首页 > 最新文献

Engineering with Computers最新文献

英文 中文
Boundary parameter matching for isogeometric analysis using Schwarz–Christoffel mapping 利用施瓦茨-克里斯托弗映射进行等时几何分析的边界参数匹配
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-03 DOI: 10.1007/s00366-024-02020-z
Ye Ji, Matthias Möller, Yingying Yu, Chungang Zhu

Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. Existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz–Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter matching method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows.

等几何分析带来了工程学科计算模拟与几何设计整合的范式转变。这种技术需要对物理域进行适合分析的参数化,以充分利用计算机辅助设计和计算机辅助工程分析之间的协同作用。现有方法通常固定边界参数,导致在流体通道和管状反应器等细长几何形状中面临挑战。本文针对边界参数匹配问题提出了一种创新解决方案,专为适合分析的参数化而设计。我们采用了复杂的施瓦茨-克里斯托弗映射技术,该技术在计算边界对应关系时非常重要。精炼的边界曲线重参数化过程对此进行了补充。我们的双策略方法保持了输入物理域的几何精确性和连续性,克服了现有重新参数化技术经常遇到的局限性。通过采用我们提出的边界参数匹配方法,我们表明,即使是简单的线性插值方法,也能有效地构建令人满意的、适合分析的参数化。与传统方法相比,我们的方法有了显著改进,能够生成适合分析且几何精确的模型,这对于确保获得精确的模拟结果至关重要。数值实验表明,所提出的方法能够提高等距几何分析工作流程的质量和可靠性。
{"title":"Boundary parameter matching for isogeometric analysis using Schwarz–Christoffel mapping","authors":"Ye Ji, Matthias Möller, Yingying Yu, Chungang Zhu","doi":"10.1007/s00366-024-02020-z","DOIUrl":"https://doi.org/10.1007/s00366-024-02020-z","url":null,"abstract":"<p>Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. Existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz–Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter matching method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics modeling of 3D traction force microscopy with application to cancer cell-induced degradation of the extracellular matrix 应用于癌细胞诱导的细胞外基质降解的三维牵引力显微镜多物理场建模
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-02 DOI: 10.1007/s00366-024-02017-8
Alejandro Apolinar-Fernández, Jorge Barrasa-Fano, Hans Van Oosterwyck, José A. Sanz-Herrera

3D Traction Force Microscopy (3DTFM) constitutes a powerful methodology that enables the computation of realistic forces exerted by cells on the surrounding extracellular matrix (ECM). The ECM is characterized by its highly dynamic structure, which is constantly remodeled in order to regulate most basic cellular functions and processes. Certain pathological processes, such as cancer and metastasis, alter the way the ECM is remodeled. In particular, cancer cells are able to invade its surrounding tissue by the secretion of metalloproteinases that degrade the extracellular matrix to move and migrate towards different tissues, inducing ECM heterogeneity. Typically, 3DTFM studies neglect such heterogeneity and assume homogeneous ECM properties, which can lead to inaccuracies in traction reconstruction. Some studies have implemented ECM degradation models into 3DTFM, but the associated degradation maps are defined in an ad hoc manner. In this paper, we present a novel multiphysics approach to 3DTFM with evolving mechanical properties of the ECM. Our modeling considers a system of partial differential equations based on the mechanisms of activation of diffusive metalloproteinase MMP2 by membrane-bound metalloproteinase MT1-MMP. The obtained ECM density maps in an ECM-mimicking hydrogel are then used to compute the heterogeneous mechanical properties of the hydrogel through a multiscale approach. We perform forward and inverse TFM simulations both accounting for and omitting degradation, and results are compared to ground truth reference solutions in which degradation is considered. The main conclusions resulting from the study are: (i) the inverse methodology yields results that are significantly more accurate than those provided by the forward methodology; (ii) ignoring ECM degradation results in a considerable overestimation of tractions and non negligible errors in all analyzed cases.

三维牵引力显微镜(3DTFM)是一种功能强大的方法,可以计算细胞对周围细胞外基质(ECM)施加的真实作用力。细胞外基质具有高度动态结构的特点,它不断重塑以调节大多数基本细胞功能和过程。某些病理过程,如癌症和转移,会改变 ECM 的重塑方式。特别是,癌细胞能够通过分泌金属蛋白酶降解细胞外基质来侵袭周围组织,从而向不同组织移动和迁移,诱发 ECM 异质性。通常情况下,3DTFM 研究忽略了这种异质性,并假设 ECM 属性是均质的,这可能导致牵引重建不准确。一些研究在 3DTFM 中采用了 ECM 降解模型,但相关的降解图都是临时定义的。在本文中,我们提出了一种新颖的多物理场 3DTFM 方法,该方法具有不断变化的 ECM 机械特性。我们的建模考虑了基于膜结合金属蛋白酶 MT1-MMP 激活扩散金属蛋白酶 MMP2 机制的偏微分方程系统。得到的 ECM 模拟水凝胶中的 ECM 密度图可用于通过多尺度方法计算水凝胶的异质机械性能。我们进行了考虑降解和不考虑降解的正向和反向 TFM 模拟,并将结果与考虑降解的地面实况参考方案进行了比较。研究得出的主要结论是(i) 逆向方法得出的结果比正向方法得出的结果要精确得多;(ii) 忽略 ECM 降解会导致对牵引力的高估,并且在所有分析案例中都会产生不可忽略的误差。
{"title":"Multiphysics modeling of 3D traction force microscopy with application to cancer cell-induced degradation of the extracellular matrix","authors":"Alejandro Apolinar-Fernández, Jorge Barrasa-Fano, Hans Van Oosterwyck, José A. Sanz-Herrera","doi":"10.1007/s00366-024-02017-8","DOIUrl":"https://doi.org/10.1007/s00366-024-02017-8","url":null,"abstract":"<p>3D Traction Force Microscopy (3DTFM) constitutes a powerful methodology that enables the computation of realistic forces exerted by cells on the surrounding extracellular matrix (ECM). The ECM is characterized by its highly dynamic structure, which is constantly remodeled in order to regulate most basic cellular functions and processes. Certain pathological processes, such as cancer and metastasis, alter the way the ECM is remodeled. In particular, cancer cells are able to invade its surrounding tissue by the secretion of metalloproteinases that degrade the extracellular matrix to move and migrate towards different tissues, inducing ECM heterogeneity. Typically, 3DTFM studies neglect such heterogeneity and assume homogeneous ECM properties, which can lead to inaccuracies in traction reconstruction. Some studies have implemented ECM degradation models into 3DTFM, but the associated degradation maps are defined in an <i>ad hoc</i> manner. In this paper, we present a novel multiphysics approach to 3DTFM with evolving mechanical properties of the ECM. Our modeling considers a system of partial differential equations based on the mechanisms of activation of diffusive metalloproteinase MMP2 by membrane-bound metalloproteinase MT1-MMP. The obtained ECM density maps in an ECM-mimicking hydrogel are then used to compute the heterogeneous mechanical properties of the hydrogel through a multiscale approach. We perform forward and inverse TFM simulations both accounting for and omitting degradation, and results are compared to ground truth reference solutions in which degradation is considered. The main conclusions resulting from the study are: (i) the inverse methodology yields results that are significantly more accurate than those provided by the forward methodology; (ii) ignoring ECM degradation results in a considerable overestimation of tractions and non negligible errors in all analyzed cases.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deal.t: an implementation of multivariate analysis suitable T-splines within the deal.ii framework Deal.t:在 deal.ii 框架内实现适合 T 样条的多元分析
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-02 DOI: 10.1007/s00366-024-02002-1
Sven Beuchler, Robin Hiniborch, Philipp Morgenstern

We present a numerical framework for solving partial differential equations within an isogeometric context using T-splines in two and three space dimensions. Within this paper, we explain the data structures used for the implementation of deal.t (deal.II with T-splines) and main differences when using deal.t in contrast to deal.II. The authors present numerical experiments with error-based refinement (2D) and a priori refinement (3D) for scalar-valued problems. A full tutorial is given in the appendix. Since the new framework is based on deal.II, T-splines may be applied to various different PDEs.

我们提出了一个数值框架,用于在二维和三维空间中使用 Tplines 解决等几何背景下的偏微分方程。在本文中,我们解释了用于实现 deal.t(带 T 样条的 deal.II)的数据结构,以及使用 deal.t 与 deal.II 的主要区别。作者介绍了对标量值问题进行基于误差的细化(2D)和先验细化(3D)的数值实验。附录中提供了完整的教程。由于新框架基于 deal.II,T-样条曲线可应用于各种不同的 PDE。
{"title":"Deal.t: an implementation of multivariate analysis suitable T-splines within the deal.ii framework","authors":"Sven Beuchler, Robin Hiniborch, Philipp Morgenstern","doi":"10.1007/s00366-024-02002-1","DOIUrl":"https://doi.org/10.1007/s00366-024-02002-1","url":null,"abstract":"<p>We present a numerical framework for solving partial differential equations within an isogeometric context using T-splines in two and three space dimensions. Within this paper, we explain the data structures used for the implementation of <span>deal.t</span> (<span>deal.II</span> with T-splines) and main differences when using <span>deal.t</span> in contrast to <span>deal.II</span>. The authors present numerical experiments with error-based refinement (2D) and a priori refinement (3D) for scalar-valued problems. A full tutorial is given in the appendix. Since the new framework is based on <span>deal.II</span>, T-splines may be applied to various different PDEs.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isogeometric analysis based mesh adaptation for time dependent problems 基于等时分析的时间相关问题网格调整
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-01 DOI: 10.1007/s00366-024-02009-8
Mustapha Bahari, Abderrahmane Habbal, Ahmed Ratnani

This article presents a new algorithm designed to create a dynamic r-adaptive mesh within the framework of isogeometric analysis. The approach is based on the simultaneous computation of adaptive meshes using a nonlinear parabolic Monge–Ampere equation with a resolution of partial differential equations in multidimensional spaces. The technique ensures the absence of geometric boundary errors and is simple to implement, requiring the solution of only one Laplace scalar equation at each time step. It utilizes a fast diagonalization method that can be adapted to any dimension. Various numerical experiments were conducted to validate an original parabolic Monge–Ampere solver. The solver was respectively applied to Burgers, Allen–Cahn, and Cahn–Hilliard problems to demonstrate the efficiency of the new approach.

本文介绍了一种新算法,旨在等几何分析框架内创建动态 r 自适应网格。该方法基于同时计算自适应网格,使用非线性抛物线蒙日-安培方程和多维空间偏微分方程解析。该技术可确保不出现几何边界误差,而且实施简单,只需在每个时间步解决一个拉普拉斯标量方程。它采用快速对角化方法,可适用于任何维度。为了验证最初的抛物线蒙日-安培求解器,我们进行了各种数值实验。该求解器分别应用于 Burgers、Allen-Cahn 和 Cahn-Hilliard 问题,以证明新方法的效率。
{"title":"Isogeometric analysis based mesh adaptation for time dependent problems","authors":"Mustapha Bahari, Abderrahmane Habbal, Ahmed Ratnani","doi":"10.1007/s00366-024-02009-8","DOIUrl":"https://doi.org/10.1007/s00366-024-02009-8","url":null,"abstract":"<p>This article presents a new algorithm designed to create a dynamic r-adaptive mesh within the framework of isogeometric analysis. The approach is based on the simultaneous computation of adaptive meshes using a nonlinear parabolic Monge–Ampere equation with a resolution of partial differential equations in multidimensional spaces. The technique ensures the absence of geometric boundary errors and is simple to implement, requiring the solution of only one Laplace scalar equation at each time step. It utilizes a fast diagonalization method that can be adapted to any dimension. Various numerical experiments were conducted to validate an original parabolic Monge–Ampere solver. The solver was respectively applied to Burgers, Allen–Cahn, and Cahn–Hilliard problems to demonstrate the efficiency of the new approach.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods 声学中的不确定性分析:扰动法和等几何边界元法
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-01 DOI: 10.1007/s00366-024-02018-7
Leilei Chen, Haojie Lian, Ruijin Huo, Jing Du, Weisong Liu, Zhuxuan Meng, Stéphane P. A. Bordas

This study proposes a generalized nth-order perturbation method based on (isogeometric) boundary element methods for uncertainty analysis in 3D acoustic scattering problems. In this paper, for the first time, we derive nth-order Taylor expansions of 3D acoustic boundary integral equations, taking incident wave frequency as a random input variable. In addition, subdivision surface basis functions used in geometric modeling are employed to discretize the generalized nth-order derivative boundary integral equations, in order to avoid cumbersome meshing procedure and retain geometric accuracy. Moreover, the fast multipole method is introduced to accelerate the stochastic perturbation analysis with boundary element methods. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed uncertainty quantification algorithm.

本研究提出了一种基于(等几何)边界元方法的广义 nth 阶扰动方法,用于三维声散射问题的不确定性分析。本文首次将入射波频率作为随机输入变量,推导出三维声学边界积分方程的 nth 阶泰勒展开。此外,为了避免繁琐的网格划分过程并保持几何精度,我们采用了几何建模中使用的细分曲面基函数来离散广义 nth 阶导数边界积分方程。此外,还引入了快速多极子方法,以加速边界元方法的随机扰动分析。通过给出数值示例,证明了所提出的不确定性量化算法的准确性和高效性。
{"title":"Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods","authors":"Leilei Chen, Haojie Lian, Ruijin Huo, Jing Du, Weisong Liu, Zhuxuan Meng, Stéphane P. A. Bordas","doi":"10.1007/s00366-024-02018-7","DOIUrl":"https://doi.org/10.1007/s00366-024-02018-7","url":null,"abstract":"<p>This study proposes a generalized <i>n</i>th-order perturbation method based on (isogeometric) boundary element methods for uncertainty analysis in 3D acoustic scattering problems. In this paper, for the first time, we derive <i>n</i>th-order Taylor expansions of 3D acoustic boundary integral equations, taking incident wave frequency as a random input variable. In addition, subdivision surface basis functions used in geometric modeling are employed to discretize the generalized <i>n</i>th-order derivative boundary integral equations, in order to avoid cumbersome meshing procedure and retain geometric accuracy. Moreover, the fast multipole method is introduced to accelerate the stochastic perturbation analysis with boundary element methods. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed uncertainty quantification algorithm.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving acoustic scattering problems by the isogeometric boundary element method 用等几何边界元法解决声散射问题
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-01 DOI: 10.1007/s00366-024-02013-y
Jürgen Dölz, Helmut Harbrecht, Michael Multerer

We solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regularization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. Numerical experiments are performed which show the feasibility and the performance of the approach.

我们通过等几何边界积分方程法解决声散射问题。为了避免虚假模式,我们应用了声硬散射体或声软散射体的组合场积分方程。这些积分方程采用 Galerkin 方法进行离散化处理,尤其能对超正弦积分算子进行正确的数学正则化处理。为了避开密集的系统矩阵,我们采用了等几何嵌入式快速多极法,该方法基于在参考域而非空间对所考虑的核函数进行插值。为了克服在评估点较多的情况下势能评估成本过高的问题,我们还采用了在空间进行插值的快速多极法来加速势能评估。这样就产生了一种频率稳定的算法,其规模与自由度和电位点的数量基本成线性关系。我们进行的数值实验表明了该方法的可行性和性能。
{"title":"Solving acoustic scattering problems by the isogeometric boundary element method","authors":"Jürgen Dölz, Helmut Harbrecht, Michael Multerer","doi":"10.1007/s00366-024-02013-y","DOIUrl":"https://doi.org/10.1007/s00366-024-02013-y","url":null,"abstract":"<p>We solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regularization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. Numerical experiments are performed which show the feasibility and the performance of the approach.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameterization, algorithmic modeling, and fluid–structure interaction analysis for generative design of transcatheter aortic valves 用于经导管主动脉瓣生成式设计的参数化、算法建模和流体-结构相互作用分析
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-27 DOI: 10.1007/s00366-024-01973-5
Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson

Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.

心脏瓣膜在维持人体心脏正常的心血管功能方面起着至关重要的作用;然而,瓣膜疾病会导致瓣膜功能失调和心血管性能下降。根据瓣膜疾病的范围和严重程度,通常需要进行置换手术,以确保心脏系统继续正常运行。最近,经导管主动脉瓣置换术(TAVR)作为外科手术置换方法的替代方法而崭露头角,因为这些植入手术中使用的经皮方法比开腹心脏手术的创伤性要小得多。尽管经导管器械具有诸多优势,但即使在成功的 TAVR 手术中,将这些瓣膜安全地植入主动脉所需的精确部署、适当的瓣膜尺寸和稳定的锚定仍然具有挑战性。本研究提出了一种经导管心脏瓣膜(THV)参数建模方法,该方法可实现灵活的瓣膜开发和尺寸确定,从而有效地生成现有和新型瓣膜设计。本研究展示了两种 THV 配置,使用沉浸式几何流固耦合(IMGA FSI)框架对其进行分析,以展示几何变化对 THV 性能的影响。所提出的建模框架说明了这些特征对 THV 行为的影响,并表明了参数建模方法在未来提高 THV 性能和功效的有效性。
{"title":"Parameterization, algorithmic modeling, and fluid–structure interaction analysis for generative design of transcatheter aortic valves","authors":"Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson","doi":"10.1007/s00366-024-01973-5","DOIUrl":"https://doi.org/10.1007/s00366-024-01973-5","url":null,"abstract":"<p>Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
iPINNs: incremental learning for Physics-informed neural networks iPINNs:物理信息神经网络的增量学习
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-22 DOI: 10.1007/s00366-024-02010-1
Aleksandr Dekhovich, Marcel H. F. Sluiter, David M. J. Tax, Miguel A. Bessa

Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations (PDEs). However, finding a set of neural network parameters that fulfill a PDE at the boundary and within the domain of interest can be challenging and non-unique due to the complexity of the loss landscape that needs to be traversed. Although a variety of multi-task learning and transfer learning approaches have been proposed to overcome these issues, no incremental training procedure has been proposed for PINNs. As demonstrated herein, by developing incremental PINNs (iPINNs) we can effectively mitigate such training challenges and learn multiple tasks (equations) sequentially without additional parameters for new tasks. Interestingly, we show that this also improves performance for every equation in the sequence. Our approach learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnetwork to overlap with previously learned subnetworks. We demonstrate that previous subnetworks are a good initialization for a new equation if PDEs share similarities. We also show that iPINNs achieve lower prediction error than regular PINNs for two different scenarios: (1) learning a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting from a combination of processes (e.g., 1-D reaction–diffusion PDE). The ability to learn all problems with a single network together with learning more complex PDEs with better generalization than regular PINNs will open new avenues in this field.

物理信息神经网络(PINN)近来已成为求解偏微分方程(PDE)的有力工具。然而,由于需要穿越的损失景观的复杂性,要在边界和感兴趣的域内找到一组满足偏微分方程的神经网络参数可能具有挑战性和非唯一性。虽然已经提出了多种多任务学习和迁移学习方法来克服这些问题,但还没有针对 PINN 提出增量训练程序。正如本文所展示的,通过开发增量 PINNs(iPINNs),我们可以有效地缓解这些训练难题,并连续学习多个任务(方程),而无需为新任务添加参数。有趣的是,我们发现这还能提高序列中每个方程的性能。我们的方法通过为每个 PDE 创建自己的子网络,并允许每个子网络与之前学习的子网络重叠,从最简单的 PDE 开始学习多个 PDE。我们证明,如果 PDE 有相似之处,以前的子网络对新方程来说是一个很好的初始化。我们还证明,在两种不同情况下,iPINN 比普通 PINN 的预测误差更低:(1) 学习一个方程组(如一维对流 PDE);(2) 学习由多个过程组合而成的 PDE(如一维反应-扩散 PDE)。用一个网络学习所有问题的能力,以及学习比普通 PINN 更复杂的 PDE 的能力,将为这一领域开辟新的道路。
{"title":"iPINNs: incremental learning for Physics-informed neural networks","authors":"Aleksandr Dekhovich, Marcel H. F. Sluiter, David M. J. Tax, Miguel A. Bessa","doi":"10.1007/s00366-024-02010-1","DOIUrl":"https://doi.org/10.1007/s00366-024-02010-1","url":null,"abstract":"<p>Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations (PDEs). However, finding a set of neural network parameters that fulfill a PDE at the boundary and within the domain of interest can be challenging and non-unique due to the complexity of the loss landscape that needs to be traversed. Although a variety of multi-task learning and transfer learning approaches have been proposed to overcome these issues, no incremental training procedure has been proposed for PINNs. As demonstrated herein, by developing incremental PINNs (iPINNs) we can effectively mitigate such training challenges and learn multiple tasks (equations) sequentially without additional parameters for new tasks. Interestingly, we show that this also improves performance for every equation in the sequence. Our approach learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnetwork to overlap with previously learned subnetworks. We demonstrate that previous subnetworks are a good initialization for a new equation if PDEs share similarities. We also show that iPINNs achieve lower prediction error than regular PINNs for two different scenarios: (1) learning a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting from a combination of processes (e.g., 1-D reaction–diffusion PDE). The ability to learn all problems with a single network together with learning more complex PDEs with better generalization than regular PINNs will open new avenues in this field.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine-learning-based peridynamic surrogate model for characterizing deformation and failure of materials and structures 基于机器学习的围动力代用模型,用于表征材料和结构的变形与失效
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-19 DOI: 10.1007/s00366-024-02014-x
Han Wang, Liwei Wu, Dan Huang, Jianwei Chen, Junbin Guo, Chuanqiang Yu, Yayun Li, Yichang Wu

It is necessary to determine the input features and output results when constructing a surrogate model within the data-driven neural network. Since the law of features would be restrained when the surrogate mechanical model is employed, it is still a challenge to build a set of natural features to accurately describe the failure process of materials and structures within the traditional continuum mechanics framework. To address this challenge, a robust approach for constructing a surrogate model within the peridynamic-deep learning framework is proposed in this study, which is capable of representing material deformation and failure explicitly. The presented surrogate model integrates both reference and current configuration data to refine input features, enhancing model training. We incorporate a batch-normalization layer before the activation function to mitigate common issues such as slow convergence, low prediction accuracy, and overfitting due to the large numerical differences in the damage dataset. Additionally, numerical analyses on several typical examples are performed to validate the effectiveness and generality of the present model and methodology. The results demonstrate high accuracy in the training set as well as the testing set, confirming the model’s excellent generalization ability and significant potential for material failure analysis. According to this work, more peridynamic expressions can be further derived in the machine-learning-based peridynamic surrogate model by considering the reinforcement learning and symbol space, to potentially broaden its applicability to a wider range of mechanical issues.

在数据驱动神经网络中构建代用模型时,有必要确定输入特征和输出结果。由于在使用代用力学模型时,特征规律会受到限制,因此在传统连续介质力学框架内建立一套自然特征来准确描述材料和结构的失效过程仍然是一个挑战。为了应对这一挑战,本研究提出了一种在周动态-深度学习框架内构建代用模型的稳健方法,该方法能够明确地表示材料的变形和失效。所提出的代用模型整合了参考数据和当前配置数据,以完善输入特征,从而加强模型训练。我们在激活函数之前加入了批量归一化层,以缓解收敛速度慢、预测精度低以及因损伤数据集数值差异大而导致的过拟合等常见问题。此外,还对几个典型实例进行了数值分析,以验证本模型和方法的有效性和通用性。结果表明,该模型在训练集和测试集中都具有很高的准确性,证实了其出色的泛化能力和在材料失效分析中的巨大潜力。根据这项工作,通过考虑强化学习和符号空间,基于机器学习的周动态代用模型可以进一步推导出更多的周动态表达式,从而有可能将其应用范围扩大到更广泛的机械问题上。
{"title":"A machine-learning-based peridynamic surrogate model for characterizing deformation and failure of materials and structures","authors":"Han Wang, Liwei Wu, Dan Huang, Jianwei Chen, Junbin Guo, Chuanqiang Yu, Yayun Li, Yichang Wu","doi":"10.1007/s00366-024-02014-x","DOIUrl":"https://doi.org/10.1007/s00366-024-02014-x","url":null,"abstract":"<p>It is necessary to determine the input features and output results when constructing a surrogate model within the data-driven neural network. Since the law of features would be restrained when the surrogate mechanical model is employed, it is still a challenge to build a set of natural features to accurately describe the failure process of materials and structures within the traditional continuum mechanics framework. To address this challenge, a robust approach for constructing a surrogate model within the peridynamic-deep learning framework is proposed in this study, which is capable of representing material deformation and failure explicitly. The presented surrogate model integrates both reference and current configuration data to refine input features, enhancing model training. We incorporate a batch-normalization layer before the activation function to mitigate common issues such as slow convergence, low prediction accuracy, and overfitting due to the large numerical differences in the damage dataset. Additionally, numerical analyses on several typical examples are performed to validate the effectiveness and generality of the present model and methodology. The results demonstrate high accuracy in the training set as well as the testing set, confirming the model’s excellent generalization ability and significant potential for material failure analysis. According to this work, more peridynamic expressions can be further derived in the machine-learning-based peridynamic surrogate model by considering the reinforcement learning and symbol space, to potentially broaden its applicability to a wider range of mechanical issues.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generic volume transfer for distributed mesh dynamic repartitioning 分布式网格动态重新划分的通用体积转移
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-18 DOI: 10.1007/s00366-024-02008-9
Guillaume Damiand, Fabrice Jaillet, Vincent Vidal

Efficient and distributed adaptive mesh construction and editing pose several challenges, including selecting the appropriate distributed data structure, choosing strategies for distributing computational load, and managing inter-processor communication. Distributed Combinatorial Maps permit the representation and editing of distributed 3D meshes. This paper addresses computation load and expands communication aspects through volume transfer operation and repartitioning strategies. This work is the first one defining such transfer for cells of any topology. We demonstrate the benefits of our method by presenting a parallel adaptive hexahedral subdivision operation, involving fully generic volumes, in a process including a conversion to conformal mesh and surface fitting. Our experiments compare different strategies using multithreading and MPI implementations to highlight the benefits of volume transfer. Special attention has been paid to generic aspects and adaptability of the framework.

高效的分布式自适应网格构建和编辑提出了多项挑战,包括选择合适的分布式数据结构、选择计算负荷分配策略以及管理处理器间通信。分布式组合映射允许表示和编辑分布式三维网格。本文通过体积转移操作和重新分区策略,解决了计算负荷和扩展通信方面的问题。这是第一项为任何拓扑结构的单元定义这种转移的工作。我们展示了并行自适应六面体细分操作,涉及完全通用的体,在此过程中包括转换为保形网格和曲面拟合,从而证明了我们方法的优势。我们的实验比较了使用多线程和 MPI 实现的不同策略,以突出体积转移的优势。我们特别关注框架的通用性和适应性。
{"title":"Generic volume transfer for distributed mesh dynamic repartitioning","authors":"Guillaume Damiand, Fabrice Jaillet, Vincent Vidal","doi":"10.1007/s00366-024-02008-9","DOIUrl":"https://doi.org/10.1007/s00366-024-02008-9","url":null,"abstract":"<p>Efficient and distributed adaptive mesh construction and editing pose several challenges, including selecting the appropriate distributed data structure, choosing strategies for distributing computational load, and managing inter-processor communication. Distributed Combinatorial Maps permit the representation and editing of distributed 3D meshes. This paper addresses computation load and expands communication aspects through volume transfer operation and repartitioning strategies. This work is the first one defining such transfer for cells of any topology. We demonstrate the benefits of our method by presenting a parallel adaptive hexahedral subdivision operation, involving fully generic volumes, in a process including a conversion to conformal mesh and surface fitting. Our experiments compare different strategies using multithreading and MPI implementations to highlight the benefits of volume transfer. Special attention has been paid to generic aspects and adaptability of the framework.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Engineering with Computers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1