomic technologies have deepened our understanding of WNV's replication and pathogenesis, identifying new therapeutic targets and improving diagnostic methods. However, the absence of an approved human vaccine leaves management dependent on supportive care, particularly for severe neurological cases. Effective vector control remains crucial, with innovative strategies including genetically modified mosquitoes and novel insecticides being pivotal. Furthermore, environmental factors like climate change and urbanization are altering vector behaviors and WNV transmission dynamics, necessitating adaptive public health strategies to manage these evolving threats. The review underscores the need for ongoing research, vaccine and therapeutic development, and enhanced public health infrastructures to better respond to WNV challenges. It stresses the critical role of integrating scientific research, public health policy, and community engagement to effectively address the persistent threat of WNV.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2437244"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of a novel reassortant highly pathogenic avian influenza clade 2.3.4.4b A(H5N2) Virus, 2024.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-31 DOI: 10.1080/22221751.2025.2455601
Rabeh El-Shesheny, Mokhtar Gomaa, Mohamed El Sayes, Mina Nabil Kamel, Ahmed El Taweel, Omnia Kutkat, Mohamed GabAllah, Amany Elkhrsawy, Hager Emam, Yassmin Moatasim, Ahmed Kandeil, Pamela P McKenzie, Richard J Webby, Mohamed Ahmed Ali, Ghazi Kayali

Reassortant highly pathogenic avian influenza A(H5N2) clade 2.3.4.4.b viruses were detected from ducks and environmental samples in Egypt, June 2024. Genomic and phylogenetic analyses revealed a novel genotype produced by the reassortment of an A(H5N1) clade 2.3.3.4b virus with an A(H9N2) G1-like virus. Monitoring the spread of this virus is important.

{"title":"Emergence of a novel reassortant highly pathogenic avian influenza clade 2.3.4.4b A(H5N2) Virus, 2024.","authors":"Rabeh El-Shesheny, Mokhtar Gomaa, Mohamed El Sayes, Mina Nabil Kamel, Ahmed El Taweel, Omnia Kutkat, Mohamed GabAllah, Amany Elkhrsawy, Hager Emam, Yassmin Moatasim, Ahmed Kandeil, Pamela P McKenzie, Richard J Webby, Mohamed Ahmed Ali, Ghazi Kayali","doi":"10.1080/22221751.2025.2455601","DOIUrl":"10.1080/22221751.2025.2455601","url":null,"abstract":"<p><p>Reassortant highly pathogenic avian influenza A(H5N2) clade 2.3.4.4.b viruses were detected from ducks and environmental samples in Egypt, June 2024. Genomic and phylogenetic analyses revealed a novel genotype produced by the reassortment of an A(H5N1) clade 2.3.3.4b virus with an A(H9N2) G1-like virus. Monitoring the spread of this virus is important.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2455601"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches. 发现一种具有高效杀灭感染细胞能力的泛抗 SARS-CoV-2 单克隆抗体,用于新型免疫疗法。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-09 DOI: 10.1080/22221751.2024.2432345
Daouda Abba Moussa, Mario Vazquez, Christine Chable-Bessia, Vincent Roux-Portalez, Elia Tamagnini, Mattia Pedotti, Luca Simonelli, Giang Ngo, Manon Souchard, Sebastien Lyonnais, Myriam Chentouf, Nathalie Gros, Soledad Marsile-Medun, Heiko Dinter, Martine Pugnière, Pierre Martineau, Luca Varani, Manel Juan, Hugo Calderon, Mar Naranjo-Gomez, Mireia Pelegrin

Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.Trial registration: ClinicalTrials.gov identifier: NCT04093596.

发掘广泛反应性冠状病毒单克隆抗体(mAb)及其衍生物的潜力为抗击严重的 COVID-19 提供了一条变革性的治疗途径,这对于保护高危人群尤为重要。基于新型 mAb 的免疫疗法可能有助于解决目前疫苗和中和 mAb 因出现相关变体 (VOC) 而导致疗效降低的问题。利用噬菌体展示技术,我们发现了一种泛 SARS-CoV-2 mAb(C10),它靶向病毒受体结合域(RBD)内的保守区。值得注意的是,C10 在识别所有被评估的 VOC(包括最近的 Omicron 变种)方面都表现出卓越的功效。虽然 C10 缺乏直接中和能力,但它能有效地与受感染的肺上皮细胞结合,并通过自然杀伤(NK)细胞介导的抗体依赖性细胞毒性(ADCC)诱导细胞溶解。在这种泛SARS-CoV-2 mAb的基础上,我们设计了基于C10的嵌合抗原受体(CAR)-T细胞,这种细胞对SARS-CoV-2感染的肺上皮细胞具有高效的杀伤能力。值得注意的是,NK 和 CAR-T 细胞介导的对肺部感染细胞的杀伤有效降低了病毒滴度。这些发现凸显了非中和 mAbs 在提供针对新发传染病的免疫保护方面的潜力。我们的研究揭示了一种能有效靶向感染细胞的泛 SARS-CoV-2 mAb,并证明了 CAR-T 细胞疗法在抗击 SARS-CoV-2 感染中的潜在应用概念。此外,通过扩大高危人群的治疗选择范围,该研究有望开发出针对严重COVID-19的创新型抗体和细胞治疗策略:试验注册:ClinicalTrials.gov identifier:NCT04093596.
{"title":"Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches.","authors":"Daouda Abba Moussa, Mario Vazquez, Christine Chable-Bessia, Vincent Roux-Portalez, Elia Tamagnini, Mattia Pedotti, Luca Simonelli, Giang Ngo, Manon Souchard, Sebastien Lyonnais, Myriam Chentouf, Nathalie Gros, Soledad Marsile-Medun, Heiko Dinter, Martine Pugnière, Pierre Martineau, Luca Varani, Manel Juan, Hugo Calderon, Mar Naranjo-Gomez, Mireia Pelegrin","doi":"10.1080/22221751.2024.2432345","DOIUrl":"10.1080/22221751.2024.2432345","url":null,"abstract":"<p><p>Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.<b>Trial registration:</b> ClinicalTrials.gov identifier: NCT04093596.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2432345"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The E3 ligase RAD18-mediated ubiquitination of henipavirus matrix protein promotes its nuclear-cytoplasmic trafficking and viral egress. E3连接酶rad18介导的亨尼帕病毒基质蛋白泛素化促进其核胞质运输和病毒输出。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-09 DOI: 10.1080/22221751.2024.2432344
Dongning Jin, Linliang Zhang, Cheng Peng, Mingbin He, Weiwei Wang, Zhifei Li, Cong Liu, Jinhong Du, Jin Zhou, Lei Yin, Chao Shan, Yali Qin, Mingzhou Chen

The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking. We demonstrate that RAD18 interacts with RAD6A, enabling the latter to supply ubiquitins for the RAD18-mediated transfer of ubiquitin to M through RAD18-M interactions. Specifically, M is ubiquitinated by the RAD6A-RAD18 complex at lysine (K) 258 through a K63-linked ubiquitination, a modification crucial for M's function. This ubiquitination drives M's relocation to the cytoplasm, directing it to plasma membranes for effective viral egress. Conversely, disrupting the RAD6A-RAD18-M axis, mutating RAD18's E3 ligase activity, or inhibiting RAD6A activity with TZ9 (a RAD6-ubiquitin thioester formation inhibitor) impairs M ubiquitination, resulting in defective nuclear export and budding of NiV. Significantly, live NiV and Hendra virus infection is attenuated in RAD18 knockout cells or in cells treated with TZ9, highlighting the critical physiological role of RAD6A-RAD18-mediated M ubiquitination in the henipavirus life cycle. Our findings not only reveal how NiV manipulates a nucleus-localized ubiquitination complex to promote virus's M protein ubiquitination and nuclear export, but also suggest that the small molecule inhibitor TZ9 could serve as a potential therapeutic against henipavirus infection.

核细胞质中基质蛋白(M)的转运对亨尼帕病毒出芽至关重要,M蛋白泛素化在这一动态过程中起着关键作用。尽管其重要性,但促进其从细胞核转移到细胞质并随后输出的M泛素化级联的复杂性仍然难以捉摸。在这项研究中,我们阐明了尼帕病毒(NiV)的一种新机制,通过这种机制,尼帕病毒(NiV)利用一个泛素化复合体,包括E2泛素结合酶RAD6A和E3泛素连接酶RAD18,来泛素化病毒的M蛋白,从而促进其核胞质运输。我们证明了RAD18通过其rad6结合域与RAD6A相互作用,使后者能够通过RAD18-M相互作用为RAD18介导的泛素向M的转移提供泛素。具体来说,M在赖氨酸(K) 258位点通过k63连锁泛素化被RAD6A-RAD18复合物泛素化,这一修饰对M的功能至关重要,因为该位点的突变破坏了M与全长RAD18的相互作用。这种泛素化驱动M的重新定位到细胞质,引导它到质膜,有效的病毒出口。相反,破坏RAD6A-RAD18-M轴,突变RAD18的E3连接酶活性,或用TZ9(一种rad6 -泛素硫酯形成抑制剂)抑制RAD6A活性,会损害M泛素化,导致核输出缺陷和NiV出芽。值得注意的是,在RAD18敲除细胞或TZ9处理的细胞中,活的NiV和亨德拉病毒感染减弱,突出了rad6a -RAD18介导的M泛素化在亨尼帕病毒生命周期中的关键生理作用。我们的研究结果不仅揭示了NiV如何操纵核定位的泛素化复合体来促进病毒M蛋白泛素化和核输出,而且表明小分子抑制剂TZ9可能作为治疗亨尼帕病毒感染的潜在药物。我们的研究为病毒蛋白运输的分子机制提供了新的见解,并为治疗干预亨尼帕病毒感染开辟了新的途径。
{"title":"The E3 ligase RAD18-mediated ubiquitination of henipavirus matrix protein promotes its nuclear-cytoplasmic trafficking and viral egress.","authors":"Dongning Jin, Linliang Zhang, Cheng Peng, Mingbin He, Weiwei Wang, Zhifei Li, Cong Liu, Jinhong Du, Jin Zhou, Lei Yin, Chao Shan, Yali Qin, Mingzhou Chen","doi":"10.1080/22221751.2024.2432344","DOIUrl":"10.1080/22221751.2024.2432344","url":null,"abstract":"<p><p>The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking. We demonstrate that RAD18 interacts with RAD6A, enabling the latter to supply ubiquitins for the RAD18-mediated transfer of ubiquitin to M through RAD18-M interactions. Specifically, M is ubiquitinated by the RAD6A-RAD18 complex at lysine (K) 258 through a K63-linked ubiquitination, a modification crucial for M's function. This ubiquitination drives M's relocation to the cytoplasm, directing it to plasma membranes for effective viral egress. Conversely, disrupting the RAD6A-RAD18-M axis, mutating RAD18's E3 ligase activity, or inhibiting RAD6A activity with TZ9 (a RAD6-ubiquitin thioester formation inhibitor) impairs M ubiquitination, resulting in defective nuclear export and budding of NiV. Significantly, live NiV and Hendra virus infection is attenuated in RAD18 knockout cells or in cells treated with TZ9, highlighting the critical physiological role of RAD6A-RAD18-mediated M ubiquitination in the henipavirus life cycle. Our findings not only reveal how NiV manipulates a nucleus-localized ubiquitination complex to promote virus's M protein ubiquitination and nuclear export, but also suggest that the small molecule inhibitor TZ9 could serve as a potential therapeutic against henipavirus infection.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2432344"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo determination of protective antibody thresholds for SARS-CoV-2 variants using mouse models.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-07 DOI: 10.1080/22221751.2025.2459140
Peilan Wei, Ruoxi Cai, Lu Zhang, Jingjun Zhang, Zhaoyong Zhang, Airu Zhu, Hai Li, Zhen Zhuang, Lan Chen, Jiantao Chen, Yuting Zhang, Xinyi Xiong, Bin Qu, Jianfen Zhuo, Tian Tang, Yuanyuan Zhang, Lei Chen, Qier Zhong, Zhiwei Lin, Xindan Xing, Fang Li, Qingtao Hu, Jun Dai, Yongxia Shi, Jingxian Zhao, Jincun Zhao, Yanqun Wang

Neutralizing antibody titres have been shown to correlate with immune protection against COVID-19 and can be used to estimate vaccine effectiveness. Numerous studies have explored the relationship between neutralizing antibodies and protection. However, there remains a lack of quantitative data directly assessing the minimum effective protective neutralizing antibody titre in in vivo. In this study, we utilized eight cohorts of participants with diverse immune backgrounds for evaluation of protective antibody response. To precisely assess the lower threshold of neutralizing antibody titres required for effective protection against SARS-CoV-2 infections, we employed plasma adoptive transfer from different cohorts into mice. This study demonstrated that neutralizing titres in the plasma of recipient mice correlated well with those in human donors, and a positive linear correlation was observed between the human and mouse recipients of transferred plasma neutralizing titre. A pseudotyped virus neutralizing titres greater than 7 was identified as the minimum threshold necessary to reduce viral titres in infected mice, establishing a crucial baseline for effective protection. Furthermore, despite the variability in immune backgrounds, these diverse cohorts' plasma exhibited a similar neutralizing antibody threshold necessary for protection. This finding has significant implications for vaccine design and the assessment of immune competence.

{"title":"<i>In vivo</i> determination of protective antibody thresholds for SARS-CoV-2 variants using mouse models.","authors":"Peilan Wei, Ruoxi Cai, Lu Zhang, Jingjun Zhang, Zhaoyong Zhang, Airu Zhu, Hai Li, Zhen Zhuang, Lan Chen, Jiantao Chen, Yuting Zhang, Xinyi Xiong, Bin Qu, Jianfen Zhuo, Tian Tang, Yuanyuan Zhang, Lei Chen, Qier Zhong, Zhiwei Lin, Xindan Xing, Fang Li, Qingtao Hu, Jun Dai, Yongxia Shi, Jingxian Zhao, Jincun Zhao, Yanqun Wang","doi":"10.1080/22221751.2025.2459140","DOIUrl":"10.1080/22221751.2025.2459140","url":null,"abstract":"<p><p>Neutralizing antibody titres have been shown to correlate with immune protection against COVID-19 and can be used to estimate vaccine effectiveness. Numerous studies have explored the relationship between neutralizing antibodies and protection. However, there remains a lack of quantitative data directly assessing the minimum effective protective neutralizing antibody titre in <i>in vivo</i>. In this study, we utilized eight cohorts of participants with diverse immune backgrounds for evaluation of protective antibody response. To precisely assess the lower threshold of neutralizing antibody titres required for effective protection against SARS-CoV-2 infections, we employed plasma adoptive transfer from different cohorts into mice. This study demonstrated that neutralizing titres in the plasma of recipient mice correlated well with those in human donors, and a positive linear correlation was observed between the human and mouse recipients of transferred plasma neutralizing titre. A pseudotyped virus neutralizing titres greater than 7 was identified as the minimum threshold necessary to reduce viral titres in infected mice, establishing a crucial baseline for effective protection. Furthermore, despite the variability in immune backgrounds, these diverse cohorts' plasma exhibited a similar neutralizing antibody threshold necessary for protection. This finding has significant implications for vaccine design and the assessment of immune competence.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2459140"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel human coronavirus in an infant patient with pneumonia, Republic of Korea.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-13 DOI: 10.1080/22221751.2025.2466705
Kyungmin Park, Minsoo Shin, Augustine Natasha, Jongwoo Kim, Juyoung Noh, Seong-Gyu Kim, Bohyeon Kim, Jieun Park, Ye-Rin Seo, Hee-Kyung Cho, Kwan Soo Byun, Ji Hoon Kim, Young-Sun Lee, Jung Ok Shim, Won-Keun Kim, Jin-Won Song

Coronaviruses (CoVs) pose a significant threat to public health, causing a wide spectrum of clinical manifestations and outcomes. Beyond precipitating global outbreaks, Human CoVs (HCoVs) are frequently found among patients with respiratory infections. To date, limited attention has been directed towards alphacoronaviruses due to their low prevalence and fatality rates. Nasal swab and serum samples were collected from a paediatric patient, and an epidemiological survey was conducted. Retrospective surveillance investigated the molecular prevalence of CoV in 880 rodents collected in the Republic of Korea (ROK) from 2018 to 2022. Next-generation sequencing (NGS) and phylogenetic analyses characterised the novel HCoV and closely related CoVs harboured by Apodemus spp. On 15 December 2022, a 103-day-old infant was admitted with fever, cough, sputum production, and rhinorrhea, diagnosed with human parainfluenza virus 1 (HPIV-1) and rhinovirus co-infection. Elevated AST/ALT levels indicated transient liver dysfunction on the fourth day of hospitalisation. Metagenomic NGS (mNGS) identified a novel HCoV in nasal swab and serum samples. Retrospective rodent surveillance and phylogenetic analyses showed the novel HCoV was closely related to alphacoronaviruses carried by Apodemus spp. in the ROK and China. This case highlights the potential of mNGS to identify emerging pathogens and raises awareness of possible extra-respiratory manifestations, such as transient liver dysfunction, associated with novel HCoVs. While the liver injury in this case may be attributable to the novel HCoV, further research is necessary to elucidate its clinical significance, epidemiological prevalence, and zoonotic origins.

{"title":"Novel human coronavirus in an infant patient with pneumonia, Republic of Korea.","authors":"Kyungmin Park, Minsoo Shin, Augustine Natasha, Jongwoo Kim, Juyoung Noh, Seong-Gyu Kim, Bohyeon Kim, Jieun Park, Ye-Rin Seo, Hee-Kyung Cho, Kwan Soo Byun, Ji Hoon Kim, Young-Sun Lee, Jung Ok Shim, Won-Keun Kim, Jin-Won Song","doi":"10.1080/22221751.2025.2466705","DOIUrl":"10.1080/22221751.2025.2466705","url":null,"abstract":"<p><p>Coronaviruses (CoVs) pose a significant threat to public health, causing a wide spectrum of clinical manifestations and outcomes. Beyond precipitating global outbreaks, Human CoVs (HCoVs) are frequently found among patients with respiratory infections. To date, limited attention has been directed towards alphacoronaviruses due to their low prevalence and fatality rates. Nasal swab and serum samples were collected from a paediatric patient, and an epidemiological survey was conducted. Retrospective surveillance investigated the molecular prevalence of CoV in 880 rodents collected in the Republic of Korea (ROK) from 2018 to 2022. Next-generation sequencing (NGS) and phylogenetic analyses characterised the novel HCoV and closely related CoVs harboured by <i>Apodemus</i> spp. On 15 December 2022, a 103-day-old infant was admitted with fever, cough, sputum production, and rhinorrhea, diagnosed with human parainfluenza virus 1 (HPIV-1) and rhinovirus co-infection. Elevated AST/ALT levels indicated transient liver dysfunction on the fourth day of hospitalisation. Metagenomic NGS (mNGS) identified a novel HCoV in nasal swab and serum samples. Retrospective rodent surveillance and phylogenetic analyses showed the novel HCoV was closely related to alphacoronaviruses carried by <i>Apodemus</i> spp. in the ROK and China. This case highlights the potential of mNGS to identify emerging pathogens and raises awareness of possible extra-respiratory manifestations, such as transient liver dysfunction, associated with novel HCoVs. While the liver injury in this case may be attributable to the novel HCoV, further research is necessary to elucidate its clinical significance, epidemiological prevalence, and zoonotic origins.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2466705"},"PeriodicalIF":8.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-13 DOI: 10.1080/22221751.2025.2465327
Wei Yang, Zhan-Zhan Bian, Zhe Li, Yi-Teng Zhang, Li-Bo Liu, Jia-Tong Chang, Dan Li, Pei-Gang Wang, Jing An, Wei Wang

Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behavior and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.

{"title":"An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy.","authors":"Wei Yang, Zhan-Zhan Bian, Zhe Li, Yi-Teng Zhang, Li-Bo Liu, Jia-Tong Chang, Dan Li, Pei-Gang Wang, Jing An, Wei Wang","doi":"10.1080/22221751.2025.2465327","DOIUrl":"10.1080/22221751.2025.2465327","url":null,"abstract":"<p><p>Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behavior and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2465327"},"PeriodicalIF":8.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Surge of Reassortant A(H1N1) Influenza Viruses in Danish Swine and their Zoonotic Potential.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-13 DOI: 10.1080/22221751.2025.2466686
Pia Ryt-Hansen, Sophie George, Charlotte Kristiane Hjulsager, Ramona Trebbien, Jesper Schak Krog, Marta Maria Ciucani, Sine Nygaard Langerhuus, Jennifer DeBeauchamp, Jeri Carol Crumpton, Taylor Hibler, Richard J Webby, Lars Erik Larsen

AbstractIn 2018, a single detection of a novel reassortant swine influenza A virus (swIAV) was made in Denmark. The hemagglutinin (HA) of the virus was from the H1N1 pandemic 2009 (H1N1pdm09) lineage and the neuraminidase (NA) from the H1N1 Eurasian avian-like swine lineage (H1N1av). By 2022, the novel reassortant virus (H1pdm09N1av) constituted 27% of swIAVs identified through the Danish passive swIAV surveillance program. Sequencing detected two H1pdm09N1av genotypes; Genotype 1 contained an entire internal gene cassette of H1N1pdm09 origin, Genotype 2 differed by carrying an NS gene segment of H1N1av origin. The internal gene cassette of Genotype 2 became increasingly dominant, not only in the H1pdm09N1av population, but also in other Danish enzootic swIAV subtypes. Phylogenetic analysis of the HA genes from H1pdm09N1av viruses revealed a monophyletic source, a higher substitution rate compared to other H1N1pdm09 viruses and genetic differences with human seasonal and other swine adapted H1N1pdm09 viruses. Correspondingly, H1pdm09N1av viruses were antigenically distinct from human H1N1pdm09 vaccine viruses. Both H1pdm09N1av genotypes transmitted between ferrets by direct contact, but only Genotype 1 was capable of efficient aerosol transmission. The rapid spread of H1pdm09N1av viruses in Danish swine herds is concerning for swine and human health. Their zoonotic threat is highlighted by the limited pre-existing immunity observed in the human population, aerosol transmission in ferrets and the finding that the internal gene cassette of Genotype 2 was present in the first two zoonotic infections ever detected in Denmark.

{"title":"Rapid Surge of Reassortant A(H1N1) Influenza Viruses in Danish Swine and their Zoonotic Potential.","authors":"Pia Ryt-Hansen, Sophie George, Charlotte Kristiane Hjulsager, Ramona Trebbien, Jesper Schak Krog, Marta Maria Ciucani, Sine Nygaard Langerhuus, Jennifer DeBeauchamp, Jeri Carol Crumpton, Taylor Hibler, Richard J Webby, Lars Erik Larsen","doi":"10.1080/22221751.2025.2466686","DOIUrl":"10.1080/22221751.2025.2466686","url":null,"abstract":"<p><p><b>Abstract</b>In 2018, a single detection of a novel reassortant swine influenza A virus (swIAV) was made in Denmark. The hemagglutinin (HA) of the virus was from the H1N1 pandemic 2009 (H1N1pdm09) lineage and the neuraminidase (NA) from the H1N1 Eurasian avian-like swine lineage (H1N1av). By 2022, the novel reassortant virus (H1pdm09N1av) constituted 27% of swIAVs identified through the Danish passive swIAV surveillance program. Sequencing detected two H1pdm09N1av genotypes; Genotype 1 contained an entire internal gene cassette of H1N1pdm09 origin, Genotype 2 differed by carrying an NS gene segment of H1N1av origin. The internal gene cassette of Genotype 2 became increasingly dominant, not only in the H1pdm09N1av population, but also in other Danish enzootic swIAV subtypes. Phylogenetic analysis of the HA genes from H1pdm09N1av viruses revealed a monophyletic source, a higher substitution rate compared to other H1N1pdm09 viruses and genetic differences with human seasonal and other swine adapted H1N1pdm09 viruses. Correspondingly, H1pdm09N1av viruses were antigenically distinct from human H1N1pdm09 vaccine viruses. Both H1pdm09N1av genotypes transmitted between ferrets by direct contact, but only Genotype 1 was capable of efficient aerosol transmission. The rapid spread of H1pdm09N1av viruses in Danish swine herds is concerning for swine and human health. Their zoonotic threat is highlighted by the limited pre-existing immunity observed in the human population, aerosol transmission in ferrets and the finding that the internal gene cassette of Genotype 2 was present in the first two zoonotic infections ever detected in Denmark.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2466686"},"PeriodicalIF":8.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Turn in Yersinia pestis Pathogenesis: Implications of the gppA Frameshift for Bacterial Survival in Human Macrophage.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-13 DOI: 10.1080/22221751.2025.2467778
Hongyan Chen, Shiyang Cao, Yazhou Zhou, Tong Wang, Yang Jiao, Yafang Tan, Yarong Wu, Yifan Ren, Yajun Song, Jing-Ren Zhang, Zongmin Du, Ruifu Yang

Yersinia pestis, the etiological agent of the devastating plague, has caused three pandemics in human history. While known for its fatality, it has long been intriguing that biovar microtus strains are highly attenuated to humans. The survival and replication within macrophages are critical in the early stages of the Y. pestis lifestyle within warm-blooded hosts. Here, we demonstrate that a frameshift truncation of gppA, a gene encoding the phosphohydrolase GppA that responsible for the conversion of stringent response alarmone pppGpp to ppGpp, significantly promotes Y. pestis to survive inside human macrophages. This frameshift mutation of gppA is present in all the evolutionary branches formed by the modern Y. pestis strains responsible for the plague pandemics, while the relative ancient microtus strains express a functional GppA showing high activity in catalyzing pppGpp to ppGpp conversion. This adaptive evolution potentially explains why microtus Y. pestis strains exhibit attenuated virulence in humans in contrast to the lethal pathogenicity of non-microtus strains. Transcriptome analysis suggests that the disturbed balance of the ratio of ppGpp to pppGpp caused by GppA inactivation results in an upregulation of genes involved in the synthesis of branched-chain amino acids, which are essential for bacterial growth. This enhanced survival ability within macrophages could be a key factor for the virulence of Y. pestis towards humans. Our work sheds light on the molecular mechanisms behind Y. pestis host-specific pathogenicity, offering a glimpse into the transformative journey of a seemingly harmless bacterium into a formidable foe in humans. This understanding holds significant implications for enhancing our ability to predict and counteract the emergence of new infectious diseases.

{"title":"Molecular Turn in <i>Yersinia pestis</i> Pathogenesis: Implications of the <i>gppA</i> Frameshift for Bacterial Survival in Human Macrophage.","authors":"Hongyan Chen, Shiyang Cao, Yazhou Zhou, Tong Wang, Yang Jiao, Yafang Tan, Yarong Wu, Yifan Ren, Yajun Song, Jing-Ren Zhang, Zongmin Du, Ruifu Yang","doi":"10.1080/22221751.2025.2467778","DOIUrl":"10.1080/22221751.2025.2467778","url":null,"abstract":"<p><p><i>Yersinia pestis</i>, the etiological agent of the devastating plague, has caused three pandemics in human history. While known for its fatality, it has long been intriguing that biovar microtus strains are highly attenuated to humans. The survival and replication within macrophages are critical in the early stages of the <i>Y. pestis</i> lifestyle within warm-blooded hosts. Here, we demonstrate that a frameshift truncation of <i>gppA</i>, a gene encoding the phosphohydrolase GppA that responsible for the conversion of stringent response alarmone pppGpp to ppGpp, significantly promotes <i>Y. pestis</i> to survive inside human macrophages. This frameshift mutation of <i>gppA</i> is present in all the evolutionary branches formed by the modern <i>Y. pestis</i> strains responsible for the plague pandemics, while the relative ancient microtus strains express a functional GppA showing high activity in catalyzing pppGpp to ppGpp conversion. This adaptive evolution potentially explains why microtus <i>Y. pestis</i> strains exhibit attenuated virulence in humans in contrast to the lethal pathogenicity of non-microtus strains. Transcriptome analysis suggests that the disturbed balance of the ratio of ppGpp to pppGpp caused by GppA inactivation results in an upregulation of genes involved in the synthesis of branched-chain amino acids, which are essential for bacterial growth. This enhanced survival ability within macrophages could be a key factor for the virulence of <i>Y. pestis</i> towards humans. Our work sheds light on the molecular mechanisms behind <i>Y. pestis</i> host-specific pathogenicity, offering a glimpse into the transformative journey of a seemingly harmless bacterium into a formidable foe in humans. This understanding holds significant implications for enhancing our ability to predict and counteract the emergence of new infectious diseases.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2467778"},"PeriodicalIF":8.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Infection: Mapping the Risk of Cardiovascular Events Post-Scrub Typhus in a Nationwide Cohort Study.
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-13 DOI: 10.1080/22221751.2025.2467766
Jih-Kai Yeh, Victor Chien-Chia Wu, Shao-Wei Chen, Chia-Ling Wu, Yu-Sheng Lin, Chun-Wen Cheng, Chih-Hsiang Chang, Michael Wu, Pao-Hsien Chu, Shang-Hung Chang, Yu-Tung Huang

Background: Scrub typhus, caused by Orientia tsutsugamushi, often involves multiple organs, but its cardiovascular (CV) sequelae in survivors remain under-researched.

Method: This retrospective cohort study analyzed data from the National Health Insurance Research Database (NHIRD) spanning 2010-2015 to assess CV risks among scrub typhus survivors. Excluding those with prior CV events, we focused on outcomes such as acute myocardial infarction (AMI), heart failure hospitalization (HFH), strokes, new-onset atrial fibrillation (AF), aortic aneurysm or dissection, venous thromboembolism (VTE), and CV death.

Result: From 2,269 scrub typhus patients without previous CV events (mean age 47.8±16.1; 38.0% female), and a matched control group (n=2,264), we observed a higher incidence of HFH, new-onset AF, and total CV events in the scrub typhus cohort. Adjusted hazard ratios (aHRs) were 1.97 (95% CI: 1.13-3.42) for HFH, 2.48 (95% CI: 1.23-5.0) for new-onset AF, and 1.43 (95% CI: 1.08-1.91) for total CV events. Other outcomes did not significantly differ.

Conclusion: Scrub typhus survivors exhibit an increased risk of CV events, particularly HFH and new-onset AF, underscoring the importance of heightened physician awareness and post-infection cardiac surveillance.

{"title":"Beyond the Infection: Mapping the Risk of Cardiovascular Events Post-Scrub Typhus in a Nationwide Cohort Study.","authors":"Jih-Kai Yeh, Victor Chien-Chia Wu, Shao-Wei Chen, Chia-Ling Wu, Yu-Sheng Lin, Chun-Wen Cheng, Chih-Hsiang Chang, Michael Wu, Pao-Hsien Chu, Shang-Hung Chang, Yu-Tung Huang","doi":"10.1080/22221751.2025.2467766","DOIUrl":"10.1080/22221751.2025.2467766","url":null,"abstract":"<p><strong>Background: </strong>Scrub typhus, caused by <i>Orientia tsutsugamushi</i>, often involves multiple organs, but its cardiovascular (CV) sequelae in survivors remain under-researched.</p><p><strong>Method: </strong>This retrospective cohort study analyzed data from the National Health Insurance Research Database (NHIRD) spanning 2010-2015 to assess CV risks among scrub typhus survivors. Excluding those with prior CV events, we focused on outcomes such as acute myocardial infarction (AMI), heart failure hospitalization (HFH), strokes, new-onset atrial fibrillation (AF), aortic aneurysm or dissection, venous thromboembolism (VTE), and CV death.</p><p><strong>Result: </strong>From 2,269 scrub typhus patients without previous CV events (mean age 47.8±16.1; 38.0% female), and a matched control group (n=2,264), we observed a higher incidence of HFH, new-onset AF, and total CV events in the scrub typhus cohort. Adjusted hazard ratios (aHRs) were 1.97 (95% CI: 1.13-3.42) for HFH, 2.48 (95% CI: 1.23-5.0) for new-onset AF, and 1.43 (95% CI: 1.08-1.91) for total CV events. Other outcomes did not significantly differ.</p><p><strong>Conclusion: </strong>Scrub typhus survivors exhibit an increased risk of CV events, particularly HFH and new-onset AF, underscoring the importance of heightened physician awareness and post-infection cardiac surveillance.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2467766"},"PeriodicalIF":8.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Emerging Microbes & Infections
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1