首页 > 最新文献

Energy Science & Engineering最新文献

英文 中文
Multiscale spatiotemporal evolution and zoning of energy consumption carbon footprint in the Yellow River Basin 黄河流域能源消耗碳足迹的多尺度时空演变与分区
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-24 DOI: 10.1002/ese3.1908
Liyan Zhang, Mei Song, Jia Zhang, Xuguang Hao

Classifying emission reduction zones on different scales has important implications for the ecological protection and high-quality development of the Yellow River Basin. Based on remote sensing data and a light-carbon conversion model, carbon footprints at provincial, municipal, and county scales in the Yellow River Basin are measured. The spatiotemporal evolution critical paths of carbon footprints at the three spatial scales are compared and classified into different zones using spatiotemporal evolution analysis methods. The conclusions are as follows: (1) The carbon footprint increased over the years. The spatial distributions of carbon footprints at the three scales are not only consistent but also different. The study of carbon footprints at the county scale is more conducive to the summary of the spatiotemporal evolution and the formulation of detailed emission reduction schemes. (2) Four provinces, 48 cities, and 373 counties are designated as a “core protected zone”; three provinces, 29 cities, and 177 counties are designated as a “strictly governed zone”; one province, 12 cities, and 47 counties are designated as a “key restricted zone”; four cities and 39 counties are designated as an “alert diffusion zone.” (3) The agglomeration expansion trend and the spillover effect of high-carbon footprint units at the county scale are more obvious. Further enhancement of the path-locking characteristics of the carbon footprints of counties will make governance more difficult. Effective governance of carbon footprint at the county scale is of urgent concern. These results provide scientific evidence for multiscale carbon emission control and zoning policy formulation in the Yellow River Basin.

划分不同尺度的减排区对黄河流域的生态保护和高质量发展具有重要意义。基于遥感数据和光碳转换模型,测算了黄河流域省、市、县三级碳足迹。利用时空演化分析方法,比较了三个空间尺度碳足迹的时空演化临界路径,并将其划分为不同的区域。结论如下(1)碳足迹逐年增加。三种尺度的碳足迹空间分布不仅一致,而且存在差异。县域尺度的碳足迹研究更有利于时空演变的总结和详细减排方案的制定。(2)4 个省、48 个市、373 个县被划定为 "核心保护区";3 个省、29 个市、177 个县被划定为 "严格治理区";1 个省、12 个市、47 个县被划定为 "重点限制区";4 个市、39 个县被划定为 "警戒扩散区"。(3)县域范围内高碳足迹单位的集聚扩张趋势和溢出效应更加明显。县域碳足迹的路径锁定特征进一步增强,将增加治理难度。县域尺度碳足迹的有效治理迫在眉睫。这些结果为黄河流域多尺度碳排放控制和分区政策制定提供了科学依据。
{"title":"Multiscale spatiotemporal evolution and zoning of energy consumption carbon footprint in the Yellow River Basin","authors":"Liyan Zhang,&nbsp;Mei Song,&nbsp;Jia Zhang,&nbsp;Xuguang Hao","doi":"10.1002/ese3.1908","DOIUrl":"https://doi.org/10.1002/ese3.1908","url":null,"abstract":"<p>Classifying emission reduction zones on different scales has important implications for the ecological protection and high-quality development of the Yellow River Basin. Based on remote sensing data and a light-carbon conversion model, carbon footprints at provincial, municipal, and county scales in the Yellow River Basin are measured. The spatiotemporal evolution critical paths of carbon footprints at the three spatial scales are compared and classified into different zones using spatiotemporal evolution analysis methods. The conclusions are as follows: (1) The carbon footprint increased over the years. The spatial distributions of carbon footprints at the three scales are not only consistent but also different. The study of carbon footprints at the county scale is more conducive to the summary of the spatiotemporal evolution and the formulation of detailed emission reduction schemes. (2) Four provinces, 48 cities, and 373 counties are designated as a “core protected zone”; three provinces, 29 cities, and 177 counties are designated as a “strictly governed zone”; one province, 12 cities, and 47 counties are designated as a “key restricted zone”; four cities and 39 counties are designated as an “alert diffusion zone.” (3) The agglomeration expansion trend and the spillover effect of high-carbon footprint units at the county scale are more obvious. Further enhancement of the path-locking characteristics of the carbon footprints of counties will make governance more difficult. Effective governance of carbon footprint at the county scale is of urgent concern. These results provide scientific evidence for multiscale carbon emission control and zoning policy formulation in the Yellow River Basin.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4662-4679"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1908","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the vortex in the main flow passage of a multiphase pump and the relationship with pressure fluctuation 多相泵主流道涡流的识别及其与压力波动的关系
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-24 DOI: 10.1002/ese3.1891
Guangtai Shi, Manqi Tang, Wenjuan Lv, Xiaodong Peng, Hui Quan

This article investigates the evolution of vortex structures in the impeller channel of a multiphase pump. By capturing the vortices in the impeller channel using the vorticity and Q-criterion, the generation location of the vortex structures is analyzed, and the pressure fluctuations induced by vortices in the main flow passage of the impeller are studied in terms of their time- and frequency-domain characteristics. The relationship between the vorticity and the amplitude of pressure fluctuations at the main frequency of the impeller is further investigated. This study develops a method of identifying vortices in the impeller channel of the multiphase pump, and reveals the intrinsic connection between the vortices and pressure fluctuations in the main flow passage. These findings offer some suggestions for eliminating the influence of vortices and enhancing the pressurizing capabilities of multiphase pumps.

本文研究了多相泵叶轮通道中涡旋结构的演变。通过使用涡度和 Q 准则捕捉叶轮通道中的旋涡,分析了旋涡结构的生成位置,并从时域和频域特性的角度研究了叶轮主流动通道中旋涡引起的压力波动。进一步研究了涡度与叶轮主频压力波动幅度之间的关系。这项研究开发了一种识别多相泵叶轮通道中涡旋的方法,并揭示了涡旋与主流动通道中压力波动之间的内在联系。这些发现为消除涡流的影响和提高多相泵的增压能力提供了一些建议。
{"title":"Identification of the vortex in the main flow passage of a multiphase pump and the relationship with pressure fluctuation","authors":"Guangtai Shi,&nbsp;Manqi Tang,&nbsp;Wenjuan Lv,&nbsp;Xiaodong Peng,&nbsp;Hui Quan","doi":"10.1002/ese3.1891","DOIUrl":"https://doi.org/10.1002/ese3.1891","url":null,"abstract":"<p>This article investigates the evolution of vortex structures in the impeller channel of a multiphase pump. By capturing the vortices in the impeller channel using the vorticity and <i>Q</i>-criterion, the generation location of the vortex structures is analyzed, and the pressure fluctuations induced by vortices in the main flow passage of the impeller are studied in terms of their time- and frequency-domain characteristics. The relationship between the vorticity and the amplitude of pressure fluctuations at the main frequency of the impeller is further investigated. This study develops a method of identifying vortices in the impeller channel of the multiphase pump, and reveals the intrinsic connection between the vortices and pressure fluctuations in the main flow passage. These findings offer some suggestions for eliminating the influence of vortices and enhancing the pressurizing capabilities of multiphase pumps.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4394-4413"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of novel data-driven techniques for remaining useful life estimation of wind turbine high-speed shaft bearings 风力涡轮机高速轴轴承剩余使用寿命估算的新型数据驱动技术比较分析
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-24 DOI: 10.1002/ese3.1911
Ravi Pandit, Matilde Santos, Jesus Enrique Sierra-García

As the global momentum for wind power generation accelerates, the industry faces substantial challenges due to premature failures in wind turbine components. These failures, particularly in critical elements like the high-speed shaft bearing, lead to significant operational losses, including unplanned downtime and elevated maintenance costs. To mitigate these issues, it's crucial to have precise predictions of the remaining useful life (RUL) of these components, enabling timely interventions and more efficient maintenance schedules. This article proposes advanced, data-driven approaches for estimating the RUL of wind turbine high-speed shaft bearings, utilizing cutting-edge techniques such as long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent units (GRU), and random forest (RF) algorithms. Our analysis leverages vibration data from a 2 MW wind turbine equipped with a 20-tooth pinion gear, providing a thorough validation and comparison of these methodologies against traditional models. Our results reveal that the LSTM and BiLSTM models excel in both accuracy and computational efficiency for predicting RUL and enhancing system prognosis, surpassing the performance of conventional RF and GRU methods. This research underscores the potential of our innovative data-driven strategies to develop effective RUL estimation algorithms, significantly advancing wind turbine proactive operation and maintenance operations.

随着全球风力发电发展势头的加快,风力涡轮机部件的过早故障使该行业面临巨大挑战。这些故障,尤其是高速轴轴承等关键部件的故障,会导致重大运营损失,包括计划外停机和维护成本上升。为了缓解这些问题,必须对这些部件的剩余使用寿命(RUL)进行精确预测,以便及时干预和制定更有效的维护计划。本文利用长短期记忆 (LSTM)、双向 LSTM (BiLSTM)、门控递归单元 (GRU) 和随机森林 (RF) 算法等尖端技术,提出了估算风力涡轮机高速轴轴承剩余使用寿命的先进数据驱动方法。我们的分析利用了装有 20 齿小齿轮的 2 兆瓦风力涡轮机的振动数据,对这些方法与传统模型进行了全面验证和比较。我们的结果表明,LSTM 和 BiLSTM 模型在预测 RUL 和增强系统预报的准确性和计算效率方面均表现出色,超过了传统 RF 和 GRU 方法的性能。这项研究强调了我们的创新数据驱动策略在开发有效 RUL 估算算法方面的潜力,极大地推动了风力涡轮机的主动运行和维护操作。
{"title":"Comparative analysis of novel data-driven techniques for remaining useful life estimation of wind turbine high-speed shaft bearings","authors":"Ravi Pandit,&nbsp;Matilde Santos,&nbsp;Jesus Enrique Sierra-García","doi":"10.1002/ese3.1911","DOIUrl":"https://doi.org/10.1002/ese3.1911","url":null,"abstract":"<p>As the global momentum for wind power generation accelerates, the industry faces substantial challenges due to premature failures in wind turbine components. These failures, particularly in critical elements like the high-speed shaft bearing, lead to significant operational losses, including unplanned downtime and elevated maintenance costs. To mitigate these issues, it's crucial to have precise predictions of the remaining useful life (RUL) of these components, enabling timely interventions and more efficient maintenance schedules. This article proposes advanced, data-driven approaches for estimating the RUL of wind turbine high-speed shaft bearings, utilizing cutting-edge techniques such as long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent units (GRU), and random forest (RF) algorithms. Our analysis leverages vibration data from a 2 MW wind turbine equipped with a 20-tooth pinion gear, providing a thorough validation and comparison of these methodologies against traditional models. Our results reveal that the LSTM and BiLSTM models excel in both accuracy and computational efficiency for predicting RUL and enhancing system prognosis, surpassing the performance of conventional RF and GRU methods. This research underscores the potential of our innovative data-driven strategies to develop effective RUL estimation algorithms, significantly advancing wind turbine proactive operation and maintenance operations.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4613-4623"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1911","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring thermal flow dynamics in pressurized water reactors using hybrid graphene nanoplatelet coolants 使用混合石墨烯纳米板冷却剂探索压水反应堆中的热流动力学
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-24 DOI: 10.1002/ese3.1880
Sinem Uzun, Yasin Genç, Adem Acır

This study investigates the impact of hybrid nanoparticles on the temperature of nuclear reactor coolant, with a focus on graphene nanoplatelet (GNP)-based hybrid nanoparticles. Sixteen different hybrid nanofluids were analyzed, and their performance was compared with a standard water-based coolant. The criticality values were obtained through MCNP modeling, revealing that higher nanoparticle ratios led to increased criticality, with the highest value of 1.3239 observed in GNP-Fe3O4 + Al2O3 nanofluids (0.05 wt%) and the lowest value of 1.2935 in GNP–Fe3O4 + SiO2 nanofluids (0.001 wt%). Temperature variations showed that increasing nanoparticle concentrations resulted in slightly higher temperatures, with a maximum of 611.97 K for 0.05 vol.% GNP nanoparticles. Additionally, the departure from nucleate boiling ratio values were consistently above the safety threshold of 2.08, with the lowest value of 3.657 for GNP–Fe3O4 + SiO2 nanofluids (0.05 vol.%). These findings suggest that hybrid nanofluids, particularly those with higher nanoparticle ratios, can enhance the thermal performance and safety margins of nuclear reactor coolants, offering a promising avenue for future research and application.

本研究探讨了混合纳米粒子对核反应堆冷却剂温度的影响,重点是基于石墨烯纳米板(GNP)的混合纳米粒子。分析了 16 种不同的混合纳米流体,并将它们的性能与标准水基冷却剂进行了比较。通过 MCNP 建模获得的临界值显示,纳米粒子比率越高,临界值越大,GNP-Fe3O4 + Al2O3 纳米流体(0.05 wt%)的临界值最高,为 1.3239,GNP-Fe3O4 + SiO2 纳米流体(0.001 wt%)的临界值最低,为 1.2935。温度变化表明,纳米粒子浓度的增加导致温度略微升高,0.05 wt.% GNP 纳米粒子的最高温度为 611.97 K。此外,离核沸腾比值始终高于 2.08 的安全阈值,GNP-Fe3O4 + SiO2 纳米流体(0.05 vol.%)的离核沸腾比值最低,为 3.657。这些研究结果表明,混合纳米流体,尤其是具有较高纳米粒子比率的混合纳米流体,可以提高核反应堆冷却剂的热性能和安全系数,为未来的研究和应用提供了一个前景广阔的途径。
{"title":"Exploring thermal flow dynamics in pressurized water reactors using hybrid graphene nanoplatelet coolants","authors":"Sinem Uzun,&nbsp;Yasin Genç,&nbsp;Adem Acır","doi":"10.1002/ese3.1880","DOIUrl":"https://doi.org/10.1002/ese3.1880","url":null,"abstract":"<p>This study investigates the impact of hybrid nanoparticles on the temperature of nuclear reactor coolant, with a focus on graphene nanoplatelet (GNP)-based hybrid nanoparticles. Sixteen different hybrid nanofluids were analyzed, and their performance was compared with a standard water-based coolant. The criticality values were obtained through MCNP modeling, revealing that higher nanoparticle ratios led to increased criticality, with the highest value of 1.3239 observed in GNP-Fe<sub>3</sub>O<sub>4</sub> + Al<sub>2</sub>O<sub>3</sub> nanofluids (0.05 wt%) and the lowest value of 1.2935 in GNP–Fe<sub>3</sub>O<sub>4</sub> + SiO<sub>2</sub> nanofluids (0.001 wt%). Temperature variations showed that increasing nanoparticle concentrations resulted in slightly higher temperatures, with a maximum of 611.97 K for 0.05 vol.% GNP nanoparticles. Additionally, the departure from nucleate boiling ratio values were consistently above the safety threshold of 2.08, with the lowest value of 3.657 for GNP–Fe<sub>3</sub>O<sub>4</sub> + SiO<sub>2</sub> nanofluids (0.05 vol.%). These findings suggest that hybrid nanofluids, particularly those with higher nanoparticle ratios, can enhance the thermal performance and safety margins of nuclear reactor coolants, offering a promising avenue for future research and application.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"4894-4903"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the technical improvement of the turbine runner of a power station based on improving stability 基于提高稳定性的电站涡轮转轮技术改进研究
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-24 DOI: 10.1002/ese3.1898
Shenhui Li, Bing Yao, Jiayang Pang, Demin Liu, Dan Chengmei, Dengyun Jiang, Haiqi Wang, Yuanyuan Gang, Huan Cheng, Xiaobing Liu

In view of problems such as the narrow efficiency area, large hydraulic vibration area, pressure pulsation, and serious sediment wear of turbines at the Futang hydropower station, the technical transformation of turbine runners was carried out by modifying the blade shape and increasing the blade thickness, and a combination of numerical simulations based on shear stress transport k–ω turbulence model and tests was adopted to improve the operational stability of power station units. Calculation and testing demonstrate an enlargement of the high-efficiency zone. Specifically, the optimal efficiency of the runner increases by 0.37%, while the rated efficiency rises by 0.19%. Significant reductions are observed in pressure pulsation within the draft tube and vaneless area decrease of approximately 50%. There is a high-frequency pressure pulsation in the vaneless zone and the runner under low-load conditions, and the influence of dynamic and static interference gradually weakens with the increase of opening. The draft tube is prone to eccentric vortex bands under partial working conditions, which causes the unit to be affected by low-frequency pulsation. This optimization also leads to a notable decrease in runner blade wear, with the maximum sand and water velocity reduced from 45 to 40 m/s, resulting in a 30% reduction in sand wear. Moreover, there is a substantial enhancement in the runner's stiffness, with the thickness of the blade near the high stress area of the upper crown and lower ring increasing by over 50%, and the weight of each individual blade increasing by more than 50%. These research findings validate that modifying the runner blade effectively improves flow patterns, reduces eddy current generation, minimizes pressure pulsation, widens the high-efficiency zone, decreases wear, and enhances the operational stability of the unit. The technical transformation method and research results of this study have important guiding significance for similar technical transformation of other power stations

针对富塘水电站水轮机高效区狭窄、水力振动区大、压力脉动、泥沙磨损严重等问题,通过修改叶片形状、增加叶片厚度等方法对水轮机转轮进行了技术改造,并采用基于剪应力输运 k-ω 湍流模型的数值模拟与试验相结合的方法,提高了电站机组的运行稳定性。计算和试验证明了高效区的扩大。具体而言,转轮的最佳效率提高了 0.37%,而额定效率提高了 0.19%。引流管内的压力脉动显著降低,无气泡面积减少了约 50%。低负荷条件下,无叶片区和流道内存在高频压力脉动,随着开度的增加,动静干扰的影响逐渐减弱。牵伸管在部分工况下容易产生偏心涡带,导致机组受到低频脉动的影响。这一优化还显著降低了转轮叶片的磨损,最大砂水流速从 45 米/秒降至 40 米/秒,使砂子磨损降低了 30%。此外,转轮的刚度也得到了大幅提高,靠近上冠和下环高应力区的叶片厚度增加了 50%以上,每个叶片的重量增加了 50%以上。这些研究结果验证了对转轮叶片的改造能有效改善流态、减少涡流产生、减少压力脉动、扩大高效区、减少磨损、提高机组运行稳定性。本研究的技术改造方法和研究成果对其他电站的类似技术改造具有重要的指导意义
{"title":"Research on the technical improvement of the turbine runner of a power station based on improving stability","authors":"Shenhui Li,&nbsp;Bing Yao,&nbsp;Jiayang Pang,&nbsp;Demin Liu,&nbsp;Dan Chengmei,&nbsp;Dengyun Jiang,&nbsp;Haiqi Wang,&nbsp;Yuanyuan Gang,&nbsp;Huan Cheng,&nbsp;Xiaobing Liu","doi":"10.1002/ese3.1898","DOIUrl":"https://doi.org/10.1002/ese3.1898","url":null,"abstract":"<p>In view of problems such as the narrow efficiency area, large hydraulic vibration area, pressure pulsation, and serious sediment wear of turbines at the Futang hydropower station, the technical transformation of turbine runners was carried out by modifying the blade shape and increasing the blade thickness, and a combination of numerical simulations based on shear stress transport <i>k–ω</i> turbulence model and tests was adopted to improve the operational stability of power station units. Calculation and testing demonstrate an enlargement of the high-efficiency zone. Specifically, the optimal efficiency of the runner increases by 0.37%, while the rated efficiency rises by 0.19%. Significant reductions are observed in pressure pulsation within the draft tube and vaneless area decrease of approximately 50%. There is a high-frequency pressure pulsation in the vaneless zone and the runner under low-load conditions, and the influence of dynamic and static interference gradually weakens with the increase of opening. The draft tube is prone to eccentric vortex bands under partial working conditions, which causes the unit to be affected by low-frequency pulsation. This optimization also leads to a notable decrease in runner blade wear, with the maximum sand and water velocity reduced from 45 to 40 m/s, resulting in a 30% reduction in sand wear. Moreover, there is a substantial enhancement in the runner's stiffness, with the thickness of the blade near the high stress area of the upper crown and lower ring increasing by over 50%, and the weight of each individual blade increasing by more than 50%. These research findings validate that modifying the runner blade effectively improves flow patterns, reduces eddy current generation, minimizes pressure pulsation, widens the high-efficiency zone, decreases wear, and enhances the operational stability of the unit. The technical transformation method and research results of this study have important guiding significance for similar technical transformation of other power stations</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4582-4597"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1898","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization study of Wadi Thamad oil shale: Towards a new source of energy in Jordan 瓦迪塔玛德油页岩特征研究:在约旦开发新能源
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-23 DOI: 10.1002/ese3.1882
Nada M. Al-Ananzeh, Khalid Bani-Melhem, Hussam Elddin Khasawneh, Asem Al-Jarrah, Ibrahim F. Abuawwad

Jordan's energy sector faces significant challenges due to rising fuel prices, making the exploration of local energy resources crucial. The abundant oil shale deposits in Wadi Thamad present a promising opportunity. Since Wadi Thamad oil shale has never been studied before, this research focuses on the Wadi Thamad basin near Madaba, Jordan, aiming to comprehensively characterize its oil shale using advanced analytical techniques. Using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray fluorescence, scanning electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry, this study assesses the mineralogical, chemical, and thermal properties of Wadi Thamad oil shale. The findings reveal calcite and quartz as the primary minerals, with significant aliphatic, CO2, hydroxyl, and carboxyl groups. Elemental analysis highlights essential oxides, such as CaO and SiO2. Fischer assay results indicate an oil content of 5.3–10.1 wt%, a gross-calorific value of 4.56–7.69 MJ/kg, and a sulfur content of 1.77–2.10 wt%. The peak pyrolysis temperature is 432.4°C from TGA. This research's novelty lies in its comprehensive approach to characterizing the underexplored Wadi Thamad oil shale basin. The findings enhance the understanding of Wadi Thamad's geological composition and underscore its potential as a local energy resource, contributing valuable data to Jordan's energy portfolio and offering economic benefits.

由于燃料价格不断上涨,约旦的能源行业面临着巨大挑战,因此勘探当地能源资源至关重要。瓦迪塔玛德丰富的油页岩矿藏提供了一个大有可为的机会。由于此前从未对瓦迪-塔马德油页岩进行过研究,本研究将重点放在约旦马德巴附近的瓦迪-塔马德盆地,旨在利用先进的分析技术全面描述其油页岩的特征。本研究使用 X 射线衍射、傅立叶变换红外光谱、X 射线荧光、扫描电子显微镜、热重分析 (TGA) 和差示扫描量热法评估了瓦迪塔玛德油页岩的矿物学、化学和热特性。研究结果表明,方解石和石英是主要矿物,其中含有大量脂肪族、二氧化碳、羟基和羧基。元素分析突出了重要的氧化物,如 CaO 和 SiO2。费休测定结果表明,油含量为 5.3-10.1 wt%,总热值为 4.56-7.69 MJ/kg,硫含量为 1.77-2.10 wt%。根据 TGA,热解峰值温度为 432.4°C。这项研究的新颖之处在于它采用了全面的方法来描述未充分勘探的瓦迪塔玛德油页岩盆地。研究结果加深了人们对瓦迪-塔马德油页岩地质成分的了解,强调了其作为当地能源资源的潜力,为约旦的能源组合提供了宝贵的数据,并带来了经济效益。
{"title":"A characterization study of Wadi Thamad oil shale: Towards a new source of energy in Jordan","authors":"Nada M. Al-Ananzeh,&nbsp;Khalid Bani-Melhem,&nbsp;Hussam Elddin Khasawneh,&nbsp;Asem Al-Jarrah,&nbsp;Ibrahim F. Abuawwad","doi":"10.1002/ese3.1882","DOIUrl":"https://doi.org/10.1002/ese3.1882","url":null,"abstract":"<p>Jordan's energy sector faces significant challenges due to rising fuel prices, making the exploration of local energy resources crucial. The abundant oil shale deposits in Wadi Thamad present a promising opportunity. Since Wadi Thamad oil shale has never been studied before, this research focuses on the Wadi Thamad basin near Madaba, Jordan, aiming to comprehensively characterize its oil shale using advanced analytical techniques. Using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray fluorescence, scanning electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry, this study assesses the mineralogical, chemical, and thermal properties of Wadi Thamad oil shale. The findings reveal calcite and quartz as the primary minerals, with significant aliphatic, CO<sub>2</sub>, hydroxyl, and carboxyl groups. Elemental analysis highlights essential oxides, such as CaO and SiO<sub>2</sub>. Fischer assay results indicate an oil content of 5.3–10.1 wt%, a gross-calorific value of 4.56–7.69 MJ/kg, and a sulfur content of 1.77–2.10 wt%. The peak pyrolysis temperature is 432.4°C from TGA. This research's novelty lies in its comprehensive approach to characterizing the underexplored Wadi Thamad oil shale basin. The findings enhance the understanding of Wadi Thamad's geological composition and underscore its potential as a local energy resource, contributing valuable data to Jordan's energy portfolio and offering economic benefits.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4180-4191"},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1882","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An energy consumption rectification method based on Bayesian linear regression and heating degree-days 基于贝叶斯线性回归和供热度日的能耗修正方法
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-20 DOI: 10.1002/ese3.1920
Shouchen Sun, Jiandong Wang, Qingdian Sun, Changsheng Zhao

The time-varying external environment is one of the main variables influencing heating energy consumptions, so that its influence should be rectified when energy savings of different heating modes are calculated. This paper proposes an energy consumption rectification method based on Bayesian linear regression and heating degree-days, to obtain heating energy consumptions without the influence of different outdoor temperatures. The proposed method consists of three main steps. First, a physical model of heating houses is used to prove a relationship between energy consumptions and heating degree-days. Second, Bayesian linear regression is exploited to estimate uncertainty ranges of heating energy consumptions. Finally, heating energy consumptions are rectified, and energy savings with their uncertainty ranges for different heating modes under the same outdoor temperature are obtained. The proposed method does not require the physical parameters of heating houses to facilitate practical implementation. Additionally, it provides uncertainty ranges of heating energy consumptions to measure the estimation accuracy. Numerical and experimental examples show that the proposed method provides more accurate estimates of heating energy consumptions than existing methods.

外部环境的时变性是影响采暖能耗的主要变量之一,因此在计算不同采暖模式的节能效果时,应修正其影响。本文提出了一种基于贝叶斯线性回归和采暖度日的能耗修正方法,以获得不受室外不同温度影响的采暖能耗。建议的方法包括三个主要步骤。首先,使用供暖房屋的物理模型来证明能源消耗与供暖度日之间的关系。其次,利用贝叶斯线性回归估算供暖能耗的不确定性范围。最后,对采暖能耗进行修正,得出在相同室外温度下不同采暖模式的节能效果及其不确定性范围。所提出的方法不需要供暖房屋的物理参数,便于实际应用。此外,它还提供了供热能耗的不确定范围,以衡量估算的准确性。数值和实验实例表明,与现有方法相比,建议的方法能提供更准确的供热能耗估算。
{"title":"An energy consumption rectification method based on Bayesian linear regression and heating degree-days","authors":"Shouchen Sun,&nbsp;Jiandong Wang,&nbsp;Qingdian Sun,&nbsp;Changsheng Zhao","doi":"10.1002/ese3.1920","DOIUrl":"https://doi.org/10.1002/ese3.1920","url":null,"abstract":"<p>The time-varying external environment is one of the main variables influencing heating energy consumptions, so that its influence should be rectified when energy savings of different heating modes are calculated. This paper proposes an energy consumption rectification method based on Bayesian linear regression and heating degree-days, to obtain heating energy consumptions without the influence of different outdoor temperatures. The proposed method consists of three main steps. First, a physical model of heating houses is used to prove a relationship between energy consumptions and heating degree-days. Second, Bayesian linear regression is exploited to estimate uncertainty ranges of heating energy consumptions. Finally, heating energy consumptions are rectified, and energy savings with their uncertainty ranges for different heating modes under the same outdoor temperature are obtained. The proposed method does not require the physical parameters of heating houses to facilitate practical implementation. Additionally, it provides uncertainty ranges of heating energy consumptions to measure the estimation accuracy. Numerical and experimental examples show that the proposed method provides more accurate estimates of heating energy consumptions than existing methods.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4720-4736"},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a resilient framework for electric vehicle charging stations harnessing solar energy, standby batteries and grid integration with advanced control mechanisms 利用太阳能、备用电池和电网集成先进的控制机制,为电动汽车充电站开发弹性框架
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-19 DOI: 10.1002/ese3.1888
Debabrata Mazumdar, Pabitra K. Biswas, Chiranjit Sain, Furkan Ahmad, Luluwah Al-Fagih

A direct consequence of the rapid expansion of civilization and modernization trends is the escalation in global warming and the consequential climatic upheavals. The world has actively advocated the adoption of electric vehicles (EVs) as a response to the environmental challenges posed by vehicular emissions. It is evident that conventional fuel-based charging infrastructures are economically impractical and lack organizational cohesion in light of the proliferation of EVs. An EV charging station powered by renewable energy presents a promising opportunity for enhancing flexibility and control. It is imperative that EV charging stations be equipped with solar power and standby batteries (SBBs). Consequently, this article presents and evaluates a system that utilizes a proportional-integral-derivative controller, a neural network-equipped grid and a charging station utilizing a Dragon Fly Optimization Algorithm to generate power and a maximum power point tracking controller. To achieve optimal power management within the charging station, MATLAB/Simulink is used to implement and rigorously test the proposed system. It orchestrates the interaction between the solar panel, backup battery, grid and EVs. Compared to existing systems in the literature, the comprehensive system exhibits commendable efficiency. Due to the pivotal role played by grid integration and the SBB, the system can ensure a reliable power supply to the charging station under any weather conditions.

文明的快速发展和现代化趋势的直接后果是全球变暖的加剧和随之而来的气候动荡。为应对汽车尾气排放带来的环境挑战,全世界都在积极倡导采用电动汽车(EV)。显然,传统的燃料充电基础设施在经济上不切实际,而且在电动汽车激增的情况下缺乏组织凝聚力。以可再生能源为动力的电动汽车充电站为提高灵活性和控制性提供了一个大有可为的机会。电动汽车充电站必须配备太阳能和备用电池(SBB)。因此,本文介绍并评估了一个系统,该系统利用比例-积分-派生控制器、配备神经网络的电网和充电站,利用龙飞优化算法发电和最大功率点跟踪控制器。为了在充电站内实现最佳电源管理,MATLAB/Simulink 被用来实现和严格测试所提出的系统。该系统协调太阳能电池板、备用电池、电网和电动汽车之间的互动。与文献中的现有系统相比,该综合系统的效率值得称赞。由于电网集成和 SBB 发挥了关键作用,该系统可确保在任何天气条件下为充电站提供可靠的电力供应。
{"title":"Developing a resilient framework for electric vehicle charging stations harnessing solar energy, standby batteries and grid integration with advanced control mechanisms","authors":"Debabrata Mazumdar,&nbsp;Pabitra K. Biswas,&nbsp;Chiranjit Sain,&nbsp;Furkan Ahmad,&nbsp;Luluwah Al-Fagih","doi":"10.1002/ese3.1888","DOIUrl":"https://doi.org/10.1002/ese3.1888","url":null,"abstract":"<p>A direct consequence of the rapid expansion of civilization and modernization trends is the escalation in global warming and the consequential climatic upheavals. The world has actively advocated the adoption of electric vehicles (EVs) as a response to the environmental challenges posed by vehicular emissions. It is evident that conventional fuel-based charging infrastructures are economically impractical and lack organizational cohesion in light of the proliferation of EVs. An EV charging station powered by renewable energy presents a promising opportunity for enhancing flexibility and control. It is imperative that EV charging stations be equipped with solar power and standby batteries (SBBs). Consequently, this article presents and evaluates a system that utilizes a proportional-integral-derivative controller, a neural network-equipped grid and a charging station utilizing a Dragon Fly Optimization Algorithm to generate power and a maximum power point tracking controller. To achieve optimal power management within the charging station, MATLAB/Simulink is used to implement and rigorously test the proposed system. It orchestrates the interaction between the solar panel, backup battery, grid and EVs. Compared to existing systems in the literature, the comprehensive system exhibits commendable efficiency. Due to the pivotal role played by grid integration and the SBB, the system can ensure a reliable power supply to the charging station under any weather conditions.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4355-4370"},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1888","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel solar radiation forecasting model based on time series imaging and bidirectional long short-term memory network 基于时间序列成像和双向长短期记忆网络的新型太阳辐射预报模型
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-19 DOI: 10.1002/ese3.1875
Zhaoshuang He, Xue Zhang, Min Li, Shaoquan Wang, Gongwei Xiao

The instability of solar energy is the biggest challenge to its successful integration with modern power grids, and accurate prediction of long-term solar radiation can effectively solve this problem. In this study, we proposed a novel long-term solar radiation prediction model based on time series imaging and bidirectional long short-term memory network. First, inspired by the computer vision algorithm, the recursive graph algorithm is used to transform the one-dimensional time series into two-dimensional images, and then convolutional neural network is used to extract the features from the images, thus, the deeper features in the original solar radiation data can be mined. Second, to solve the problem of low accuracy of long-term solar radiation prediction, a hybrid model BiLSTM-Transformer is used to predict long-term solar radiation. The hybrid prediction model can capture the long-term dependencies, thereby further improving the accuracy of the prediction model. The experimental results show that the hybrid model proposed in this study is superior to other single models and hybrid models in long-term solar radiation prediction accuracy. The accuracy and stability of the hybrid model are verified by many tests.

太阳能的不稳定性是其成功并入现代电网的最大挑战,而准确预测长期太阳辐射可有效解决这一问题。在这项研究中,我们提出了一种基于时间序列成像和双向长短期记忆网络的新型长期太阳辐射预测模型。首先,受计算机视觉算法的启发,利用递归图算法将一维时间序列转换为二维图像,然后利用卷积神经网络从图像中提取特征,从而挖掘出原始太阳辐射数据中的深层特征。其次,为解决长期太阳辐射预测精度低的问题,采用 BiLSTM-Transformer 混合模型预测长期太阳辐射。混合预测模型可以捕捉长期依赖关系,从而进一步提高预测模型的准确性。实验结果表明,本研究提出的混合模型在长期太阳辐射预测精度方面优于其他单一模型和混合模型。混合模型的准确性和稳定性也得到了多次试验的验证。
{"title":"A novel solar radiation forecasting model based on time series imaging and bidirectional long short-term memory network","authors":"Zhaoshuang He,&nbsp;Xue Zhang,&nbsp;Min Li,&nbsp;Shaoquan Wang,&nbsp;Gongwei Xiao","doi":"10.1002/ese3.1875","DOIUrl":"https://doi.org/10.1002/ese3.1875","url":null,"abstract":"<p>The instability of solar energy is the biggest challenge to its successful integration with modern power grids, and accurate prediction of long-term solar radiation can effectively solve this problem. In this study, we proposed a novel long-term solar radiation prediction model based on time series imaging and bidirectional long short-term memory network. First, inspired by the computer vision algorithm, the recursive graph algorithm is used to transform the one-dimensional time series into two-dimensional images, and then convolutional neural network is used to extract the features from the images, thus, the deeper features in the original solar radiation data can be mined. Second, to solve the problem of low accuracy of long-term solar radiation prediction, a hybrid model BiLSTM-Transformer is used to predict long-term solar radiation. The hybrid prediction model can capture the long-term dependencies, thereby further improving the accuracy of the prediction model. The experimental results show that the hybrid model proposed in this study is superior to other single models and hybrid models in long-term solar radiation prediction accuracy. The accuracy and stability of the hybrid model are verified by many tests.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"4876-4893"},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1875","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visual analysis of coal mine safety using CiteSpace V 利用 CiteSpace V 对煤矿安全进行可视化分析
IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-09-19 DOI: 10.1002/ese3.1889
Xuesen Zhang, Li Yang

To intuitively and systematically grasp the development status and trend of safety evaluation research in China's coal mining operations, we consulted relevant literature in the fields of “coal mine” and “safety evaluation” collected by China Knowledge Network, and deployed CiteSpace V software to summarize and analyze research pertaining to safety evaluation in China's coal mines from three aspects: research institutions, authors, and hot keywords. With respect to research institutions, the results show that although many researchers have conducted in-depth evaluations of coal mine safety, most of these studies were independent, and two-way information exchange and cooperation between research institutions remains scarce. With respect to authors, most cooperation between authors has been limited to team members, and relatively stable research teams have been formed. However, most of these research teams are independent. With respect to hot keywords, the trends of coal mine safety evaluation studies exhibit continuous change, with an overall increase in richness. According to the frequency burst times of important keywords, “entropy weight method” and “mining with pressure” are expected to remain important keywords in future evaluations of coal mine safety in China.

为直观、系统地掌握我国煤矿安全评价研究的发展现状和趋势,我们查阅了中国知网收录的 "煤矿 "和 "安全评价 "领域的相关文献,并利用CiteSpace V软件从研究机构、作者和热点关键词三个方面对我国煤矿安全评价研究进行了归纳和分析。在研究机构方面,研究结果表明,虽然许多研究人员对煤矿安全进行了深入评价,但这些研究大多是独立进行的,研究机构之间的双向信息交流与合作仍然较少。在作者方面,大多数作者之间的合作仅限于团队成员,形成了相对稳定的研究团队。不过,这些研究团队大多是独立的。在热点关键词方面,煤矿安全评价研究呈现持续变化的趋势,整体丰富度有所增加。从重要关键词的频发次数来看,"熵权法 "和 "带压开采 "仍将是未来中国煤矿安全评价的重要关键词。
{"title":"Visual analysis of coal mine safety using CiteSpace V","authors":"Xuesen Zhang,&nbsp;Li Yang","doi":"10.1002/ese3.1889","DOIUrl":"https://doi.org/10.1002/ese3.1889","url":null,"abstract":"<p>To intuitively and systematically grasp the development status and trend of safety evaluation research in China's coal mining operations, we consulted relevant literature in the fields of “coal mine” and “safety evaluation” collected by China Knowledge Network, and deployed CiteSpace V software to summarize and analyze research pertaining to safety evaluation in China's coal mines from three aspects: research institutions, authors, and hot keywords. With respect to research institutions, the results show that although many researchers have conducted in-depth evaluations of coal mine safety, most of these studies were independent, and two-way information exchange and cooperation between research institutions remains scarce. With respect to authors, most cooperation between authors has been limited to team members, and relatively stable research teams have been formed. However, most of these research teams are independent. With respect to hot keywords, the trends of coal mine safety evaluation studies exhibit continuous change, with an overall increase in richness. According to the frequency burst times of important keywords, “entropy weight method” and “mining with pressure” are expected to remain important keywords in future evaluations of coal mine safety in China.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4429-4440"},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energy Science & Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1