首页 > 最新文献

Emerging Microbes & Infections最新文献

英文 中文
Heterologous mRNA/MVA delivering trimeric-RBD as effective vaccination regimen against SARS-CoV-2: COVARNA Consortium. 异源 mRNA/MVA 提供三聚体-RBD 作为预防 SARS-CoV-2 的有效疫苗方案:COVARNA 联盟。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-08 DOI: 10.1080/22221751.2024.2387906
Laura Marcos-Villar, Beatriz Perdiguero, María López-Bravo, Carmen Zamora, Laura Sin, Enrique Álvarez, Carlos Óscar S Sorzano, Pedro J Sánchez-Cordón, José M Casasnovas, David Astorgano, Juan García-Arriaza, Shubaash Anthiya, Mireya L Borrajo, Gustavo Lou, Belén Cuesta, Lorenzo Franceschini, Josep L Gelpí, Kris Thielemans, Marta Sisteré-Oró, Andreas Meyerhans, Felipe García, Ignasi Esteban, Núria López-Bigas, Montserrat Plana, María J Alonso, Mariano Esteban, Carmen Elena Gómez

Despite the high efficiency of current SARS-CoV-2 mRNA vaccines in reducing COVID-19 morbidity and mortality, waning immunity and the emergence of resistant variants underscore the need for novel vaccination strategies. This study explores a heterologous mRNA/Modified Vaccinia virus Ankara (MVA) prime/boost regimen employing a trimeric form of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein compared to a homologous MVA/MVA regimen. In C57BL/6 mice, the RBD was delivered during priming via an mRNA vector encapsulated in nanoemulsions (NE) or lipid nanoparticles (LNP), followed by a booster with a replication-deficient MVA-based recombinant virus (MVA-RBD). This heterologous mRNA/MVA regimen elicited strong anti-RBD binding and neutralizing antibodies (BAbs and NAbs) against both the ancestral SARS-CoV-2 strain and different variants of concern (VoCs). Additionally, this protocol induced robust and polyfunctional RBD-specific CD4 and CD8 T cell responses, particularly in animals primed with mLNP-RBD. In K18-hACE2 transgenic mice, the LNP-RBD/MVA combination provided complete protection from morbidity and mortality following a live SARS-CoV-2 challenge compared with the partial protection observed with mNE-RBD/MVA or MVA/MVA regimens. Although the mNE-RBD/MVA regimen only protects half of the animals, it was able to induce antibodies with Fc-mediated effector functions besides NAbs. Moreover, viral replication and viral load in the respiratory tract were markedly reduced and decreased pro-inflammatory cytokine levels were observed. These results support the efficacy of heterologous mRNA/MVA vaccine combinations over homologous MVA/MVA regimen, using alternative nanocarriers that circumvent intellectual property restrictions of current mRNA vaccine formulations.

尽管目前的 SARS-CoV-2 mRNA 疫苗在降低 COVID-19 发病率和死亡率方面具有很高的效率,但免疫力的下降和抗药性变种的出现凸显了新型疫苗接种策略的必要性。本研究探讨了一种异源 mRNA/改良安卡拉疫苗(MVA)的原体/增强方案,该方案采用了 SARS-CoV-2 棘波(S)蛋白受体结合域(RBD)的三聚体形式,并与同源 MVA/MVA 方案进行了比较。在 C57BL/6 小鼠中,RBD 通过封装在纳米乳剂(NE)或脂质纳米颗粒(LNP)中的 mRNA 载体在启动过程中递送,然后用复制缺陷的 MVA 重组病毒(MVA-RBD)进行强化。这种异源 mRNA/MVA 方案可针对 SARS-CoV-2 祖毒株和不同的相关变异株(VoCs)激发强效的抗 RBD 结合抗体和中和抗体(BAbs 和 NAbs)。此外,该方案还能诱导强大的多功能 RBD 特异性 CD4 和 CD8 T 细胞反应,尤其是在使用 mLNP-RBD 的动物中。在 K18-hACE2 转基因小鼠中,与 mNE-RBD/MVA 或 MVA/MVA 方案观察到的部分保护相比,LNP-RBD/MVA 组合可在活体 SARS-CoV-2 挑战后提供完全的发病和死亡保护。虽然 mNE-RBD/MVA 方案只能保护一半的动物,但它除了能诱导 NAbs 外,还能诱导具有 Fc 媒介效应功能的抗体。此外,呼吸道中的病毒复制和病毒载量明显减少,促炎细胞因子水平也有所下降。这些结果表明,异源 mRNA/MVA 疫苗组合比同源 MVA/MVA 方案更有效,其使用的替代纳米载体规避了当前 mRNA 疫苗配方的知识产权限制:试验注册:ClinicalTrials.gov identifier:NCT05226390.
{"title":"Heterologous mRNA/MVA delivering trimeric-RBD as effective vaccination regimen against SARS-CoV-2: COVARNA Consortium.","authors":"Laura Marcos-Villar, Beatriz Perdiguero, María López-Bravo, Carmen Zamora, Laura Sin, Enrique Álvarez, Carlos Óscar S Sorzano, Pedro J Sánchez-Cordón, José M Casasnovas, David Astorgano, Juan García-Arriaza, Shubaash Anthiya, Mireya L Borrajo, Gustavo Lou, Belén Cuesta, Lorenzo Franceschini, Josep L Gelpí, Kris Thielemans, Marta Sisteré-Oró, Andreas Meyerhans, Felipe García, Ignasi Esteban, Núria López-Bigas, Montserrat Plana, María J Alonso, Mariano Esteban, Carmen Elena Gómez","doi":"10.1080/22221751.2024.2387906","DOIUrl":"10.1080/22221751.2024.2387906","url":null,"abstract":"<p><p>Despite the high efficiency of current SARS-CoV-2 mRNA vaccines in reducing COVID-19 morbidity and mortality, waning immunity and the emergence of resistant variants underscore the need for novel vaccination strategies. This study explores a heterologous mRNA/Modified Vaccinia virus Ankara (MVA) prime/boost regimen employing a trimeric form of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein compared to a homologous MVA/MVA regimen. In C57BL/6 mice, the RBD was delivered during priming via an mRNA vector encapsulated in nanoemulsions (NE) or lipid nanoparticles (LNP), followed by a booster with a replication-deficient MVA-based recombinant virus (MVA-RBD). This heterologous mRNA/MVA regimen elicited strong anti-RBD binding and neutralizing antibodies (BAbs and NAbs) against both the ancestral SARS-CoV-2 strain and different variants of concern (VoCs). Additionally, this protocol induced robust and polyfunctional RBD-specific CD4 and CD8 T cell responses, particularly in animals primed with mLNP-RBD. In K18-hACE2 transgenic mice, the LNP-RBD/MVA combination provided complete protection from morbidity and mortality following a live SARS-CoV-2 challenge compared with the partial protection observed with mNE-RBD/MVA or MVA/MVA regimens. Although the mNE-RBD/MVA regimen only protects half of the animals, it was able to induce antibodies with Fc-mediated effector functions besides NAbs. Moreover, viral replication and viral load in the respiratory tract were markedly reduced and decreased pro-inflammatory cytokine levels were observed. These results support the efficacy of heterologous mRNA/MVA vaccine combinations over homologous MVA/MVA regimen, using alternative nanocarriers that circumvent intellectual property restrictions of current mRNA vaccine formulations.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2387906"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modified recombinant adenovirus vector containing dual rabies virus G expression cassettes confers robust and long-lasting humoral immunity in mice, cats, and dogs. 一种含有双狂犬病毒 G 表达盒的改良重组腺病毒载体能在小鼠、猫和狗身上产生强大而持久的体液免疫力。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-01-22 DOI: 10.1080/22221751.2023.2300461
Yuan Zhang, Lingying Fang, Zongmei Wang, Chengguang Zhang, Jianqing Zhao, Hakimeh Baghaei Daemi, Mai Zhang, Liwen Yuan, Xiaohu Han, Linfeng Li, Zhen F Fu, Ming Zhou, Ling Zhao

During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within E1 or E3 genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both in vitro and in vivo and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) - follicular helper T (Tfh) cells - germinal centre (GC) / memory B cells (MBCs) - long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the E1 and E3 genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.

在 COVID-19 流行期间,由于监测不足和免疫覆盖率下降,一些国家的狂犬病发病率有所上升,特别是在偏远和贫困地区。在发展中国家,多次接种狂犬病病毒灭活疫苗用于暴露前或暴露后预防被认为是低效、昂贵和不切实际的。在此,我们构建了三种改良的 5 型人重组腺病毒,分别命名为 Adv-RVG、Adv-E1-RVG 和 Adv-RVDG,它们在 E1 或 E3 基因组区域内以不同的组合携带狂犬病毒 G(RVG)表达盒,可作为狂犬病候选疫苗。与狂犬病疫苗株 SAD-L16、Adv-RVG、和 Adv-E1-RVG 更有效地激活了树突状细胞(DC)-滤泡辅助性 T 细胞(Tfh)-生殖中心(GC)/记忆 B 细胞(MBC)-长效浆细胞(LLPC)轴,在 24 周的研究期间,小鼠在受到致命的 RABV 挑战后存活率达 100%。同样,与接种商业狂犬病灭活疫苗的狗和猫相比,接种 Adv-RVDG 的狗和猫表现出更强更持久的抗体反应,并且对 Adv-RVDG 表现出良好的耐受性。总之,我们的研究表明,在腺病毒载体的 E1 和 E3 基因组区同时插入保护性抗原可显著增强腺病毒载体疫苗的免疫原性,为后续利用重组腺病毒平台开发多价和多联疫苗提供了理论和实践基础。同时,我们的数据表明 Adv-RVDG 是一种安全、高效、经济的疫苗,可用于大规模免疫接种。
{"title":"A modified recombinant adenovirus vector containing dual rabies virus G expression cassettes confers robust and long-lasting humoral immunity in mice, cats, and dogs.","authors":"Yuan Zhang, Lingying Fang, Zongmei Wang, Chengguang Zhang, Jianqing Zhao, Hakimeh Baghaei Daemi, Mai Zhang, Liwen Yuan, Xiaohu Han, Linfeng Li, Zhen F Fu, Ming Zhou, Ling Zhao","doi":"10.1080/22221751.2023.2300461","DOIUrl":"10.1080/22221751.2023.2300461","url":null,"abstract":"<p><p>During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within <i>E1</i> or <i>E3</i> genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both <i>in vitro</i> and <i>in vivo</i> and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) - follicular helper T (Tfh) cells - germinal centre (GC) / memory B cells (MBCs) - long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the <i>E1</i> and <i>E3</i> genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2300461"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The attenuated African swine fever vaccine HLJ/18-7GD provides protection against emerging prevalent genotype II variants in China. 非洲猪瘟减毒疫苗HLJ/18-7GD对中国新出现的流行基因型II变种具有保护作用。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-01-22 DOI: 10.1080/22221751.2023.2300464
Zilong Wang, Jiwen Zhang, Fang Li, Zhenjiang Zhang, Weiye Chen, Xianfeng Zhang, Encheng Sun, Yuanmao Zhu, Renqiang Liu, Xijun He, Zhigao Bu, Dongming Zhao

Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.

中国野外流行的非洲猪瘟病毒(ASFV)基因组发生了遗传变化,这可能会改变其抗原特性并导致免疫逃逸。异源分离株之间的交叉保护通常较差,因此,检测减毒活疫苗对当前流行的异源分离株的交叉保护非常重要。在本研究中,我们评估了 ASFV 候选疫苗 HLJ/18-7GD 对新出现的分离株的保护效力。HLJ/18-7GD 对一种高毒力变异株和一种低致死率分离株具有保护作用,这两种变异株都来自基因型 II Georgia07-like ASFV 并在 2020 年分离出来。接种 HLJ/18-7GD 疫苗可防止猪出现 ASF 特异性临床症状和死亡,减少经口腔和直肠途径的病毒脱落,并抑制挑战后的病毒复制。然而,接种 HLJ/18-7GD 疫苗并不能为猪提供针对基因型 I NH/P68 类 ASFV 挑战的可靠交叉保护。因此,接种HLJ/18-7GD疫苗作为预防和控制基因型II ASFV的替代策略前景广阔,但中国可能需要针对不同ASFV基因型提供交叉保护的疫苗。
{"title":"The attenuated African swine fever vaccine HLJ/18-7GD provides protection against emerging prevalent genotype II variants in China.","authors":"Zilong Wang, Jiwen Zhang, Fang Li, Zhenjiang Zhang, Weiye Chen, Xianfeng Zhang, Encheng Sun, Yuanmao Zhu, Renqiang Liu, Xijun He, Zhigao Bu, Dongming Zhao","doi":"10.1080/22221751.2023.2300464","DOIUrl":"10.1080/22221751.2023.2300464","url":null,"abstract":"<p><p>Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2300464"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts. 高致病性禽流感 H5N1 病毒中的 HA N193D 置换改变了受体结合亲和力并增强了对哺乳动物宿主的毒力。
IF 13.2 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-03 DOI: 10.1080/22221751.2024.2302854
Seung-Gyu Jang, Young-Il Kim, Mark Anthony B Casel, Jeong Ho Choi, Ju Ryeon Gil, Rare Rollon, Eun-Ha Kim, Se-Mi Kim, Ho Young Ji, Dong Bin Park, Jungwon Hwang, Jae-Woo Ahn, Myung Hee Kim, Min-Suk Song, Young Ki Choi

During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.

在2021/2022年冬季,我们从韩国的候鸟中分离到了高致病性禽流感(HPAI)H5N1病毒,其血凝素(HA)受体结合域(RBD)残基193处的氨基酸从天冬酰胺(N)替换为天冬氨酸(D)。在此,我们利用通过反向遗传学(RG)设计的重组病毒,研究了A/CommonTeal/Korea/W811/2021[CT/W811]病毒中N193D HA-RBD置换的特征。受体亲和力测定显示,CT/W811 中的 N193D HA-RBD 置换增加了 α2,6-丝氨酸受体结合亲和力。与 rCT/W811-HA193D 病毒相比,rCT/W811-HA193N 病毒可导致鸡快速死亡,病毒滴度较高,而 rCT/W811-HA193D 病毒在哺乳动物宿主中的毒力增强,具有多组织滋养性。令人惊讶的是,雪貂间传播试验显示,rCT/W811-HA193D 病毒在呼吸道中复制良好,复制率是 rCT/W811-HA193N 病毒的 10 倍左右,所有直接接触过 rCT/W811-HA193D 病毒的雪貂在接触后 10 天均出现血清转换。此外,两种病毒的竞争传播试验显示,与 rCT/W811-HA193N 相比,rCT/W811-HA193D 的生长动力学更强,最终成为鼻甲中的优势毒株。此外,rCT/W811-HA193D 在原代人类支气管上皮细胞(HBE)中表现出很高的感染性,这表明它有可能感染人类。综上所述,来自候鸟的含有 HA-193D 的高致病性禽流感 H5N1 病毒在哺乳动物宿主中表现出更强的毒力,而在禽类宿主中则没有表现出更强的毒力,病毒可在多个器官复制,并可在雪貂间传播。这表明,HA-193D 的变化增加了人类感染和传播高致病性禽流感 H5N1 病毒的可能性。
{"title":"HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts.","authors":"Seung-Gyu Jang, Young-Il Kim, Mark Anthony B Casel, Jeong Ho Choi, Ju Ryeon Gil, Rare Rollon, Eun-Ha Kim, Se-Mi Kim, Ho Young Ji, Dong Bin Park, Jungwon Hwang, Jae-Woo Ahn, Myung Hee Kim, Min-Suk Song, Young Ki Choi","doi":"10.1080/22221751.2024.2302854","DOIUrl":"10.1080/22221751.2024.2302854","url":null,"abstract":"<p><p>During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA<sub>193N</sub> virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA<sub>193D</sub> virus, while the rCT/W811-HA<sub>193D</sub> virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA<sub>193D</sub> virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA<sub>193N</sub>, and all rCT/W811-HA<sub>193D</sub> direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA<sub>193D</sub> has enhanced growth kinetics compared with the rCT/W811-HA<sub>193N</sub>, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA<sub>193D</sub> exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2302854"},"PeriodicalIF":13.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transmission of fluoroquinolones resistance among multidrug-resistant tuberculosis in Shanghai, China: a retrospective population-based genomic epidemiology study. 中国上海耐多药结核病的氟喹诺酮类药物耐药性传播:基于人群的基因组流行病学回顾性研究》。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-01-22 DOI: 10.1080/22221751.2024.2302837
Minjuan Li, Yangyi Zhang, Zheyuan Wu, Yuan Jiang, Ruoyao Sun, Jinghui Yang, Jing Li, Honghua Lin, Rui Zhang, Qi Jiang, Lili Wang, Xiaocui Wu, Fangyou Yu, Jianhui Yuan, Chongguang Yang, Xin Shen

Fluoroquinolones (FQ) are essential for the treatment of multidrug-resistant tuberculosis (MDR-TB). The FQ resistance (FQ-R) rate in MDR-TB in China and its risk factors remain poorly understood. We conducted a retrospective, population-based genomic epidemiology study of MDR-TB patients in Shanghai, China, from 2009 to 2018. A genomic cluster was defined as strains with genetic distances ≤ 12 single nucleotide polymorphisms. The transmitted FQ-R was defined as the same FQ resistance-conferring mutations shared by ≥ 2 strains in a genomic cluster. We used multivariable logistic regression analysis to identify the risk factors for drug resistance. Among the total 850 MDR-TB patients included in the study, 72.8% (619/850) were male, the median age was 39 (interquartile range 28, 55) years, 52.7% (448/850) were migrants, and 34.5% (293/850) were previously treated patients. Most of the MDR-TB strains belong to the Beijing lineage (91.7%, 779/850). Overall, the genotypic resistance rate of FQ was 34.7% (295/850), and 47.1% (139/295) FQ-R patients were in genomic clusters, of which 98 (33.2%, 98/295) were presumed as transmitted FQ-R. Patients with treatment-naïve (aOR = 1.84; 95% CI: 1.09, 3.16), diagnosed in a district-level hospital (aOR = 2.69; 95% CI: 1.56, 4.75), and streptomycin resistance (aOR = 3.69; 95% CI: 1.65, 9.42) were significantly associated with the transmission of FQ-R. In summary, the prevalence of FQ-R among MDR-TB patients was high in Shanghai, and at least one-third were transmitted. Enforced interventions including surveillance of FQ drug susceptibility testing and screening among MDR-TB before initiation of treatment were urgently needed.

氟喹诺酮类药物(FQ)是治疗耐多药结核病(MDR-TB)的基本药物。中国 MDR-TB 的 FQ 耐药率(FQ-R)及其风险因素仍鲜为人知。我们在 2009 年至 2018 年期间对中国上海的 MDR-TB 患者进行了一项基于人群的基因组流行病学回顾性研究。遗传距离≤12个单核苷酸多态性的菌株被定义为一个基因组集群。传播的FQ-R定义为一个基因组集群中≥2株菌株共享相同的FQ耐药突变。我们采用多变量逻辑回归分析来确定耐药性的风险因素。在总共 850 例 MDR-TB 患者中,72.8%(619/850)为男性,中位年龄为 39 岁(四分位数间距为 28-55),52.7%(448/850)为移民,34.5%(293/850)为既往接受过治疗的患者。大多数 MDR-TB 菌株属于北京系(91.7%,779/850)。总体而言,FQ 的基因型耐药率为 34.7%(295/850),47.1%(139/295)的 FQ-R 患者处于基因组群中,其中 98 例(33.2%,98/295)推测为传播型 FQ-R。治疗无效(aOR = 1.84;95% CI:1.09,3.16)、在地区级医院确诊(aOR = 2.69;95% CI:1.56,4.75)和链霉素耐药(aOR = 3.69;95% CI:1.65,9.42)的患者与 FQ-R 的传播显著相关。总之,上海 MDR-TB 患者中 FQ-R 的流行率很高,且至少有三分之一的患者会被传染。亟需采取强制干预措施,包括监测 FQ 药物敏感性检测和在开始治疗前对 MDR-TB 进行筛查。
{"title":"Transmission of fluoroquinolones resistance among multidrug-resistant tuberculosis in Shanghai, China: a retrospective population-based genomic epidemiology study.","authors":"Minjuan Li, Yangyi Zhang, Zheyuan Wu, Yuan Jiang, Ruoyao Sun, Jinghui Yang, Jing Li, Honghua Lin, Rui Zhang, Qi Jiang, Lili Wang, Xiaocui Wu, Fangyou Yu, Jianhui Yuan, Chongguang Yang, Xin Shen","doi":"10.1080/22221751.2024.2302837","DOIUrl":"10.1080/22221751.2024.2302837","url":null,"abstract":"<p><p>Fluoroquinolones (FQ) are essential for the treatment of multidrug-resistant tuberculosis (MDR-TB). The FQ resistance (FQ-R) rate in MDR-TB in China and its risk factors remain poorly understood. We conducted a retrospective, population-based genomic epidemiology study of MDR-TB patients in Shanghai, China, from 2009 to 2018. A genomic cluster was defined as strains with genetic distances ≤ 12 single nucleotide polymorphisms. The transmitted FQ-R was defined as the same FQ resistance-conferring mutations shared by ≥ 2 strains in a genomic cluster. We used multivariable logistic regression analysis to identify the risk factors for drug resistance. Among the total 850 MDR-TB patients included in the study, 72.8% (619/850) were male, the median age was 39 (interquartile range 28, 55) years, 52.7% (448/850) were migrants, and 34.5% (293/850) were previously treated patients. Most of the MDR-TB strains belong to the Beijing lineage (91.7%, 779/850). Overall, the genotypic resistance rate of FQ was 34.7% (295/850), and 47.1% (139/295) FQ-R patients were in genomic clusters, of which 98 (33.2%, 98/295) were presumed as transmitted FQ-R. Patients with treatment-naïve (aOR = 1.84; 95% CI: 1.09, 3.16), diagnosed in a district-level hospital (aOR = 2.69; 95% CI: 1.56, 4.75), and streptomycin resistance (aOR = 3.69; 95% CI: 1.65, 9.42) were significantly associated with the transmission of FQ-R. In summary, the prevalence of FQ-R among MDR-TB patients was high in Shanghai, and at least one-third were transmitted. Enforced interventions including surveillance of FQ drug susceptibility testing and screening among MDR-TB before initiation of treatment were urgently needed.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2302837"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of a broad-spectrum bivalent mRNA vaccine against SARS-CoV-2 variants in preclinical studies. 广谱双价 mRNA 疫苗在临床前研究中对 SARS-CoV-2 变种的有效性。
IF 13.2 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-29 DOI: 10.1080/22221751.2024.2321994
Jing Lu, Shudan Tan, Hao Gu, Kunpeng Liu, Wei Huang, Zhaoli Yu, Guoliang Lu, Zihan Wu, Xiaobo Gao, Jinghua Zhao, Zongting Yao, Feng Yi, Yantao Yang, Hu Wang, Xue Hu, Mingqing Lu, Wei Li, Hui Zhou, Hang Yu, Chao Shan, Jinzhong Lin

Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.

利用改良信使核糖核酸(mRNA)技术制成的疫苗已显示出对人类 SARS-CoV-2 的强大保护效力。随着病毒在人类和非人类宿主中的不断进化,疫苗的性能仍有可能受到具有强大免疫逃逸能力的新变种的影响。在此,我们介绍了新型二价 mRNA 疫苗 RQ3025 在动物模型中安全性和有效性的临床前研究。该疫苗的 mRNA 序列设计纳入了 SARS-CoV-2 穗状病毒蛋白上的常见突变,这些突变是在不同变种的进化过程中发现的。在小鼠(BALB/c 和 K18-hACE2)、仓鼠和大鼠体内注射 RQ3025 后,可诱导出针对多种变异体的广谱、高滴度中和抗体,显示出与单价 mRNA 疫苗相比的优势。接种了 RQ3025 疫苗的大鼠也能有效抵御几种新出现的变种。对 BALB/c 小鼠脾细胞衍生细胞因子的分析表明,RQ3025 诱导了 Th1 偏向的细胞免疫反应。注射高剂量 RQ3025 后,对大鼠多个器官的组织学分析表明,没有病理变化的证据。这项研究证明了 RQ3025 作为一种广谱疫苗在动物模型中对 SARS-CoV-2 变体的安全性和有效性,并为其将来可能的临床应用奠定了基础。
{"title":"Effectiveness of a broad-spectrum bivalent mRNA vaccine against SARS-CoV-2 variants in preclinical studies.","authors":"Jing Lu, Shudan Tan, Hao Gu, Kunpeng Liu, Wei Huang, Zhaoli Yu, Guoliang Lu, Zihan Wu, Xiaobo Gao, Jinghua Zhao, Zongting Yao, Feng Yi, Yantao Yang, Hu Wang, Xue Hu, Mingqing Lu, Wei Li, Hui Zhou, Hang Yu, Chao Shan, Jinzhong Lin","doi":"10.1080/22221751.2024.2321994","DOIUrl":"10.1080/22221751.2024.2321994","url":null,"abstract":"<p><p>Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2321994"},"PeriodicalIF":13.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enterocytozoon bieneusi, a human pathogen. 人类病原体 Enterocytozoon bieneusi。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-26 DOI: 10.1080/22221751.2024.2406276
Céline Nourrisson, Rose-Anne Lavergne, Maxime Moniot, Florent Morio, Philippe Poirier

Although brought to the forefront in the 1980s with the AIDS pandemic, microsporidia infecting humans are still little known. Enterocytozoon bieneusi, by far the most frequent microsporidia species causing diseases in humans, is responsible for intestinal illness in both non- and immunocompromised patients. This species presents an astonishing genetic diversity with more than 500 genotypes described, some of which have a strong zoonotic potential. Indeed, E. bieneusi infects a broad array of hosts, from wild to domestic animals. This emerging eukaryotic pathogen has thus been associated with foodborne/waterborne outbreaks. Several molecular assays have been developed to enhance its diagnosis or for epidemiological purposes, providing valuable new data. Here, we propose an overview of the current knowledge on this major species among the microsporidia, so far rather neglected in human medicine.

虽然在 20 世纪 80 年代艾滋病大流行时,人们开始关注微孢子虫,但对感染人类的微孢子虫仍然知之甚少。生物肠孢子虫(Enterocytozoon bieneusi)是迄今为止最常见的导致人类疾病的微孢子虫,可导致非免疫力低下和免疫力低下患者的肠道疾病。该物种具有惊人的遗传多样性,已描述的基因型超过 500 种,其中一些具有很强的人畜共患病潜能。事实上,E. bieneusi 感染的宿主范围很广,从野生动物到家养动物都有。因此,这种新出现的真核病原体与食源性/水传播疾病的爆发有关。为了加强诊断或用于流行病学目的,已经开发出了几种分子检测方法,提供了宝贵的新数据。在此,我们将概述目前关于这种在人类医学中一直被忽视的微孢子虫中的主要种类的知识。
{"title":"<i>Enterocytozoon bieneusi,</i> a human pathogen.","authors":"Céline Nourrisson, Rose-Anne Lavergne, Maxime Moniot, Florent Morio, Philippe Poirier","doi":"10.1080/22221751.2024.2406276","DOIUrl":"10.1080/22221751.2024.2406276","url":null,"abstract":"<p><p>Although brought to the forefront in the 1980s with the AIDS pandemic, microsporidia infecting humans are still little known. <i>Enterocytozoon bieneusi</i>, by far the most frequent microsporidia species causing diseases in humans, is responsible for intestinal illness in both non- and immunocompromised patients. This species presents an astonishing genetic diversity with more than 500 genotypes described, some of which have a strong zoonotic potential. Indeed, <i>E. bieneusi</i> infects a broad array of hosts, from wild to domestic animals. This emerging eukaryotic pathogen has thus been associated with foodborne/waterborne outbreaks. Several molecular assays have been developed to enhance its diagnosis or for epidemiological purposes, providing valuable new data. Here, we propose an overview of the current knowledge on this major species among the microsporidia, so far rather neglected in human medicine.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2406276"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted next-generation sequencing of Mycobacterium tuberculosis from patient samples: lessons learned from high drug-resistant burden clinical settings in Bangladesh. 从患者样本中对结核分枝杆菌进行有针对性的下一代测序:从孟加拉国高耐药性临床环境中汲取的经验教训。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-26 DOI: 10.1080/22221751.2024.2392656
Mohammad Khaja Mafij Uddin, Andrea Maurizio Cabibbe, Rumana Nasrin, Arash Ghodousi, Fahim Alam Nobel, S M Mazidur Rahman, Shahriar Ahmed, Md Fahim Ather, S M Abdur Razzaque, Md Abu Raihan, Pronab Kumar Modak, Jean Luc Berland, Wayne Van Gemert, Sardar Munim Ibna Mohsin, Daniela Maria Cirillo, Sayera Banu

Lack of appropriate early diagnostic tools for drug-resistant tuberculosis (DR-TB) and their incomplete drug susceptibility testing (DST) profiling is concerning for TB disease control. Existing methods, such as phenotypic DST (pDST), are time-consuming, while Xpert MTB/RIF (Xpert) and line probe assay (LPA) are limited to detecting resistance to few drugs. Targeted next-generation sequencing (tNGS) has been recently approved by WHO as an alternative approach for rapid and comprehensive DST. We aimed to investigate the performance and feasibility of tNGS for detecting DR-TB directly from clinical samples in Bangladesh. pDST, LPA and tNGS were performed among 264 sputum samples, either rifampicin-resistant (RR) or rifampicin-sensitive (RS) TB cases confirmed by Xpert assay. Resistotypes of tNGS were compared with pDST, LPA and composite reference standard (CRS, resistant if either pDST or LPA showed a resistant result). tNGS results revealed higher sensitivities for rifampicin (RIF) (99.3%), isoniazid (INH) (96.3%), fluoroquinolones (FQs) (94.4%), and aminoglycosides (AMGs) (100%) but comparatively lower for ethambutol (76.6%), streptomycin (68.7%), ethionamide (56.0%) and pyrazinamide (50.7%) when compared with pDST. The sensitivities of tNGS for INH, RIF, FQs and AMGs were 93.0%, 96.6%, 90.9%, and 100%, respectively and the specificities ranged from 91.3 to 100% when compared with CRS. This proof of concept study, conducted in a high-burden setting demonstrated that tNGS is a valuable tool for identifying DR-TB directly from the clinical specimens. Its feasibility in our laboratory suggests potential implementation and moving tNGS from research settings into clinical settings.

摘要耐药性结核病(DR-TB)缺乏适当的早期诊断工具,而且其药物敏感性测试(DST)分析不完整,这对结核病的控制来说令人担忧。表型 DST(pDST)等现有方法耗时长,而 Xpert MTB/RIF(Xpert)和线探针测定法(LPA)仅限于检测少数药物的耐药性。最近,世卫组织批准了靶向新一代测序(tNGS)作为快速、全面 DST 的替代方法。我们对 264 份经 Xpert 检测确认的利福平耐药(RR)或利福平敏感(RS)肺结核病例的痰液样本进行了 pDST、LPA 和 tNGS 检测。将 tNGS 的耐药型与 pDST、LPA 和复合参考标准(CRS,如果 pDST 或 LPA 显示耐药结果则为耐药)进行了比较。3%)、异烟肼(INH)(96.3%)、氟喹诺酮类(FQs)(94.4%)和氨基糖苷类(AMGs)(100%),但与 pDST 相比,乙胺丁醇(76.6%)、链霉素(68.7%)、乙胺酰胺(56.0%)和吡嗪酰胺(50.7%)的敏感性相对较低。与 CRS 相比,tNGS 对 INH、RIF、FQs 和 AMGs 的敏感性分别为 93.0%、96.6%、90.9% 和 100%,特异性从 91.3% 到 100%不等。这项在高负担环境中进行的概念验证研究表明,tNGS 是直接从临床标本中鉴定 DR-TB 的重要工具。它在我们实验室的可行性表明,tNGS 有可能从研究环境中应用到临床环境中。
{"title":"Targeted next-generation sequencing of <i>Mycobacterium tuberculosis</i> from patient samples: lessons learned from high drug-resistant burden clinical settings in Bangladesh.","authors":"Mohammad Khaja Mafij Uddin, Andrea Maurizio Cabibbe, Rumana Nasrin, Arash Ghodousi, Fahim Alam Nobel, S M Mazidur Rahman, Shahriar Ahmed, Md Fahim Ather, S M Abdur Razzaque, Md Abu Raihan, Pronab Kumar Modak, Jean Luc Berland, Wayne Van Gemert, Sardar Munim Ibna Mohsin, Daniela Maria Cirillo, Sayera Banu","doi":"10.1080/22221751.2024.2392656","DOIUrl":"10.1080/22221751.2024.2392656","url":null,"abstract":"<p><p>Lack of appropriate early diagnostic tools for drug-resistant tuberculosis (DR-TB) and their incomplete drug susceptibility testing (DST) profiling is concerning for TB disease control. Existing methods, such as phenotypic DST (pDST), are time-consuming, while Xpert MTB/RIF (Xpert) and line probe assay (LPA) are limited to detecting resistance to few drugs. Targeted next-generation sequencing (tNGS) has been recently approved by WHO as an alternative approach for rapid and comprehensive DST. We aimed to investigate the performance and feasibility of tNGS for detecting DR-TB directly from clinical samples in Bangladesh. pDST, LPA and tNGS were performed among 264 sputum samples, either rifampicin-resistant (RR) or rifampicin-sensitive (RS) TB cases confirmed by Xpert assay. Resistotypes of tNGS were compared with pDST, LPA and composite reference standard (CRS, resistant if either pDST or LPA showed a resistant result). tNGS results revealed higher sensitivities for rifampicin (RIF) (99.3%), isoniazid (INH) (96.3%), fluoroquinolones (FQs) (94.4%), and aminoglycosides (AMGs) (100%) but comparatively lower for ethambutol (76.6%), streptomycin (68.7%), ethionamide (56.0%) and pyrazinamide (50.7%) when compared with pDST. The sensitivities of tNGS for INH, RIF, FQs and AMGs were 93.0%, 96.6%, 90.9%, and 100%, respectively and the specificities ranged from 91.3 to 100% when compared with CRS. This proof of concept study, conducted in a high-burden setting demonstrated that tNGS is a valuable tool for identifying DR-TB directly from the clinical specimens. Its feasibility in our laboratory suggests potential implementation and moving tNGS from research settings into clinical settings.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2392656"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the evolution, virulence and speciation of Babesia MO1 and Babesia divergens through multiomics analyses. 通过多组学分析深入了解巴贝西亚原虫 MO1 和巴贝西亚原虫分歧者的进化、毒性和物种分化。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-01 DOI: 10.1080/22221751.2024.2386136
Pallavi Singh, Pratap Vydyam, Tiffany Fang, Karel Estrada, Luis Miguel Gonzalez, Ricardo Grande, Madelyn Kumar, Sakshar Chakravarty, Vincent Berry, Vincent Ranwez, Bernard Carcy, Delphine Depoix, Sergio Sánchez, Emmanuel Cornillot, Steven Abel, Loic Ciampossin, Todd Lenz, Omar Harb, Alejandro Sanchez-Flores, Estrella Montero, Karine G Le Roch, Stefano Lonardi, Choukri Ben Mamoun

Babesiosis, caused by protozoan parasites of the genus Babesia, is an emerging tick-borne disease of significance for both human and animal health. Babesia parasites infect erythrocytes of vertebrate hosts where they develop and multiply rapidly to cause the pathological symptoms associated with the disease. The identification of new Babesia species underscores the ongoing risk of zoonotic pathogens capable of infecting humans, a concern amplified by anthropogenic activities and environmental changes. One such pathogen, Babesia MO1, previously implicated in severe cases of human babesiosis in the United States, was initially considered a subspecies of B. divergens, the predominant agent of human babesiosis in Europe. Here we report comparative multiomics analyses of B. divergens and B. MO1 that offer insight into their biology and evolution. Our analysis shows that despite their highly similar genomic sequences, substantial genetic and genomic divergence occurred throughout their evolution resulting in major differences in gene functions, expression and regulation, replication rates and susceptibility to antiparasitic drugs. Furthermore, both pathogens have evolved distinct classes of multigene families, crucial for their pathogenicity and adaptation to specific mammalian hosts. Leveraging genomic information for B. MO1, B. divergens, and other members of the Babesiidae family within Apicomplexa provides valuable insights into the evolution, diversity, and virulence of these parasites. This knowledge serves as a critical tool in preemptively addressing the emergence and rapid transmission of more virulent strains.

摘要 由巴贝斯虫属原生动物寄生虫引起的巴贝斯虫病是一种新出现的蜱媒疾病,对人类和动物健康都具有重要意义。巴贝西亚原虫感染脊椎动物宿主的红细胞,并在红细胞中迅速发育和繁殖,从而引起与该疾病相关的病理症状。巴贝西亚原虫新物种的发现凸显了能够感染人类的人畜共患病原体的持续风险,而人类活动和环境变化加剧了这种风险。其中一种病原体是巴贝西亚原虫 MO1,它曾与美国的严重人类巴贝西亚原虫病病例有牵连,最初被认为是巴贝西亚原虫的一个亚种,而巴贝西亚原虫是欧洲人类巴贝西亚原虫病的主要病原体。在此,我们报告了对 B. divergens 和 B. MO1 进行的多组学比较分析,以深入了解它们的生物学和进化情况。我们的分析表明,尽管它们的基因组序列高度相似,但在整个进化过程中发生了巨大的遗传和基因组差异,导致基因功能、表达和调控、复制率和对抗原药物的敏感性等方面存在重大差异。此外,这两种病原体都进化出了不同类别的多基因家族,这对它们的致病性和对特定哺乳动物宿主的适应性至关重要。利用 B. MO1、B. Divergens 和 Apicomplexa 中 Babesiidae 家族其他成员的基因组信息,可以深入了解这些寄生虫的进化、多样性和毒力。这些知识是先发制人地应对毒性更强的菌株的出现和快速传播的重要工具。
{"title":"Insights into the evolution, virulence and speciation of <i>Babesia MO1</i> and <i>Babesia divergens</i> through multiomics analyses.","authors":"Pallavi Singh, Pratap Vydyam, Tiffany Fang, Karel Estrada, Luis Miguel Gonzalez, Ricardo Grande, Madelyn Kumar, Sakshar Chakravarty, Vincent Berry, Vincent Ranwez, Bernard Carcy, Delphine Depoix, Sergio Sánchez, Emmanuel Cornillot, Steven Abel, Loic Ciampossin, Todd Lenz, Omar Harb, Alejandro Sanchez-Flores, Estrella Montero, Karine G Le Roch, Stefano Lonardi, Choukri Ben Mamoun","doi":"10.1080/22221751.2024.2386136","DOIUrl":"10.1080/22221751.2024.2386136","url":null,"abstract":"<p><p>Babesiosis, caused by protozoan parasites of the genus <i>Babesia</i>, is an emerging tick-borne disease of significance for both human and animal health. <i>Babesia</i> parasites infect erythrocytes of vertebrate hosts where they develop and multiply rapidly to cause the pathological symptoms associated with the disease. The identification of new <i>Babesia</i> species underscores the ongoing risk of zoonotic pathogens capable of infecting humans, a concern amplified by anthropogenic activities and environmental changes. One such pathogen, <i>Babesia MO1</i>, previously implicated in severe cases of human babesiosis in the United States, was initially considered a subspecies of <i>B. divergens</i>, the predominant agent of human babesiosis in Europe. Here we report comparative multiomics analyses of <i>B. divergens</i> and <i>B. MO1</i> that offer insight into their biology and evolution. Our analysis shows that despite their highly similar genomic sequences, substantial genetic and genomic divergence occurred throughout their evolution resulting in major differences in gene functions, expression and regulation, replication rates and susceptibility to antiparasitic drugs. Furthermore, both pathogens have evolved distinct classes of multigene families, crucial for their pathogenicity and adaptation to specific mammalian hosts. Leveraging genomic information for <i>B. MO1</i>, <i>B. divergens</i>, and other members of the Babesiidae family within Apicomplexa provides valuable insights into the evolution, diversity, and virulence of these parasites. This knowledge serves as a critical tool in preemptively addressing the emergence and rapid transmission of more virulent strains.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2386136"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amugulang virus, a novel hantavirus harboured by small rodents in Hulunbuir, China. 中国呼伦贝尔小型啮齿动物携带的新型汉坦病毒--阿姆古朗病毒。
IF 8.4 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-05 DOI: 10.1080/22221751.2024.2396893
Xiaohu Han, Lianhong Zhang, Mingxuan Zhang, Qing Xin, Yongxiang Zhao, Ya Wen, Hua Deng, Jinguo Zhu, Qin Dai, Mei Han, Tianyu Yang, Saiji Lahu, Feng Jiang, Zeliang Chen

The Hulunbuir region, known for its diverse terrain and rich wildlife, is a hotspot for various natural epidemic diseases. Between 2021 and 2023, we collected 885 wild rodent samples from this area, representing three families, seven genera, and eleven species. Metagenomic analysis identified three complete nucleic acid sequences from the S, M, and L segments of the Hantaviridae family, which were closely related to the Khabarovsk virus. The nucleotide coding sequences for S, M, and L (1392 nt, 3465 nt, and 6491 nt, respectively) exhibited similarities of 82.34%, 81.68%, and 81.94% to known sequences, respectively, while protein-level analysis indicated higher similarities of 94.92%, 94.41%, and 95.87%, respectively. Phylogenetic analysis placed these sequences within the same clade as the Khabarovsk, Puumala, Muju, Hokkaido, Topografov, and Tatenalense viruses, all of which are known to cause febrile diseases in humans. Immunofluorescence detection of nucleic acid-positive rodent kidney samples using sera from patients with hemorrhagic fever and renal syndrome confirmed the presence of viral particles. Based on these findings, we propose that this virus represents a new member of the Hantaviridae family, tentatively named the Amugulang virus, after its primary distribution area.

呼伦贝尔地区以其多样的地形和丰富的野生动物而闻名,是各种自然流行病的热点地区。2021 年至 2023 年期间,我们从该地区采集了 885 份野生啮齿动物样本,代表了 3 个科、7 个属和 11 个种。元基因组分析确定了汉坦病毒科S、M和L段的三个完整核酸序列,它们与哈巴罗夫斯克病毒密切相关。S、M和L的核苷酸编码序列(分别为1392 nt、3465 nt和6491 nt)与已知序列的相似度分别为82.34%、81.68%和81.94%,而蛋白质水平分析表明其相似度更高,分别为94.92%、94.41%和95.87%。系统发育分析将这些序列与哈巴罗夫斯克、普马拉、穆朱、北海道、托波格拉弗夫和塔特纳兰斯病毒归入同一支系,所有这些病毒都可导致人类发热性疾病。利用出血热和肾综合征患者的血清对核酸阳性的啮齿动物肾脏样本进行免疫荧光检测,证实了病毒颗粒的存在。基于这些发现,我们认为该病毒是汉坦病毒科的一个新成员,并根据其主要分布地区将其暂时命名为阿姆古朗病毒。
{"title":"Amugulang virus, a novel hantavirus harboured by small rodents in Hulunbuir, China.","authors":"Xiaohu Han, Lianhong Zhang, Mingxuan Zhang, Qing Xin, Yongxiang Zhao, Ya Wen, Hua Deng, Jinguo Zhu, Qin Dai, Mei Han, Tianyu Yang, Saiji Lahu, Feng Jiang, Zeliang Chen","doi":"10.1080/22221751.2024.2396893","DOIUrl":"10.1080/22221751.2024.2396893","url":null,"abstract":"<p><p>The Hulunbuir region, known for its diverse terrain and rich wildlife, is a hotspot for various natural epidemic diseases. Between 2021 and 2023, we collected 885 wild rodent samples from this area, representing three families, seven genera, and eleven species. Metagenomic analysis identified three complete nucleic acid sequences from the S, M, and L segments of the <i>Hantaviridae</i> family, which were closely related to the Khabarovsk virus. The nucleotide coding sequences for S, M, and L (1392 nt, 3465 nt, and 6491 nt, respectively) exhibited similarities of 82.34%, 81.68%, and 81.94% to known sequences, respectively, while protein-level analysis indicated higher similarities of 94.92%, 94.41%, and 95.87%, respectively. Phylogenetic analysis placed these sequences within the same clade as the Khabarovsk, Puumala, Muju, Hokkaido, Topografov, and Tatenalense viruses, all of which are known to cause febrile diseases in humans. Immunofluorescence detection of nucleic acid-positive rodent kidney samples using sera from patients with hemorrhagic fever and renal syndrome confirmed the presence of viral particles. Based on these findings, we propose that this virus represents a new member of the <i>Hantaviridae</i> family, tentatively named the Amugulang virus, after its primary distribution area.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2396893"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Emerging Microbes & Infections
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1