The present study reports on an investigation of teak sawdust pyrolysis oil blended with commercial diesel in a small four-stroke compression ignited engine. The engine performance and emissions were evaluated. The teak sawdust pyrolysis oil was obtained from a single-stage fixed bed pyrolysis reactor at 600 °C. Its physicochemical properties were characterized and found to be acceptable for the engine. Teak sawdust pyrolysis oil blends with diesel at the ratios of 10%, 25%, and 50% by mass were utilized. The small engine was tested at constant speeds from 800 to 2600 r/min. 25% teak sawdust pyrolysis oil blend at 2000 r/min was found to have better brake thermal efficiency with lower brake-specific fuel consumption compared to the other teak sawdust pyrolysis oil blends. Meanwhile, the highest engine load was obtained at 50% teak sawdust pyrolysis oil blend and 2600 r/min to be 8 kW. Furthermore, the emissions of CO, CO 2 , and hydrocarbon at 50% teak sawdust pyrolysis oil and 2000 r/min were slightly lower than other teak sawdust pyrolysis oil blends, no NO x detection in tested fuels, moreover, at 2600 speed, the smoke opacities of the fuels show lower than those the others. It was noted that a blend of 25% teak sawdust pyrolysis oil with diesel was suitable for the small engine (at 2000 r/min) in terms of performance and CO, CO 2 , and NO X emission for sustainability in agriculture and rural areas.
{"title":"Biomass pyrolysis oil/diesel blends for a small agricultural engine","authors":"Panuphong Mankeed, Nigran Homdoung, Thanasit Wongsiriamnuay, Nakorn Tippayawong","doi":"10.1177/01445987231208498","DOIUrl":"https://doi.org/10.1177/01445987231208498","url":null,"abstract":"The present study reports on an investigation of teak sawdust pyrolysis oil blended with commercial diesel in a small four-stroke compression ignited engine. The engine performance and emissions were evaluated. The teak sawdust pyrolysis oil was obtained from a single-stage fixed bed pyrolysis reactor at 600 °C. Its physicochemical properties were characterized and found to be acceptable for the engine. Teak sawdust pyrolysis oil blends with diesel at the ratios of 10%, 25%, and 50% by mass were utilized. The small engine was tested at constant speeds from 800 to 2600 r/min. 25% teak sawdust pyrolysis oil blend at 2000 r/min was found to have better brake thermal efficiency with lower brake-specific fuel consumption compared to the other teak sawdust pyrolysis oil blends. Meanwhile, the highest engine load was obtained at 50% teak sawdust pyrolysis oil blend and 2600 r/min to be 8 kW. Furthermore, the emissions of CO, CO 2 , and hydrocarbon at 50% teak sawdust pyrolysis oil and 2000 r/min were slightly lower than other teak sawdust pyrolysis oil blends, no NO x detection in tested fuels, moreover, at 2600 speed, the smoke opacities of the fuels show lower than those the others. It was noted that a blend of 25% teak sawdust pyrolysis oil with diesel was suitable for the small engine (at 2000 r/min) in terms of performance and CO, CO 2 , and NO X emission for sustainability in agriculture and rural areas.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"40 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135315668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present work experimentally evaluated the performance of a solar collector comprised evacuated tube heat pipe (ETHP) coupled with a compound parabolic concentrator at different tilt angles. Therefore, experiments have been conducted in the climate conditions of Tamil Nadu (77.07° E,11.04° N), India, from April 15, 2019, to May 20, 2019. The objective of the work is to explore the effect of a tilting angle on the performance of an evacuated tube solar collector with a thermosyphon attached to the compound parabolic concentrator. The CPC is designed with an aperture width of 343 mm, concentration ratio of 2.32, and aperture angle of 25.4°, improving the solar collector efficiency with the help of MATLAB Programming, which gets Coordinate points based on these coordinate points. CPC Profile is fabricated. The Thermosyphon heat pipe is constructed with a Copper tube having a 19 mm diameter with 40% Acetone charged. The experiments were conducted by varying the tilting angles of the solar collector at 15°, 30°, 45°, and 60° horizontal. The heat resistance and instantaneous efficiency of the solar collector are studied in this study. The result reveals a minimum thermal resistance of 0.02 kW −1, and a maximum efficiency of 78% was recorded at a 45° tilting angle.
{"title":"Performance analysis of evacuated tubes with thermosyphon heat pipe solar collector integrated with compound parabolic concentrator under different operating conditions","authors":"Kumaresan Govindasamy, Vijayakumar Palanivel, Radhey Shyam Meena, Suresh Muthusamy, Hitesh Panchal, Mohd. Asif Shah, Md Irfanul Haque Siddiqui","doi":"10.1177/01445987231202618","DOIUrl":"https://doi.org/10.1177/01445987231202618","url":null,"abstract":"The present work experimentally evaluated the performance of a solar collector comprised evacuated tube heat pipe (ETHP) coupled with a compound parabolic concentrator at different tilt angles. Therefore, experiments have been conducted in the climate conditions of Tamil Nadu (77.07° E,11.04° N), India, from April 15, 2019, to May 20, 2019. The objective of the work is to explore the effect of a tilting angle on the performance of an evacuated tube solar collector with a thermosyphon attached to the compound parabolic concentrator. The CPC is designed with an aperture width of 343 mm, concentration ratio of 2.32, and aperture angle of 25.4°, improving the solar collector efficiency with the help of MATLAB Programming, which gets Coordinate points based on these coordinate points. CPC Profile is fabricated. The Thermosyphon heat pipe is constructed with a Copper tube having a 19 mm diameter with 40% Acetone charged. The experiments were conducted by varying the tilting angles of the solar collector at 15°, 30°, 45°, and 60° horizontal. The heat resistance and instantaneous efficiency of the solar collector are studied in this study. The result reveals a minimum thermal resistance of 0.02 kW −1, and a maximum efficiency of 78% was recorded at a 45° tilting angle.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135731488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1177/01445987231187657
Shoulong Ma, Qi Zong
The efficient extraction of gas from low-permeability coal seams is an urgent problem in coal mine safety production. The traditional gas extraction technology generally suffers from problems that limited penetration enhancement or extraction effect, low construction efficiency, large workload, etc. Thus, it is especially urgent and important to explore the new technology applicable to efficient underground gas extraction. In this paper, based on the principle of hydraulic fracturing to increase permeability, we innovatively propose a technique to enhance the effect of hydraulic fracturing to increase permeability and further improve the efficiency of gas extraction using the gas desorption activity of native microorganisms in coal seams. Herein, the composition of the primary microbial community of a coal seam in Xinji No.2 mine was analyzed by bacterial and archaeal 16SrDNA amplicon sequencing, the community structure of the main functional microorganisms was clarified, the optimal combination of functional microorganisms for organic matter degradation in coal seam under anaerobic culture conditions was obtained. Besides the Biolog microplate technology was used to screen the nutrients of the excitation carbon source to stimulate the rapid decomposition of coal organic matter by microorganisms and to define the optimal ratio of the excitation carbon source to microorganisms. Finally, the effect of this technology on the application of coal seam fracturing and gas extraction was tested through field industrial tests, revealing that the extraction effect of this technology was more significant than that of the common coal seam perforation extraction technology. The results of this paper provide a new technical idea for gas extraction from low permeability coal seams, which is an important reference value for subsequent similar studies.
{"title":"Exploration and application of microbial method to enhance the effect of hydraulic fracturing on coal seam permeability enhancement and gas extraction","authors":"Shoulong Ma, Qi Zong","doi":"10.1177/01445987231187657","DOIUrl":"https://doi.org/10.1177/01445987231187657","url":null,"abstract":"The efficient extraction of gas from low-permeability coal seams is an urgent problem in coal mine safety production. The traditional gas extraction technology generally suffers from problems that limited penetration enhancement or extraction effect, low construction efficiency, large workload, etc. Thus, it is especially urgent and important to explore the new technology applicable to efficient underground gas extraction. In this paper, based on the principle of hydraulic fracturing to increase permeability, we innovatively propose a technique to enhance the effect of hydraulic fracturing to increase permeability and further improve the efficiency of gas extraction using the gas desorption activity of native microorganisms in coal seams. Herein, the composition of the primary microbial community of a coal seam in Xinji No.2 mine was analyzed by bacterial and archaeal 16SrDNA amplicon sequencing, the community structure of the main functional microorganisms was clarified, the optimal combination of functional microorganisms for organic matter degradation in coal seam under anaerobic culture conditions was obtained. Besides the Biolog microplate technology was used to screen the nutrients of the excitation carbon source to stimulate the rapid decomposition of coal organic matter by microorganisms and to define the optimal ratio of the excitation carbon source to microorganisms. Finally, the effect of this technology on the application of coal seam fracturing and gas extraction was tested through field industrial tests, revealing that the extraction effect of this technology was more significant than that of the common coal seam perforation extraction technology. The results of this paper provide a new technical idea for gas extraction from low permeability coal seams, which is an important reference value for subsequent similar studies.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.1177/01445987231196917
GE Akpan, ME Emetere, SA Afolalu, TC Jen
Geothermal energy is a renewable energy that is environmentally friendly and will help reduce greenhouse emission resulting from the burning of fossil fuels. Nigeria has numerous geothermal surface manifestations like hot and warm springs in most parts of the country that has not been exploited or explored due to the initial high cost of exploration. Most research conducted on geothermal energy prospects in Nigeria considered specific geographical sections. Due to the geological features of Nigeria, the direct and indirect tectonic activities, there is the need to map the thermal anomalies over Nigeria to determine likely geothermal wells and ground heat catchment in Nigeria. Forty years remote sensing dataset (1980–2019), was obtained from the MERRA-2 for three hundred and two (302) locations across Nigeria. The acquired thermal parameters were processed using known models. The data was also analyzed statistically and spatially using the Statistical Package for Social Sciences (SPSS) and Quantum Geographic Information System (QGIS). The results of show that the Gummel-Kumaganum areas of chad basin, Owode-igbo ora areas of the Dahomey basin, Belli area of the basement complex in Taraba state, potiskum areas of the Upper benue Basin, Ekpoma-kwale, itu areas of the Niger delta basin are middle geothermal wells with the terrestial radiation of < −702 W/m 2 while the terrestial radiation >200 W/m 2 in the Gummi area of the sokoto basin, Hunkuyi area of the basement complex in the northeast, Gashua area of the chad basin, Ozubulu-idah area of Anambra basin, Atijere area of the Dahomey basin, Agbasa, Omoko, Akamkpa area of Niger delta basin, Shaki area of the southwest basement complex are heat catchment regions. Other heat catchment areas had been identified for standalone energy generation. Also, the thermal anomalies in those areas were significant. The validation of the result was achieved via benchmarking similar geothermal well around the globe and ground truthing at Ijebu-Ode Nigeria. Based on the thermal reversal depth (TRD) concept, Ijebu-Ode may have a deep geothermal well with temperatures pattern similar to geothermal wells in other parts of the globe. It is recommended that ground measurement should be carried out in the basement complex to cater for geothermal systems whose mechanism is based on conduction.
{"title":"Prospective geothermal well and heat catchment locations in Nigeria: Remote sensing interpretations and field validation","authors":"GE Akpan, ME Emetere, SA Afolalu, TC Jen","doi":"10.1177/01445987231196917","DOIUrl":"https://doi.org/10.1177/01445987231196917","url":null,"abstract":"Geothermal energy is a renewable energy that is environmentally friendly and will help reduce greenhouse emission resulting from the burning of fossil fuels. Nigeria has numerous geothermal surface manifestations like hot and warm springs in most parts of the country that has not been exploited or explored due to the initial high cost of exploration. Most research conducted on geothermal energy prospects in Nigeria considered specific geographical sections. Due to the geological features of Nigeria, the direct and indirect tectonic activities, there is the need to map the thermal anomalies over Nigeria to determine likely geothermal wells and ground heat catchment in Nigeria. Forty years remote sensing dataset (1980–2019), was obtained from the MERRA-2 for three hundred and two (302) locations across Nigeria. The acquired thermal parameters were processed using known models. The data was also analyzed statistically and spatially using the Statistical Package for Social Sciences (SPSS) and Quantum Geographic Information System (QGIS). The results of show that the Gummel-Kumaganum areas of chad basin, Owode-igbo ora areas of the Dahomey basin, Belli area of the basement complex in Taraba state, potiskum areas of the Upper benue Basin, Ekpoma-kwale, itu areas of the Niger delta basin are middle geothermal wells with the terrestial radiation of < −702 W/m 2 while the terrestial radiation >200 W/m 2 in the Gummi area of the sokoto basin, Hunkuyi area of the basement complex in the northeast, Gashua area of the chad basin, Ozubulu-idah area of Anambra basin, Atijere area of the Dahomey basin, Agbasa, Omoko, Akamkpa area of Niger delta basin, Shaki area of the southwest basement complex are heat catchment regions. Other heat catchment areas had been identified for standalone energy generation. Also, the thermal anomalies in those areas were significant. The validation of the result was achieved via benchmarking similar geothermal well around the globe and ground truthing at Ijebu-Ode Nigeria. Based on the thermal reversal depth (TRD) concept, Ijebu-Ode may have a deep geothermal well with temperatures pattern similar to geothermal wells in other parts of the globe. It is recommended that ground measurement should be carried out in the basement complex to cater for geothermal systems whose mechanism is based on conduction.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-08DOI: 10.1177/01445987231196615
Yanchun Yin, Yuanhui Zhu, Yang Chen, Yue Qiu, Biao Chen
The small-scale roadway model is often used in the fine simulation of mining engineering. The determination of the structure and load conditions of the model has an important influence on the accuracy of the simulation. In this paper, a large-scale stratum model and a small-scale roadway model are established by using finite element method. The optimal loading mode of the roadway model and its applicability under different roof-sidewall stiffness ratios are studied. The simulation accuracy of the roadway model is quantitatively evaluated by comparing the distribution laws of stress field and strain field with those of the stratum models. Under the same roof-sidewall stiffness ratio, the similarity between the simulation results of the roadway model and the stratum model under displacement load is much higher than that under stress load. Under the same load mode, the stress and strain similarity between the stratum model and roadway model increases with the increase of the roof-sidewall stiffness ratio. Furtherly, the simulation application of the roadway drilling pressure relief is carried out. Compared with the large-scale stratum model with small-size elements, the small-scale roadway model under displacement load also shows obvious stress transfer after drilling pressure relief, while it has faster computational efficiency. Finally, a small-scale roadway model simulation method suitable for surrounding rock disaster occurrence mechanism and control is proposed.
{"title":"Study on reasonable loading mode of small-scale roadway model and its application in mining engineering","authors":"Yanchun Yin, Yuanhui Zhu, Yang Chen, Yue Qiu, Biao Chen","doi":"10.1177/01445987231196615","DOIUrl":"https://doi.org/10.1177/01445987231196615","url":null,"abstract":"The small-scale roadway model is often used in the fine simulation of mining engineering. The determination of the structure and load conditions of the model has an important influence on the accuracy of the simulation. In this paper, a large-scale stratum model and a small-scale roadway model are established by using finite element method. The optimal loading mode of the roadway model and its applicability under different roof-sidewall stiffness ratios are studied. The simulation accuracy of the roadway model is quantitatively evaluated by comparing the distribution laws of stress field and strain field with those of the stratum models. Under the same roof-sidewall stiffness ratio, the similarity between the simulation results of the roadway model and the stratum model under displacement load is much higher than that under stress load. Under the same load mode, the stress and strain similarity between the stratum model and roadway model increases with the increase of the roof-sidewall stiffness ratio. Furtherly, the simulation application of the roadway drilling pressure relief is carried out. Compared with the large-scale stratum model with small-size elements, the small-scale roadway model under displacement load also shows obvious stress transfer after drilling pressure relief, while it has faster computational efficiency. Finally, a small-scale roadway model simulation method suitable for surrounding rock disaster occurrence mechanism and control is proposed.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-03DOI: 10.1177/01445987231203466
Hongqing Zheng, Wanqing Song, Wei Cheng, Carlo Cattani, Aleksey Kudreyko
Accurate prediction of photovoltaic (PV) power generation is the key to daily dispatch management and safe and stable grid operation. In order to improve the accuracy of the prediction, a finite iterative PV power prediction model with long range dependence (LRD) characteristics was developed using fractional Lévy stable motion (fLsm) and applied to a real dataset collected in the DKASC photovoltaic system in Alice Springs, Australia. The LRD prediction model considers the influence of current and past trends in the stochastic series on the future trends. Firstly, the calculation of the maximum steps prediction was introduced based on the maximum Lyapunov. The maximum prediction steps could provide the prediction steps for subsequent prediction models. Secondly, the order stochastic differential equation (FSDE) which describes the fLsm can be obtained. The parameters of the FSDE were estimated by using a novel characteristic function method. The PV power forecasting model with the LRD characteristics was obtained by discretization of FSDE. By comparing statistical performance indicators such as root max error, mean square error with Conv-LSTM, BiLSTM, and GA-LSTM models, the performance of the proposed fLsm model has been demonstrated. The proposed methods can provide better theoretical support for the stable and safe operation of PV grid connection. They have high reference value for grid dispatching department.
{"title":"Short-term photovoltaic power prediction based on fractional Levy stable motion","authors":"Hongqing Zheng, Wanqing Song, Wei Cheng, Carlo Cattani, Aleksey Kudreyko","doi":"10.1177/01445987231203466","DOIUrl":"https://doi.org/10.1177/01445987231203466","url":null,"abstract":"Accurate prediction of photovoltaic (PV) power generation is the key to daily dispatch management and safe and stable grid operation. In order to improve the accuracy of the prediction, a finite iterative PV power prediction model with long range dependence (LRD) characteristics was developed using fractional Lévy stable motion (fLsm) and applied to a real dataset collected in the DKASC photovoltaic system in Alice Springs, Australia. The LRD prediction model considers the influence of current and past trends in the stochastic series on the future trends. Firstly, the calculation of the maximum steps prediction was introduced based on the maximum Lyapunov. The maximum prediction steps could provide the prediction steps for subsequent prediction models. Secondly, the order stochastic differential equation (FSDE) which describes the fLsm can be obtained. The parameters of the FSDE were estimated by using a novel characteristic function method. The PV power forecasting model with the LRD characteristics was obtained by discretization of FSDE. By comparing statistical performance indicators such as root max error, mean square error with Conv-LSTM, BiLSTM, and GA-LSTM models, the performance of the proposed fLsm model has been demonstrated. The proposed methods can provide better theoretical support for the stable and safe operation of PV grid connection. They have high reference value for grid dispatching department.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-03DOI: 10.1177/01445987231196617
Yu Zhao, Linbo Chen, Yu Zhang
This study investigated the spillover effects of geopolitical risks on energy (crude oil, coal and natural gas) markets. The empirical evidence is based on the CoVaR index and the CAViaR-EGARCH model. Results demonstrate that the spillover effects of geopolitical risks on the global energy market are nonlinear, asymmetric and time-varying. With each 1% rise in global geopolitical risks, the left tail risks in the crude oil, coal, and natural gas markets decreased by 0.179%, 0.119% and 0.113%, while the right tail risks increased by 0.144%, 0.135% and 0.097%, respectively. In addition, the magnitude of energy crises triggered by different geopolitical events varies. Lastly, the spillover effects of GPR on energy markets vary considerably across nations, with more substantial effects observed on average in BRICS than in G7 countries. The primary implication is to provide references for government and energy investors to avoid energy market risks timely.
{"title":"Spillover effects of geopolitical risks on global energy markets: Evidence from CoVaR and CAViaR-EGARCH model","authors":"Yu Zhao, Linbo Chen, Yu Zhang","doi":"10.1177/01445987231196617","DOIUrl":"https://doi.org/10.1177/01445987231196617","url":null,"abstract":"This study investigated the spillover effects of geopolitical risks on energy (crude oil, coal and natural gas) markets. The empirical evidence is based on the CoVaR index and the CAViaR-EGARCH model. Results demonstrate that the spillover effects of geopolitical risks on the global energy market are nonlinear, asymmetric and time-varying. With each 1% rise in global geopolitical risks, the left tail risks in the crude oil, coal, and natural gas markets decreased by 0.179%, 0.119% and 0.113%, while the right tail risks increased by 0.144%, 0.135% and 0.097%, respectively. In addition, the magnitude of energy crises triggered by different geopolitical events varies. Lastly, the spillover effects of GPR on energy markets vary considerably across nations, with more substantial effects observed on average in BRICS than in G7 countries. The primary implication is to provide references for government and energy investors to avoid energy market risks timely.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135697003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taking the steeply dipping and large mining height working face of a mine as the engineering background, through the combination of physical simulation experiment, numerical calculation, theoretical analysis and field monitoring, based on a comprehensive analysis of the deformation and failure characteristics of the macrostructure of surrounding rock, the roof breaking mechanism and support instability characteristics of large mining height working face under the angle effect are studied. The research shows that due to the influence of the dip angle of the coal seam, the roof stress is asymmetrically deflected along the tendency, and the load of the overlying strata is transmitted to the upper and lower coal bodies with the stress-deflection boundary as the boundary, resulting in the deformation and failure of the roof and the filling showing obvious asymmetric characteristics. With the increase of dip angle, the asymmetric characteristics of roof stress transfer are enhanced, the stress release arch is reduced, the height of caving zone is reduced, the deformation and failure area is gradually moved up, and the regional characteristics of roof loading and deformation and failure are more obvious, which leads to the significant increase of unbalanced loading degree and instability probability of supports in different areas. Combined with the actual production, the prevention and control measures of hard roof caving and support crushing in fully mechanized mining face with steeply dipping seam and large mining height are put forward.
{"title":"Study on roof breaking mechanism and support stability of steeply dipping seam and large mining height","authors":"Bosheng Hu, Panshi Xie, Baofa Huang, Yongping Wu, Jianjie Chen","doi":"10.1177/01445987231203464","DOIUrl":"https://doi.org/10.1177/01445987231203464","url":null,"abstract":"Taking the steeply dipping and large mining height working face of a mine as the engineering background, through the combination of physical simulation experiment, numerical calculation, theoretical analysis and field monitoring, based on a comprehensive analysis of the deformation and failure characteristics of the macrostructure of surrounding rock, the roof breaking mechanism and support instability characteristics of large mining height working face under the angle effect are studied. The research shows that due to the influence of the dip angle of the coal seam, the roof stress is asymmetrically deflected along the tendency, and the load of the overlying strata is transmitted to the upper and lower coal bodies with the stress-deflection boundary as the boundary, resulting in the deformation and failure of the roof and the filling showing obvious asymmetric characteristics. With the increase of dip angle, the asymmetric characteristics of roof stress transfer are enhanced, the stress release arch is reduced, the height of caving zone is reduced, the deformation and failure area is gradually moved up, and the regional characteristics of roof loading and deformation and failure are more obvious, which leads to the significant increase of unbalanced loading degree and instability probability of supports in different areas. Combined with the actual production, the prevention and control measures of hard roof caving and support crushing in fully mechanized mining face with steeply dipping seam and large mining height are put forward.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135385371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26DOI: 10.1177/01445987231202802
Zeshan Abbas, Muhammad Waqas, Zhao Lun, Saad Saleem Khan, Mohsin Amjad, Stephen Larkin
This research reports the implementation of logarithmic mean Divisia index (LMDI) and categorizes the growth of total energy usage in three different industrial sectors for the years of 2010 to 2021. Furthermore, it classifies and evaluates the factors influencing on energy consumption in Punjab province thru a sustainable way. The growth consumption is classified into scale influence, structure influence, and efficiency influence. Likewise, the long-term energy alternatives planning-Punjab model is executed with the energy consumption, scale impact, structure impact, and efficiency impact. Besides, comprehensive adjustment scenarios are also introduced to examine the impact of three different factors on overall energy usage. The results from the qualitative decomposition of LMDI indicate that the high scale can lead to high-energy consumption in Punjab Province. However, it can be reduced by high-efficiency reinforcement. The total energy consumption in 2024, 2036, and 2044 under reference scenario is 304.12, 460.01, and 590.04 million tons compared to structure influence analysis for slow terminology (SIAS) and comprehensive scenario. For that reason, it can predict and provide earlier energy management planning for the province. Conversely, the structure factor does not display obvious effect on the energy use. Equally, the quantitative results of the long-term energy alternative planning (LEAP) model are relatively consistent with those of LMDI model, whose advantageous impact on the structure influence is reasonably extrapolated. This phenomenon indicates that the structure influence and efficiency influence will maintain the disruptive impact on increasing overall energy use for the future perspectives. Consequently, the LEAP model predicts the energy consumption of Punjab Province among the years of 2020 to 2040 under medium-term development framework.
{"title":"Predicting energy consumption through the LEAP model based on LMDI technique along with economic analysis: A case study","authors":"Zeshan Abbas, Muhammad Waqas, Zhao Lun, Saad Saleem Khan, Mohsin Amjad, Stephen Larkin","doi":"10.1177/01445987231202802","DOIUrl":"https://doi.org/10.1177/01445987231202802","url":null,"abstract":"This research reports the implementation of logarithmic mean Divisia index (LMDI) and categorizes the growth of total energy usage in three different industrial sectors for the years of 2010 to 2021. Furthermore, it classifies and evaluates the factors influencing on energy consumption in Punjab province thru a sustainable way. The growth consumption is classified into scale influence, structure influence, and efficiency influence. Likewise, the long-term energy alternatives planning-Punjab model is executed with the energy consumption, scale impact, structure impact, and efficiency impact. Besides, comprehensive adjustment scenarios are also introduced to examine the impact of three different factors on overall energy usage. The results from the qualitative decomposition of LMDI indicate that the high scale can lead to high-energy consumption in Punjab Province. However, it can be reduced by high-efficiency reinforcement. The total energy consumption in 2024, 2036, and 2044 under reference scenario is 304.12, 460.01, and 590.04 million tons compared to structure influence analysis for slow terminology (SIAS) and comprehensive scenario. For that reason, it can predict and provide earlier energy management planning for the province. Conversely, the structure factor does not display obvious effect on the energy use. Equally, the quantitative results of the long-term energy alternative planning (LEAP) model are relatively consistent with those of LMDI model, whose advantageous impact on the structure influence is reasonably extrapolated. This phenomenon indicates that the structure influence and efficiency influence will maintain the disruptive impact on increasing overall energy use for the future perspectives. Consequently, the LEAP model predicts the energy consumption of Punjab Province among the years of 2020 to 2040 under medium-term development framework.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26DOI: 10.1177/01445987231174907
Azizat O Gbadegesin, Yanxia Sun, Nnamdi I Nwulu
Storage systems are needed to boost the reliability of intermittent solar and wind resources in power networks. Rather than focus on one storage system or one hybrid energy storage system (HESS), this work models the operation of six HESS configurations in a Renewable Energy (RE) based grid-tied network. The objective is to minimise the daily operational costs of the microgrid while prolonging the storage lifetime by considering storage degradation costs. The influence of fixed tariffs and time-of-use (TOU) tariffs on the optimal operational of the HESS configurations have also been investigated; as well as deferrable demand satisfaction, charge-discharge pattern of different HESS and availability of the power-dense storage system within the microgrid. Results show that the lead-acid battery and hydrogen fuel cell (HFC) HESS incurs the highest operational costs, while the supercapacitor-lead-acid battery HESS incurs the lowest operational costs. The supercapacitor-lead acid battery and the supercapacitor-HFC HESS incur the highest annual storage degradation costs. The grid expenses were seen to be the same for all HESS under each tariff scheme. Lastly, decreasing the minimum storage level further by 10% from the 30% in the base case, led to an increase in the number of hours of availability of the power-dense storage system of five of the six HESS. These results have given a deeper understanding to the operation of HESS systems and can inform better decision making of the suitable HESS to be deployed in different operating scenarios.
{"title":"Operational Optimisation of Grid-Connected Microgrids Incorporating Hybrid Energy Storage and Demand Response","authors":"Azizat O Gbadegesin, Yanxia Sun, Nnamdi I Nwulu","doi":"10.1177/01445987231174907","DOIUrl":"https://doi.org/10.1177/01445987231174907","url":null,"abstract":"Storage systems are needed to boost the reliability of intermittent solar and wind resources in power networks. Rather than focus on one storage system or one hybrid energy storage system (HESS), this work models the operation of six HESS configurations in a Renewable Energy (RE) based grid-tied network. The objective is to minimise the daily operational costs of the microgrid while prolonging the storage lifetime by considering storage degradation costs. The influence of fixed tariffs and time-of-use (TOU) tariffs on the optimal operational of the HESS configurations have also been investigated; as well as deferrable demand satisfaction, charge-discharge pattern of different HESS and availability of the power-dense storage system within the microgrid. Results show that the lead-acid battery and hydrogen fuel cell (HFC) HESS incurs the highest operational costs, while the supercapacitor-lead-acid battery HESS incurs the lowest operational costs. The supercapacitor-lead acid battery and the supercapacitor-HFC HESS incur the highest annual storage degradation costs. The grid expenses were seen to be the same for all HESS under each tariff scheme. Lastly, decreasing the minimum storage level further by 10% from the 30% in the base case, led to an increase in the number of hours of availability of the power-dense storage system of five of the six HESS. These results have given a deeper understanding to the operation of HESS systems and can inform better decision making of the suitable HESS to be deployed in different operating scenarios.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}