首页 > 最新文献

Engineering with Computers最新文献

英文 中文
A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains 基于有限元的物理信息算子学习框架,用于任意域上的时空偏微分方程
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-08-02 DOI: 10.1007/s00366-024-02033-8
Yusuke Yamazaki, Ali Harandi, Mayu Muramatsu, Alexandre Viardin, Markus Apel, Tim Brepols, Stefanie Reese, Shahed Rezaei

We propose a novel finite element-based physics-informed operator learning framework that allows for predicting spatiotemporal dynamics governed by partial differential equations (PDEs). The Galerkin discretized weak formulation is employed to incorporate physics into the loss function, termed finite operator learning (FOL), along with the implicit Euler time integration scheme for temporal discretization. A transient thermal conduction problem is considered to benchmark the performance, where FOL takes a temperature field at the current time step as input and predicts a temperature field at the next time step. Upon training, the network successfully predicts the temperature evolution over time for any initial temperature field at high accuracy compared to the solution by the finite element method (FEM) even with a heterogeneous thermal conductivity and arbitrary geometry. The advantages of FOL can be summarized as follows: First, the training is performed in an unsupervised manner, avoiding the need for large data prepared from costly simulations or experiments. Instead, random temperature patterns generated by the Gaussian random process and the Fourier series, combined with constant temperature fields, are used as training data to cover possible temperature cases. Additionally, shape functions and backward difference approximation are exploited for the domain discretization, resulting in a purely algebraic equation. This enhances training efficiency, as one avoids time-consuming automatic differentiation in optimizing weights and biases while accepting possible discretization errors. Finally, thanks to the interpolation power of FEM, any arbitrary geometry with heterogeneous microstructure can be handled with FOL, which is crucial to addressing various engineering application scenarios.

我们提出了一种新颖的基于有限元的物理信息算子学习框架,可以预测由偏微分方程(PDE)控制的时空动态。我们采用 Galerkin 离散化弱公式将物理学纳入损失函数,称为有限算子学习(FOL),同时采用隐式欧拉时间积分方案进行时间离散化。FOL 将当前时间步的温度场作为输入,并预测下一时间步的温度场。经过训练后,该网络能成功预测任何初始温度场的温度随时间的变化情况,与有限元法(FEM)的解法相比,精度很高,即使是在异质热传导和任意几何形状的情况下也是如此。FOL 的优势可归纳如下:首先,训练以无监督的方式进行,避免了从昂贵的模拟或实验中准备大量数据的需要。相反,由高斯随机过程和傅里叶级数生成的随机温度模式与恒温场相结合,被用作训练数据,以涵盖可能的温度情况。此外,还利用形状函数和后向差分近似进行域离散化,从而得到纯代数方程。这就提高了训练效率,因为在优化权重和偏置时避免了耗时的自动微分,同时还能接受可能的离散化误差。最后,得益于有限元的插值能力,任何具有异质微观结构的任意几何形状都可以用 FOL 处理,这对于解决各种工程应用场景至关重要。
{"title":"A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains","authors":"Yusuke Yamazaki, Ali Harandi, Mayu Muramatsu, Alexandre Viardin, Markus Apel, Tim Brepols, Stefanie Reese, Shahed Rezaei","doi":"10.1007/s00366-024-02033-8","DOIUrl":"https://doi.org/10.1007/s00366-024-02033-8","url":null,"abstract":"<p>We propose a novel finite element-based physics-informed operator learning framework that allows for predicting spatiotemporal dynamics governed by partial differential equations (PDEs). The Galerkin discretized weak formulation is employed to incorporate physics into the loss function, termed finite operator learning (FOL), along with the implicit Euler time integration scheme for temporal discretization. A transient thermal conduction problem is considered to benchmark the performance, where FOL takes a temperature field at the current time step as input and predicts a temperature field at the next time step. Upon training, the network successfully predicts the temperature evolution over time for any initial temperature field at high accuracy compared to the solution by the finite element method (FEM) even with a heterogeneous thermal conductivity and arbitrary geometry. The advantages of FOL can be summarized as follows: First, the training is performed in an unsupervised manner, avoiding the need for large data prepared from costly simulations or experiments. Instead, random temperature patterns generated by the Gaussian random process and the Fourier series, combined with constant temperature fields, are used as training data to cover possible temperature cases. Additionally, shape functions and backward difference approximation are exploited for the domain discretization, resulting in a purely algebraic equation. This enhances training efficiency, as one avoids time-consuming automatic differentiation in optimizing weights and biases while accepting possible discretization errors. Finally, thanks to the interpolation power of FEM, any arbitrary geometry with heterogeneous microstructure can be handled with FOL, which is crucial to addressing various engineering application scenarios.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"75 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-to-mesh conversion method for multi-tissue medical image computing simulations 多组织医学图像计算模拟的图像-网格转换方法
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-08-01 DOI: 10.1007/s00366-024-02023-w
Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides

Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic mesh of high-quality elements. Next, the tetrahedral mesh is converted into a mixed element mesh of tetrahedra, pentahedra, and hexahedra to decrease element count while maintaining quality. Finally, the mesh surfaces are deformed to their corresponding physical image boundaries, improving the mesh’s fidelity. The deformation scheme builds upon the ITK open-source library and is based on the concept of energy minimization, relying on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of extracted feature points needed for the registration and, thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. We compare CBC3D with four widely used and state-of-the-art homegrown image-to-mesh conversion methods from industry and academia. Results indicate that the CBC3D meshes: (1) achieve high fidelity, (2) keep the element count reasonably low, and (3) exhibit good element quality.

如何将三维医学图像转换成三维网格,以满足预测模拟和图像引导手术的质量和保真度限制,仍然是一个关键问题。本文介绍了一种名为 CBC3D 的图像到网格转换方法。它首先通过生成高质量元素的自适应体心立方体网格对分割图像进行离散化。然后,将四面体网格转换为由四面体、五面体和六面体组成的混合元素网格,以减少元素数量,同时保证质量。最后,根据相应的物理图像边界对网格表面进行变形,从而提高网格的保真度。变形方案基于 ITK 开源库,以能量最小化概念为基础,依靠基于多材料点的注册。它使用非连接性模式来隐式控制注册所需的提取特征点的数量,从而调整所实现的网格保真度和变形速度之间的权衡。我们将 CBC3D 与工业界和学术界广泛使用的四种最先进的自创图像到网格转换方法进行了比较。结果表明,CBC3D 网格:(1) 实现了高保真,(2) 保持了合理的低元素数量,(3) 表现出良好的元素质量。
{"title":"Image-to-mesh conversion method for multi-tissue medical image computing simulations","authors":"Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides","doi":"10.1007/s00366-024-02023-w","DOIUrl":"https://doi.org/10.1007/s00366-024-02023-w","url":null,"abstract":"<p>Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic mesh of high-quality elements. Next, the tetrahedral mesh is converted into a mixed element mesh of tetrahedra, pentahedra, and hexahedra to decrease element count while maintaining quality. Finally, the mesh surfaces are deformed to their corresponding physical image boundaries, improving the mesh’s fidelity. The deformation scheme builds upon the ITK open-source library and is based on the concept of energy minimization, relying on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of extracted feature points needed for the registration and, thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. We compare CBC3D with four widely used and state-of-the-art homegrown image-to-mesh conversion methods from industry and academia. Results indicate that the CBC3D meshes: (1) achieve high fidelity, (2) keep the element count reasonably low, and (3) exhibit good element quality.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"43 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple scattering simulation via physics-informed neural networks 通过物理信息神经网络进行多重散射模拟
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-30 DOI: 10.1007/s00366-024-02038-3
Siddharth Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti

This work presents a physics-driven machine learning framework for the simulation of acoustic scattering problems. The proposed framework relies on a physics-informed neural network (PINN) architecture that leverages prior knowledge based on the physics of the scattering problem as well as a tailored network structure that embodies the concept of the superposition principle of linear wave interaction. The framework can also simulate the scattered field due to rigid scatterers having arbitrary shape as well as high-frequency problems. Unlike conventional data-driven neural networks, the PINN is trained by directly enforcing the governing equations describing the underlying physics, hence without relying on any labeled training dataset. Remarkably, the network model has significantly lower discretization dependence and offers simulation capabilities akin to parallel computation. This feature is particularly beneficial to address computational challenges typically associated with conventional mesh-dependent simulation methods. The performance of the network is investigated via a comprehensive numerical study that explores different application scenarios based on acoustic scattering.

本研究提出了一种物理驱动的机器学习框架,用于模拟声散射问题。提出的框架依赖于物理信息神经网络(PINN)架构,该架构利用了基于散射问题物理原理的先验知识,以及体现线性波相互作用叠加原理概念的定制网络结构。该框架还能模拟任意形状的刚性散射体所产生的散射场以及高频问题。与传统的数据驱动型神经网络不同,PINN 是通过直接执行描述底层物理的管理方程来进行训练的,因此无需依赖任何标注的训练数据集。值得注意的是,该网络模型的离散化依赖性大大降低,并提供了类似于并行计算的模拟能力。这一特点特别有利于解决与传统网格依赖模拟方法相关的计算难题。该网络的性能通过一项全面的数值研究进行了调查,该研究探索了基于声散射的不同应用场景。
{"title":"Multiple scattering simulation via physics-informed neural networks","authors":"Siddharth Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti","doi":"10.1007/s00366-024-02038-3","DOIUrl":"https://doi.org/10.1007/s00366-024-02038-3","url":null,"abstract":"<p>This work presents a physics-driven machine learning framework for the simulation of acoustic scattering problems. The proposed framework relies on a physics-informed neural network (PINN) architecture that leverages prior knowledge based on the physics of the scattering problem as well as a tailored network structure that embodies the concept of the superposition principle of linear wave interaction. The framework can also simulate the scattered field due to rigid scatterers having arbitrary shape as well as high-frequency problems. Unlike conventional data-driven neural networks, the PINN is trained by directly enforcing the governing equations describing the underlying physics, hence without relying on any labeled training dataset. Remarkably, the network model has significantly lower discretization dependence and offers simulation capabilities akin to parallel computation. This feature is particularly beneficial to address computational challenges typically associated with conventional mesh-dependent simulation methods. The performance of the network is investigated via a comprehensive numerical study that explores different application scenarios based on acoustic scattering.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"67 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stable meshfree method for simulations of munition penetration into earth 模拟弹药入土的稳定无网格方法
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-29 DOI: 10.1007/s00366-024-02028-5
Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian

Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.

事实证明,无网格方法(如重现核粒子法)在涉及材料分离、断裂、冲击等过度变形问题的建模中具有优势。然而,由于高应变率事件的不稳定性和次优收敛性,RKPM 的域集成仍然具有挑战性。虽然一些新的发展缓解了上述问题,但它们要么计算成本高昂,要么需要评估轮廓积分,而在使用无网格离散化的接触和材料分离问题中,这并不容易获得。本研究基于修正辛普森法则的扩展,开发了一种简单稳定的积分方法。该方法不受符合子域的限制,可直接应用于更新配置的无网格计算。为了建立穿透地球的模型,引入了标准粘性边界,以解决地面目标的截断计算域反射波问题。数值结果与不同地质材料和实验设置的实验数据进行了验证。
{"title":"A stable meshfree method for simulations of munition penetration into earth","authors":"Mohammed Mujtaba Atif, Sheng-Wei Chi, Xuejun Li, Jianfei Tian","doi":"10.1007/s00366-024-02028-5","DOIUrl":"https://doi.org/10.1007/s00366-024-02028-5","url":null,"abstract":"<p>Meshfree methods, such as the Reproducing Kernel Particle Method, have been proven advantageous in modeling excessive deformation problems involving material separation, fracture, impact, etc. However, the domain integration in RKPM remains challenging due to instability and sub-optimal convergence for high strain rate events. Although some novel developments alleviate the above issue, they are either computationally expensive or require evaluating the contour integral, which is not straightforward to obtain in contact and material separation problems using meshfree discretization. This work develops a simple and stable integration method based on the extension of modified Simpson’s rule. The method is free from conforming subdomains and can straightforwardly be applied to the meshfree formulation with updated configuration. To model penetration into the earth, a standard viscous boundary is introduced to address the issue of reflecting waves from the truncated computational domain for the ground target. The numerical results are validated with experimental data for various geo-materials and experimental setups.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"74 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-performance coupled digital twin based on heterogeneous data from multiple sources: a scissor lift platform example 基于多源异构数据的形状-性能耦合数字孪生:以剪式升降平台为例
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-29 DOI: 10.1007/s00366-024-02035-6
Hongjiang Lu, Zenggui Gao, Yanning Sun, Chaojia Gao, Zifeng Xu, Yunjie Pan, Lilan Liu

Digital twin, a concept of establishing mapping linkages between physical and digital areas using digital technology to achieve instantaneous information transfer for monitoring, optimization or decision-making. Digital twins has emerged as a crucial instrument for ensuring structural safety. However, achieving real-time prediction in time series for structural safety monitoring is challenging, as is the dynamic synthesis of heterogeneous data from numerous sources. This study presents a shape-performance coupled digital twin (SPC-DT) model that integrates heterogeneous data from various sources. The model combines structural analysis, reduced-order processing, and artificial intelligence techniques to incorporate geometric, performance, and sensor data. The aim is to enable dynamic monitoring of structural performance. Furthermore, the deployment of physical space and digital space was accomplished by constructing the SPC-DT model of the scissor lift platform as an illustrative example. The model's effectiveness was validated by a comparison of the measured results, the finite element calculation results, and the SPC-DT model prediction findings. Correlation and error analyses were conducted as part of this verification process. The time required for doing a performance study of complex heavy machinery is greatly decreased by the SPC-DT model. For instance, the SPC-DT prediction saves over 255 times the time cost in the structural prediction of a scissor lift when compared to finite element calculation. This creates a new opportunity for mechanical structure and system safety monitoring.

数字孪生,是指利用数字技术在物理区域和数字区域之间建立映射联系,以实现即时信息传输,从而进行监控、优化或决策。数字孪生已成为确保结构安全的重要工具。然而,在结构安全监控中实现时间序列的实时预测具有挑战性,对来自众多来源的异构数据进行动态合成也是如此。本研究提出了一种形状-性能耦合数字孪生(SPC-DT)模型,该模型整合了来自不同来源的异构数据。该模型结合了结构分析、降阶处理和人工智能技术,整合了几何、性能和传感器数据。其目的是实现对结构性能的动态监测。此外,通过构建剪叉式升降平台的 SPC-DT 模型作为示例,完成了物理空间和数字空间的部署。通过比较测量结果、有限元计算结果和 SPC-DT 模型预测结果,验证了模型的有效性。作为验证过程的一部分,还进行了相关性和误差分析。SPC-DT 模型大大减少了对复杂重型机械进行性能研究的时间。例如,与有限元计算相比,SPC-DT 预测为剪叉式升降机的结构预测节省了超过 255 倍的时间成本。这为机械结构和系统安全监测创造了新的机遇。
{"title":"Shape-performance coupled digital twin based on heterogeneous data from multiple sources: a scissor lift platform example","authors":"Hongjiang Lu, Zenggui Gao, Yanning Sun, Chaojia Gao, Zifeng Xu, Yunjie Pan, Lilan Liu","doi":"10.1007/s00366-024-02035-6","DOIUrl":"https://doi.org/10.1007/s00366-024-02035-6","url":null,"abstract":"<p>Digital twin, a concept of establishing mapping linkages between physical and digital areas using digital technology to achieve instantaneous information transfer for monitoring, optimization or decision-making. Digital twins has emerged as a crucial instrument for ensuring structural safety. However, achieving real-time prediction in time series for structural safety monitoring is challenging, as is the dynamic synthesis of heterogeneous data from numerous sources. This study presents a shape-performance coupled digital twin (SPC-DT) model that integrates heterogeneous data from various sources. The model combines structural analysis, reduced-order processing, and artificial intelligence techniques to incorporate geometric, performance, and sensor data. The aim is to enable dynamic monitoring of structural performance. Furthermore, the deployment of physical space and digital space was accomplished by constructing the SPC-DT model of the scissor lift platform as an illustrative example. The model's effectiveness was validated by a comparison of the measured results, the finite element calculation results, and the SPC-DT model prediction findings. Correlation and error analyses were conducted as part of this verification process. The time required for doing a performance study of complex heavy machinery is greatly decreased by the SPC-DT model. For instance, the SPC-DT prediction saves over 255 times the time cost in the structural prediction of a scissor lift when compared to finite element calculation. This creates a new opportunity for mechanical structure and system safety monitoring.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"74 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Updated Lagrangian particle hydrodynamics (ULPH) simulations of underwater bubble motions in three-dimensional space 三维空间水下气泡运动的最新拉格朗日粒子流体力学(ULPH)模拟
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-27 DOI: 10.1007/s00366-024-02032-9
Xingyu Kan, Jiale Yan, Shaofan Li, Jingzhu Wang, Yiwei Wang, Yonggang Chen

Rising bubbles are often encountered in many engineering fields and have diverse applications. A thorough understanding of bubble rising phenomenon is crucial in these engineering applications. In this study, we employ the developed updated Lagrangian particle hydrodynamics (ULPH) multiphase flow model to investigate the dynamic behavior of bubble flow in quiescent liquids, including bubble rise, deformation, fragmentation, and coalescence. First, a comprehensive numerical study of the influences of computational domain dimensions and fluid/bubble density ratios at the multiphase interface on bubble dynamics is conducted. Subsequently, a variety of scenarios featuring single bubble rising in viscous fluid media are examined. The ULPH simulation results are validated against experimental data, the Level-set (LS) method and Lattice Boltzmann Method (LBM) results. Furthermore, results of three calculations are presented, including dynamic characterization of two horizontal coaxial bubbles, three vertical coaxial bubbles and a single bubble in the presence of an obstacle. The results indicate that the established ULPH multiphase flow model is effective in accurately simulating dynamic characteristics of rising bubbles under various conditions, affirming its applicability in engineering analyses.

许多工程领域经常会遇到气泡上升现象,其应用也多种多样。全面了解气泡上升现象对这些工程应用至关重要。在本研究中,我们采用开发的更新拉格朗日粒子流体力学(ULPH)多相流模型来研究静态液体中气泡流动的动态行为,包括气泡上升、变形、破碎和凝聚。首先,对多相界面的计算域尺寸和流体/气泡密度比对气泡动力学的影响进行了全面的数值研究。随后,研究了粘性流体介质中单个气泡上升的各种情况。ULPH 模拟结果与实验数据、水平集(LS)方法和晶格玻尔兹曼方法(LBM)结果进行了验证。此外,还展示了三个计算结果,包括两个水平同轴气泡、三个垂直同轴气泡和一个有障碍物存在的单个气泡的动态特性。结果表明,已建立的 ULPH 多相流模型能有效准确地模拟上升气泡在各种条件下的动态特性,肯定了其在工程分析中的适用性。
{"title":"Updated Lagrangian particle hydrodynamics (ULPH) simulations of underwater bubble motions in three-dimensional space","authors":"Xingyu Kan, Jiale Yan, Shaofan Li, Jingzhu Wang, Yiwei Wang, Yonggang Chen","doi":"10.1007/s00366-024-02032-9","DOIUrl":"https://doi.org/10.1007/s00366-024-02032-9","url":null,"abstract":"<p>Rising bubbles are often encountered in many engineering fields and have diverse applications. A thorough understanding of bubble rising phenomenon is crucial in these engineering applications. In this study, we employ the developed updated Lagrangian particle hydrodynamics (ULPH) multiphase flow model to investigate the dynamic behavior of bubble flow in quiescent liquids, including bubble rise, deformation, fragmentation, and coalescence. First, a comprehensive numerical study of the influences of computational domain dimensions and fluid/bubble density ratios at the multiphase interface on bubble dynamics is conducted. Subsequently, a variety of scenarios featuring single bubble rising in viscous fluid media are examined. The ULPH simulation results are validated against experimental data, the Level-set (LS) method and Lattice Boltzmann Method (LBM) results. Furthermore, results of three calculations are presented, including dynamic characterization of two horizontal coaxial bubbles, three vertical coaxial bubbles and a single bubble in the presence of an obstacle. The results indicate that the established ULPH multiphase flow model is effective in accurately simulating dynamic characteristics of rising bubbles under various conditions, affirming its applicability in engineering analyses.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"4 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fixed-stress splitting method for nonlinear poroelasticity 非线性孔弹性的定应力分裂方法
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-26 DOI: 10.1007/s00366-024-02030-x
Johannes Kraus, Kundan Kumar, Maria Lymbery, Florin A. Radu

In this paper we consider a nonlinear poroelasticity model that describes the quasi-static mechanical behaviour of a fluid-saturated porous medium whose permeability depends on the divergence of the displacement. Such nonlinear models are typically used to study biological structures like tissues, organs, cartilage and bones, which are known for a nonlinear dependence of their permeability/hydraulic conductivity on solid dilatation. We formulate (extend to the present situation) one of the most popular splitting schemes, namely the fixed-stress split method for the iterative solution of the coupled problem. The method is proven to converge linearly for sufficiently small time steps under standard assumptions. The error contraction factor then is strictly less than one, independent of the Lamé parameters, Biot and storage coefficients if the hydraulic conductivity is a strictly positive and Lipschitz-continuous function.

在本文中,我们考虑了一种非线性孔弹性模型,该模型描述了渗透性取决于位移发散的流体饱和多孔介质的准静态力学行为。这种非线性模型通常用于研究组织、器官、软骨和骨骼等生物结构,这些结构的渗透率/液压传导性与固体扩张呈非线性关系。我们制定了(扩展到当前情况下的)一种最流行的分割方案,即用于迭代求解耦合问题的固定应力分割法。在标准假设条件下,该方法可在足够小的时间步长内线性收敛。如果水力传导性是严格的正函数和 Lipschitz 连续函数,则误差收缩因子严格小于 1,与 Lamé 参数、Biot 和存储系数无关。
{"title":"A fixed-stress splitting method for nonlinear poroelasticity","authors":"Johannes Kraus, Kundan Kumar, Maria Lymbery, Florin A. Radu","doi":"10.1007/s00366-024-02030-x","DOIUrl":"https://doi.org/10.1007/s00366-024-02030-x","url":null,"abstract":"<p>In this paper we consider a nonlinear poroelasticity model that describes the quasi-static mechanical behaviour of a fluid-saturated porous medium whose permeability depends on the divergence of the displacement. Such nonlinear models are typically used to study biological structures like tissues, organs, cartilage and bones, which are known for a nonlinear dependence of their permeability/hydraulic conductivity on solid dilatation. We formulate (extend to the present situation) one of the most popular splitting schemes, namely the fixed-stress split method for the iterative solution of the coupled problem. The method is proven to converge linearly for sufficiently small time steps under standard assumptions. The error contraction factor then is strictly less than one, independent of the Lamé parameters, Biot and storage coefficients if the hydraulic conductivity is a strictly positive and Lipschitz-continuous function.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"70 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast descriptor-based 2D and 3D microstructure reconstruction using the Portilla–Simoncelli algorithm 使用波蒂利亚-西蒙切利算法快速重建基于描述符的二维和三维微观结构
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-22 DOI: 10.1007/s00366-024-02026-7
Paul Seibert, Alexander Raßloff, Karl Kalina, Markus Kästner

Reconstructing microstructures from statistical descriptors is a key enabler of computer-based inverse materials design. In the Yeong–Torquato algorithm and other common methods, the problem is approached by formulating it as an optimization problem in the space of possible microstructures. In this case, the error between the desired microstructure and the current reconstruction is measured in terms of a descriptor. As an alternative, descriptors can be regarded as constraints defining subspaces or regions in the microstructure space. Given a set of descriptors, a valid microstructure can be obtained by sequentially projecting onto these subspaces. This is done in the Portilla–Simoncelli algorithm, which is well known in the field of texture synthesis. Noting the algorithm’s potential, the present work aims at introducing it to microstructure reconstruction. After exploring its capabilities and limitations in 2D, a dimensionality expansion is developed for reconstructing 3D volumes from 2D reference data. The resulting method is extremely efficient, as it allows for high-resolution reconstructions on conventional laptops. Various numerical experiments are conducted to demonstrate its versatility and scalability. Finally, the method is validated by comparing homogenized mechanical properties of original and reconstructed 3D microstructures.

根据统计描述符重构微观结构是基于计算机的反向材料设计的关键因素。在 Yeong-Torquato 算法和其他常用方法中,问题是通过在可能的微观结构空间中将其表述为优化问题来解决的。在这种情况下,所需的微观结构与当前重建之间的误差用描述符来衡量。另一种方法是将描述符视为微观结构空间中定义子空间或区域的约束条件。给定一组描述符,按顺序投影到这些子空间,就能得到有效的微观结构。在纹理合成领域广为人知的 Portilla-Simoncelli 算法就是这样实现的。注意到该算法的潜力,本研究旨在将其引入微观结构重建。在探索了该算法在二维领域的能力和局限性后,我们开发了一种维度扩展方法,用于从二维参考数据重建三维体积。由此产生的方法非常高效,因为它可以在传统笔记本电脑上进行高分辨率重建。为了证明该方法的多功能性和可扩展性,我们进行了各种数值实验。最后,通过比较原始三维微结构和重建三维微结构的均质机械性能,验证了该方法的有效性。
{"title":"Fast descriptor-based 2D and 3D microstructure reconstruction using the Portilla–Simoncelli algorithm","authors":"Paul Seibert, Alexander Raßloff, Karl Kalina, Markus Kästner","doi":"10.1007/s00366-024-02026-7","DOIUrl":"https://doi.org/10.1007/s00366-024-02026-7","url":null,"abstract":"<p>Reconstructing microstructures from statistical descriptors is a key enabler of computer-based inverse materials design. In the Yeong–Torquato algorithm and other common methods, the problem is approached by formulating it as an optimization problem in the space of possible microstructures. In this case, the error between the desired microstructure and the current reconstruction is measured in terms of a descriptor. As an alternative, descriptors can be regarded as constraints defining subspaces or regions in the microstructure space. Given a set of descriptors, a valid microstructure can be obtained by sequentially projecting onto these subspaces. This is done in the Portilla–Simoncelli algorithm, which is well known in the field of texture synthesis. Noting the algorithm’s potential, the present work aims at introducing it to microstructure reconstruction. After exploring its capabilities and limitations in 2D, a dimensionality expansion is developed for reconstructing 3D volumes from 2D reference data. The resulting method is extremely efficient, as it allows for high-resolution reconstructions on conventional laptops. Various numerical experiments are conducted to demonstrate its versatility and scalability. Finally, the method is validated by comparing homogenized mechanical properties of original and reconstructed 3D microstructures.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"39 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An adaptive time integration procedure for automated extended-explicit/implicit hybrid analyses 用于自动扩展显式/隐式混合分析的自适应时间积分程序
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-13 DOI: 10.1007/s00366-024-02025-8
Delfim Soares

This paper introduces a new explicit-implicit time-marching formulation, presenting a novel hybrid approach for wave propagation analysis. The proposed solution algorithm employs a set of simple, single-step, single-solver, truly self-starting recurrence relationships, which incorporate three time-integration parameters. These parameters are adaptively evaluated for each element of the adopted spatial discretization, taking into account the local characteristics of the model and a user defined parameter. They enable automated extended-explicit/implicit and non-dissipative/dissipative elements to be established, allowing enhanced hybrid analyses to be straightforwardly performed. The proposed formulation is highly accurate, efficient, and very simple to implement and to apply, avoiding complex coupling procedures and interface treatments that are typically considered for mixed explicit/implicit analyses. The new technique is also very versatile, allowing the user to locally control the numerical properties of the adopted time-integration procedure and, consequently, to elaborate very sophisticated solution strategies. Numerical results are presented at the end of the paper, illustrating the good performance and the effectiveness of the proposed novel approach, which combines the best features (such as stability, reduced solver efforts etc.) of both implicit and explicit formulations.

本文介绍了一种新的显式-隐式时间行进公式,为波传播分析提供了一种新颖的混合方法。所提出的求解算法采用了一套简单、单步、单求解器、真正自启动的递推关系,其中包含三个时间积分参数。这些参数针对所采用的空间离散化的每个元素进行自适应评估,同时考虑到模型的局部特征和用户定义的参数。通过这些参数,可以自动建立扩展显式/隐式和非耗散/耗散元素,从而可以直接进行增强型混合分析。所提出的公式非常精确、高效,而且实施和应用非常简单,避免了通常在显式/隐式混合分析中需要考虑的复杂耦合程序和界面处理。新技术还具有很强的通用性,允许用户对所采用的时间积分程序的数值特性进行局部控制,从而制定出非常复杂的求解策略。本文最后介绍了数值结果,说明了所提出的新方法的良好性能和有效性,该方法结合了隐式和显式计算的最佳特点(如稳定性、降低求解难度等)。
{"title":"An adaptive time integration procedure for automated extended-explicit/implicit hybrid analyses","authors":"Delfim Soares","doi":"10.1007/s00366-024-02025-8","DOIUrl":"https://doi.org/10.1007/s00366-024-02025-8","url":null,"abstract":"<p>This paper introduces a new explicit-implicit time-marching formulation, presenting a novel hybrid approach for wave propagation analysis. The proposed solution algorithm employs a set of simple, single-step, single-solver, truly self-starting recurrence relationships, which incorporate three time-integration parameters. These parameters are adaptively evaluated for each element of the adopted spatial discretization, taking into account the local characteristics of the model and a user defined parameter. They enable automated extended-explicit/implicit and non-dissipative/dissipative elements to be established, allowing enhanced hybrid analyses to be straightforwardly performed. The proposed formulation is highly accurate, efficient, and very simple to implement and to apply, avoiding complex coupling procedures and interface treatments that are typically considered for mixed explicit/implicit analyses. The new technique is also very versatile, allowing the user to locally control the numerical properties of the adopted time-integration procedure and, consequently, to elaborate very sophisticated solution strategies. Numerical results are presented at the end of the paper, illustrating the good performance and the effectiveness of the proposed novel approach, which combines the best features (such as stability, reduced solver efforts etc.) of both implicit and explicit formulations.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"29 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensional reduction technique for the prediction of global and local responses of unidirectional composite with matrix nonlinearity and varying fiber packing geometry 用于预测具有基体非线性和不同纤维填料几何形状的单向复合材料的整体和局部响应的降维技术
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-07-13 DOI: 10.1007/s00366-024-02024-9
A. Jamnongpipatkul, F. Naets, F. A. Gilabert

The problem associated with the computational homogenization of composite materials often results in expensive computational cost that prevents engineers from comprehensive study for better understanding of composite behaviors, especially when nonlinear effects are considered. While variation in local fiber arrangements has pronounced effect on damage initiation and failure mechanisms in composite, an attempt to reduce the computational cost for the parametric study of such a problem seems to be absent. This paper demonstrates the capability of a model order reduction (MOR) framework to accelerate the parametric study of the unidirectional composite with a plastic constitutive material model for matrix with the varying fiber distribution in the microstructure as the parameter of interest. The MOR framework used in this work is based on the construction of the reduced order basis (ROB) by proper orthogonal decomposition and then the reduced order model (ROM) by Galerkin projection. The concept of local ROB is incorporated which helps decreasing further the dimension of the ROM and, thus, the computational cost. The results from the RVE-based high-fidelity finite element analysis and from the ROM are compared to assess the efficiency and accuracy of the approach. Notable computational gain is achieved with the potential to improve further in the future work. The error in the global response is less than 10% while the local stress fields in the critical regions can be captured well which paves way for the extension to consider the process of damage initiation and evolution as the source of nonlinearity in the future.

与复合材料计算均质化相关的问题往往会导致昂贵的计算成本,妨碍工程师为更好地理解复合材料行为而进行全面研究,尤其是在考虑非线性效应时。虽然局部纤维排列的变化对复合材料的损伤起始和失效机理有明显影响,但在对此类问题进行参数化研究时,似乎还没有降低计算成本的尝试。本文展示了模型阶次缩减(MOR)框架的能力,该框架可加速单向复合材料的参数研究,基体采用塑性组成材料模型,微观结构中的纤维分布变化为相关参数。本研究采用的 MOR 框架基于通过适当的正交分解构建降阶基础 (ROB),然后通过 Galerkin 投影构建降阶模型 (ROM)。局部 ROB 概念的加入有助于进一步降低 ROM 的维度,从而降低计算成本。对基于 RVE 的高保真有限元分析和 ROM 的结果进行了比较,以评估该方法的效率和精度。计算结果显著提高,并有可能在今后的工作中进一步改进。全局响应的误差小于 10%,而临界区域的局部应力场可以很好地捕捉,这为将来扩展到将损伤的发生和演变过程视为非线性源铺平了道路。
{"title":"Dimensional reduction technique for the prediction of global and local responses of unidirectional composite with matrix nonlinearity and varying fiber packing geometry","authors":"A. Jamnongpipatkul, F. Naets, F. A. Gilabert","doi":"10.1007/s00366-024-02024-9","DOIUrl":"https://doi.org/10.1007/s00366-024-02024-9","url":null,"abstract":"<p>The problem associated with the computational homogenization of composite materials often results in expensive computational cost that prevents engineers from comprehensive study for better understanding of composite behaviors, especially when nonlinear effects are considered. While variation in local fiber arrangements has pronounced effect on damage initiation and failure mechanisms in composite, an attempt to reduce the computational cost for the parametric study of such a problem seems to be absent. This paper demonstrates the capability of a model order reduction (MOR) framework to accelerate the parametric study of the unidirectional composite with a plastic constitutive material model for matrix with the varying fiber distribution in the microstructure as the parameter of interest. The MOR framework used in this work is based on the construction of the reduced order basis (ROB) by proper orthogonal decomposition and then the reduced order model (ROM) by Galerkin projection. The concept of local ROB is incorporated which helps decreasing further the dimension of the ROM and, thus, the computational cost. The results from the RVE-based high-fidelity finite element analysis and from the ROM are compared to assess the efficiency and accuracy of the approach. Notable computational gain is achieved with the potential to improve further in the future work. The error in the global response is less than 10% while the local stress fields in the critical regions can be captured well which paves way for the extension to consider the process of damage initiation and evolution as the source of nonlinearity in the future.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"22 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Engineering with Computers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1