Pub Date : 2024-12-01Epub Date: 2024-01-22DOI: 10.1080/22221751.2024.2302106
Bao Tuan Duong, Seon Ju Yeo, Hyun Park
The highly pathogenic avian influenza H5 2.3.4.4 and 2.3.2.1c subclades have distinct antigenic properties and are responsible for the majority of human infections. Therefore, it is essential to understand the processes by which antibodies inhibit these subclade viruses to develop effective therapies and vaccines to prevent their escape from neutralizing antibodies. Herein, we report the epitopes of two specific monoclonal antibodies (mAbs) targeting haemagglutinin (HA) of the H5 2.3.4.4b subclade and their neutralizing abilities. The results indicated that the two mAbs provided specific protection against the H5 2.3.4.4b clade viral challenge in MDCK cells and mouse models. Through epitope identification and docking studies, we showed that these novel sites (which are located near the 130-loop (S136, T143) and 190-helix (N199, N205) of HA receptor-binding sites that contribute to the binding affinity of neutralizing mAbs and six residues of the complementarity-determining regions) can be targeted to generate antibodies with enhanced cross-neutralization. This can also help in understanding escape mutations that differ among the H5 2.3.4.4b, h, and 2.3.2.1c subclades. These results provide specific information to facilitate future vaccine design and therapeutics for both subclade viruses, which are dominant and pose a serious threat to humans.
{"title":"Identification of specific neutralizing antibodies for highly pathogenic avian influenza H5 2.3.4.4b clades to facilitate vaccine design and therapeutics.","authors":"Bao Tuan Duong, Seon Ju Yeo, Hyun Park","doi":"10.1080/22221751.2024.2302106","DOIUrl":"10.1080/22221751.2024.2302106","url":null,"abstract":"<p><p>The highly pathogenic avian influenza H5 2.3.4.4 and 2.3.2.1c subclades have distinct antigenic properties and are responsible for the majority of human infections. Therefore, it is essential to understand the processes by which antibodies inhibit these subclade viruses to develop effective therapies and vaccines to prevent their escape from neutralizing antibodies. Herein, we report the epitopes of two specific monoclonal antibodies (mAbs) targeting haemagglutinin (HA) of the H5 2.3.4.4b subclade and their neutralizing abilities. The results indicated that the two mAbs provided specific protection against the H5 2.3.4.4b clade viral challenge in MDCK cells and mouse models. Through epitope identification and docking studies, we showed that these novel sites (which are located near the 130-loop (S136, T143) and 190-helix (N199, N205) of HA receptor-binding sites that contribute to the binding affinity of neutralizing mAbs and six residues of the complementarity-determining regions) can be targeted to generate antibodies with enhanced cross-neutralization. This can also help in understanding escape mutations that differ among the H5 2.3.4.4b, h, and 2.3.2.1c subclades. These results provide specific information to facilitate future vaccine design and therapeutics for both subclade viruses, which are dominant and pose a serious threat to humans.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-22DOI: 10.1080/22221751.2024.2412631
Chae-Eun Lee, Yoonsik Park, Hyunjae Park, Kiwoong Kwak, Hyeonmin Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang
The extensive use of β-lactam antibiotics has led to significant resistance, primarily due to hydrolysis by β-lactamases. OXA class D β-lactamases can hydrolyze a wide range of β-lactam antibiotics, rendering many treatments ineffective. We investigated the effects of single amino acid substitutions in OXA-10 on its substrate spectrum. Broad-spectrum variants with point mutations were searched and biochemically verified. Three key residues, G157D, A124T, and N73S, were confirmed in the variants, and their crystal structures were determined. Based on an enzyme kinetics study, the hydrolytic activity against broad-spectrum cephalosporins, particularly ceftazidime, was significantly enhanced by the G157D mutation in loop 2. The A124T or N73S mutation close to loop 2 also resulted in higher ceftazidime activity. All structures of variants with point mutations in loop 2 or nearby exhibited increased loop 2 flexibility, which facilitated the binding of ceftazidime. These results highlight the effect of a single amino acid substitution in OXA-10 on broad-spectrum drug resistance. Structure-activity relationship studies will help us understand the drug resistance spectrum of β-lactamases, enhance the effectiveness of existing β-lactam antibiotics, and develop new drugs.
{"title":"Structural insights into alterations in the substrate spectrum of serine-β-lactamase OXA-10 from <i>Pseudomonas aeruginosa</i> by single amino acid substitutions.","authors":"Chae-Eun Lee, Yoonsik Park, Hyunjae Park, Kiwoong Kwak, Hyeonmin Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang","doi":"10.1080/22221751.2024.2412631","DOIUrl":"10.1080/22221751.2024.2412631","url":null,"abstract":"<p><p>The extensive use of β-lactam antibiotics has led to significant resistance, primarily due to hydrolysis by β-lactamases. OXA class D β-lactamases can hydrolyze a wide range of β-lactam antibiotics, rendering many treatments ineffective. We investigated the effects of single amino acid substitutions in OXA-10 on its substrate spectrum. Broad-spectrum variants with point mutations were searched and biochemically verified. Three key residues, G157D, A124T, and N73S, were confirmed in the variants, and their crystal structures were determined. Based on an enzyme kinetics study, the hydrolytic activity against broad-spectrum cephalosporins, particularly ceftazidime, was significantly enhanced by the G157D mutation in loop 2. The A124T or N73S mutation close to loop 2 also resulted in higher ceftazidime activity. All structures of variants with point mutations in loop 2 or nearby exhibited increased loop 2 flexibility, which facilitated the binding of ceftazidime. These results highlight the effect of a single amino acid substitution in OXA-10 on broad-spectrum drug resistance. Structure-activity relationship studies will help us understand the drug resistance spectrum of β-lactamases, enhance the effectiveness of existing β-lactam antibiotics, and develop new drugs.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vast majority of data obtained from sequence analysis of influenza A viruses (IAVs) have revealed that nonstructural 1 (NS1) proteins from H1N1 swine, H3N8 equine, H3N2 avian and the correspondent subtypes from dogs have a conserved four C-terminal amino acid motif when independent cross-species transmission occurs between these species. To test the influence of the C-terminal amino acid motifs of NS1 protein on the replication and virulence of IAVs, we systematically generated 7 recombinants, which carried naturally truncated NS1 proteins, and their last four C-terminal residues were replaced with PEQK and SEQK (for H1N1), EPEV and KPEI (for H3N8) and ESEV and ESEI (for H3N2) IAVs. Another recombinant was generated by removing the C-terminal residues by reverse genetics. Remarkably, the ESEI and KPEI motifs circulating in canines largely contributed efficient replication in cultured cells and these had enhanced virulence. In contrast, the avian ESEV motif was only responsible for high pathogenicity in mice. We examined the effects of these motifs upon interferon (IFN) induction. The 7 mutant viruses replicated in vitro in an IFN-independent manner, and the canine SEQK motif was able to induced higher levels of IFN-β in human cell lines. These findings shed further new light on the role of the four C-terminal residues in replication and virulence of IAVs and suggest that these motifs can modulate viral replication in a species-specific manner.
{"title":"The C-terminal amino acid motifs of NS1 protein affect the replication and virulence of naturally NS-truncated H1N1 canine influenza virus.","authors":"Pingping Wang, Jianing Guo, Yefan Zhou, Min Zhu, Senbiao Fang, Fanyuan Sun, Chongqiang Huang, Yaohui Zhu, Huabo Zhou, Boyu Pan, Yifeng Qin, Kang Ouyang, Zuzhang Wei, Weijian Huang, Adolfo García-Sastre, Ying Chen","doi":"10.1080/22221751.2024.2400546","DOIUrl":"10.1080/22221751.2024.2400546","url":null,"abstract":"<p><p>The vast majority of data obtained from sequence analysis of influenza A viruses (IAVs) have revealed that nonstructural 1 (NS1) proteins from H1N1 swine, H3N8 equine, H3N2 avian and the correspondent subtypes from dogs have a conserved four C-terminal amino acid motif when independent cross-species transmission occurs between these species. To test the influence of the C-terminal amino acid motifs of NS1 protein on the replication and virulence of IAVs, we systematically generated 7 recombinants, which carried naturally truncated NS1 proteins, and their last four C-terminal residues were replaced with PEQK and SEQK (for H1N1), EPEV and KPEI (for H3N8) and ESEV and ESEI (for H3N2) IAVs. Another recombinant was generated by removing the C-terminal residues by reverse genetics. Remarkably, the ESEI and KPEI motifs circulating in canines largely contributed efficient replication in cultured cells and these had enhanced virulence. In contrast, the avian ESEV motif was only responsible for high pathogenicity in mice. We examined the effects of these motifs upon interferon (IFN) induction. The 7 mutant viruses replicated <i>in vitro</i> in an IFN-independent manner, and the canine SEQK motif was able to induced higher levels of IFN-β in human cell lines. These findings shed further new light on the role of the four C-terminal residues in replication and virulence of IAVs and suggest that these motifs can modulate viral replication in a species-specific manner.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The prevalence of listeriosis in China has been increasing in recent years. Listeriosis primarily spreads through contaminated food. However, the resilient causative organism, Listeria monocytogenes, and its extended incubation period pose challenges in identifying risk factors associated with food consumption and food-handling habits. This study aimed to identify the risk factors associated with food consumption and food-handling habits for listeriosis in China. A matched case-control study (1:1 ratio) was conducted, which enrolled all eligible cases of listeriosis between 1 January 2013 and 31 December 2022 in China. Basic information and possible risk factors associated with food consumption and food-handling habits were collected. Overall, 359 patients were enrolled, including 208 perinatal and 151 non-perinatal cases. Univariate and multivariable logistic analyzes were performed for the perinatal group. For the perinatal and non-perinatal groups, ice cream and Chinese cold dishes were the high-risk foods for listeriosis (odds ratio (OR) 2.09 95% confidence interval (CI): 1.23-3.55; OR 3.17 95% CI: 1.29-7.81), respectively; consumption of leftovers and pet ownership were the high-risk food-handling habits (OR 1.92 95% CI: 1.03-3.59; OR 3.00 95% CI: 1.11-8.11), respectively. In both groups, separation of raw and cooked foods was a protective factor (OR 0.27 95% CI: 0.14-0.51; OR 0.35 95% CI: 0.14-0.89), while refrigerator cleaning reduced the infection risk by 64.94-70.41% only in the perinatal group. The identification of high-risk foods and food-handling habits for listeriosis is important for improving food safety guidelines for vulnerable populations.
{"title":"Risk factors associated with food consumption and food-handling habits for sporadic listeriosis: a case-control study in China from 2013 to 2022.","authors":"Yanlin Niu, Weiwei Li, Biyao Xu, Wen Chen, Xiaojuan Qi, Yijing Zhou, Ping Fu, Xiaochen Ma, Yunchang Guo","doi":"10.1080/22221751.2024.2307520","DOIUrl":"10.1080/22221751.2024.2307520","url":null,"abstract":"<p><p>The prevalence of listeriosis in China has been increasing in recent years. Listeriosis primarily spreads through contaminated food. However, the resilient causative organism, <i>Listeria monocytogenes</i>, and its extended incubation period pose challenges in identifying risk factors associated with food consumption and food-handling habits. This study aimed to identify the risk factors associated with food consumption and food-handling habits for listeriosis in China. A matched case-control study (1:1 ratio) was conducted, which enrolled all eligible cases of listeriosis between 1 January 2013 and 31 December 2022 in China. Basic information and possible risk factors associated with food consumption and food-handling habits were collected. Overall, 359 patients were enrolled, including 208 perinatal and 151 non-perinatal cases. Univariate and multivariable logistic analyzes were performed for the perinatal group. For the perinatal and non-perinatal groups, ice cream and Chinese cold dishes were the high-risk foods for listeriosis (odds ratio (OR) 2.09 95% confidence interval (CI): 1.23-3.55; OR 3.17 95% CI: 1.29-7.81), respectively; consumption of leftovers and pet ownership were the high-risk food-handling habits (OR 1.92 95% CI: 1.03-3.59; OR 3.00 95% CI: 1.11-8.11), respectively. In both groups, separation of raw and cooked foods was a protective factor (OR 0.27 95% CI: 0.14-0.51; OR 0.35 95% CI: 0.14-0.89), while refrigerator cleaning reduced the infection risk by 64.94-70.41% only in the perinatal group. The identification of high-risk foods and food-handling habits for listeriosis is important for improving food safety guidelines for vulnerable populations.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":13.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
{"title":"ESKAPE in China: epidemiology and characteristics of antibiotic resistance.","authors":"Qixia Luo, Ping Lu, Yunbo Chen, Ping Shen, Beiwen Zheng, Jinru Ji, Chaoqun Ying, Zhiying Liu, Yonghong Xiao","doi":"10.1080/22221751.2024.2317915","DOIUrl":"10.1080/22221751.2024.2317915","url":null,"abstract":"<p><p>The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":13.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)50/MIC90 values for AMXT-1501 in the range of 3.13-12.5 μM (2.24-8.93 μg /mL), including for methicillin-resistant Staphylococcus aureus (MRSA), CR Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. AMXT-1501 was more effective against MRSA and CR E. coli than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of S. aureus and Enterococcus faecalis. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.
{"title":"AMXT-1501 targets membrane phospholipids against Gram-positive and -negative multidrug-resistant bacteria.","authors":"Jinxin Zheng, Xiaoju Liu, Yanpeng Xiong, Qingyin Meng, Peiyu Li, Fan Zhang, Xiaoming Liu, Zhiwei Lin, Qiwen Deng, Zewen Wen, Zhijian Yu","doi":"10.1080/22221751.2024.2321981","DOIUrl":"10.1080/22221751.2024.2321981","url":null,"abstract":"<p><p>The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)<sub>50</sub>/MIC<sub>90</sub> values for AMXT-1501 in the range of 3.13-12.5 μM (2.24-8.93 μg /mL), including for methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), CR <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i>, and <i>Pseudomonas aeruginosa</i>. AMXT-1501 was more effective against MRSA and CR <i>E. coli</i> than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of <i>S. aureus</i> and <i>Enterococcus faecalis</i>. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":13.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-29DOI: 10.1080/22221751.2024.2321993
Iolanda Vieira Anahory Monjane, Hernâni Djedje, Esmeralda Tamele, Virgínia Nhabomba, Almiro Rogério Tivane, Zacarias Elias Massicame, Dercília Mudanisse Arone, Ambra Pastori, Alessio Bortolami, Isabella Monne, Timothy Woma, Charles E Lamien, William G Dundon
On 13 October 2023, the National Directorate for Livestock Development in Mozambique was notified of a suspected outbreak of avian influenza in commercial layers. Samples were screened by real-time and conventional RT-PCR and were positive for both H7 and N6. Full genome sequences were obtained for three representative samples. Sequence analysis of the H7 cleavage site confirmed that the viruses were highly pathogenic (i.e. 333- PEPPKGPRFRR/GLF-346). In addition, the H7 and N6 sequences were highly similar (from 99.4-99.5% and 99.6-99.7% for the HA gene and the NA gene, respectively) to the sequences of a H7N6 virus identified in the Republic of South Africa in May 2023 indicating a similar origin of the viruses. The identification of H7N6 HPAIV in Mozambique has important implications for disease management and food security in the region.
{"title":"H7N6 highly pathogenic avian influenza in Mozambique, 2023.","authors":"Iolanda Vieira Anahory Monjane, Hernâni Djedje, Esmeralda Tamele, Virgínia Nhabomba, Almiro Rogério Tivane, Zacarias Elias Massicame, Dercília Mudanisse Arone, Ambra Pastori, Alessio Bortolami, Isabella Monne, Timothy Woma, Charles E Lamien, William G Dundon","doi":"10.1080/22221751.2024.2321993","DOIUrl":"10.1080/22221751.2024.2321993","url":null,"abstract":"<p><p>On 13 October 2023, the National Directorate for Livestock Development in Mozambique was notified of a suspected outbreak of avian influenza in commercial layers. Samples were screened by real-time and conventional RT-PCR and were positive for both H7 and N6. Full genome sequences were obtained for three representative samples. Sequence analysis of the H7 cleavage site confirmed that the viruses were highly pathogenic (i.e. 333- PEPPKGPRFRR/GLF-346). In addition, the H7 and N6 sequences were highly similar (from 99.4-99.5% and 99.6-99.7% for the HA gene and the NA gene, respectively) to the sequences of a H7N6 virus identified in the Republic of South Africa in May 2023 indicating a similar origin of the viruses. The identification of H7N6 HPAIV in Mozambique has important implications for disease management and food security in the region.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":13.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-18DOI: 10.1080/22221751.2024.2377606
Subhra Mandal, Jayadri Sekhar Ghosh, Saroj Chandra Lohani, Miaoyun Zhao, Yilun Cheng, Rachel Burrack, Ma Luo, Qingsheng Li
The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.
摘要 艾滋病疫苗临床试验缺乏成功案例,这凸显了探索新型疫苗开发战略的必要性。对高度暴露的血清阴性(HESN)HIV 抗药性肯尼亚女性性工作者的研究表明,自然保护性免疫与病毒特异性 CD8 T 细胞介导的集中免疫反应有关。进一步的研究表明,这种免疫反应非常规地集中在 HIV 病毒蛋白酶裂解位点(VPCS)周围的高度保守序列上。因此,我们采用了一种非常规的方法来开发艾滋病毒疫苗,设计出了装载有编码多表位 VPCS 的 mRNA 的脂质纳米颗粒(MEVPCS-mRNA LNP),这种战略性设计可促进树突状细胞的抗原呈递,从而促进有效的细胞免疫。此外,我们还开发了一种新型冷链兼容 mRNA LNP 制剂,确保其长期稳定性和冷链储存/运输兼容性,扩大了低收入国家对 mRNA LNP 疫苗的可及性。小鼠体内研究表明,接种组在全身和病毒进入的粘膜部位都产生了VPCS特异性CD8记忆T细胞。MEVPCS-mRNA LNP 疫苗诱导的 CD8 T 细胞免疫与 HESN 组非常相似,并显示出多功能特征。值得注意的是,它诱导的 CD4 T 细胞活化极少甚至没有。这项概念验证研究强调了 MEVPCS-mRNA LNP 疫苗在激发 CD8 T 细胞对高度保守的多重 VPCS 的特异性记忆方面的潜力,从而在人群中具有广泛的覆盖面并限制病毒逃逸突变。MEVPCS-mRNA LNP 疫苗有望成为有效的预防性艾滋病疫苗的候选产品。
{"title":"A long-term stable cold-chain-friendly HIV mRNA vaccine encoding multi-epitope viral protease cleavage site immunogens inducing immunogen-specific protective T cell immunity.","authors":"Subhra Mandal, Jayadri Sekhar Ghosh, Saroj Chandra Lohani, Miaoyun Zhao, Yilun Cheng, Rachel Burrack, Ma Luo, Qingsheng Li","doi":"10.1080/22221751.2024.2377606","DOIUrl":"10.1080/22221751.2024.2377606","url":null,"abstract":"<p><p>The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The <i>in-vivo</i> mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.
{"title":"Viral strategies to antagonize the host antiviral innate immunity: an indispensable research direction for emerging virus-host interactions.","authors":"Na Chen, Jiayu Jin, Baoge Zhang, Qi Meng, Yuanlu Lu, Bing Liang, Lulu Deng, Bingchen Qiao, Lucheng Zheng","doi":"10.1080/22221751.2024.2341144","DOIUrl":"10.1080/22221751.2024.2341144","url":null,"abstract":"<p><p>The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}