首页 > 最新文献

Engineering with Computers最新文献

英文 中文
Parameterization, algorithmic modeling, and fluid–structure interaction analysis for generative design of transcatheter aortic valves 用于经导管主动脉瓣生成式设计的参数化、算法建模和流体-结构相互作用分析
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-27 DOI: 10.1007/s00366-024-01973-5
Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson

Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.

心脏瓣膜在维持人体心脏正常的心血管功能方面起着至关重要的作用;然而,瓣膜疾病会导致瓣膜功能失调和心血管性能下降。根据瓣膜疾病的范围和严重程度,通常需要进行置换手术,以确保心脏系统继续正常运行。最近,经导管主动脉瓣置换术(TAVR)作为外科手术置换方法的替代方法而崭露头角,因为这些植入手术中使用的经皮方法比开腹心脏手术的创伤性要小得多。尽管经导管器械具有诸多优势,但即使在成功的 TAVR 手术中,将这些瓣膜安全地植入主动脉所需的精确部署、适当的瓣膜尺寸和稳定的锚定仍然具有挑战性。本研究提出了一种经导管心脏瓣膜(THV)参数建模方法,该方法可实现灵活的瓣膜开发和尺寸确定,从而有效地生成现有和新型瓣膜设计。本研究展示了两种 THV 配置,使用沉浸式几何流固耦合(IMGA FSI)框架对其进行分析,以展示几何变化对 THV 性能的影响。所提出的建模框架说明了这些特征对 THV 行为的影响,并表明了参数建模方法在未来提高 THV 性能和功效的有效性。
{"title":"Parameterization, algorithmic modeling, and fluid–structure interaction analysis for generative design of transcatheter aortic valves","authors":"Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson","doi":"10.1007/s00366-024-01973-5","DOIUrl":"https://doi.org/10.1007/s00366-024-01973-5","url":null,"abstract":"<p>Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"61 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
iPINNs: incremental learning for Physics-informed neural networks iPINNs:物理信息神经网络的增量学习
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-22 DOI: 10.1007/s00366-024-02010-1
Aleksandr Dekhovich, Marcel H. F. Sluiter, David M. J. Tax, Miguel A. Bessa

Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations (PDEs). However, finding a set of neural network parameters that fulfill a PDE at the boundary and within the domain of interest can be challenging and non-unique due to the complexity of the loss landscape that needs to be traversed. Although a variety of multi-task learning and transfer learning approaches have been proposed to overcome these issues, no incremental training procedure has been proposed for PINNs. As demonstrated herein, by developing incremental PINNs (iPINNs) we can effectively mitigate such training challenges and learn multiple tasks (equations) sequentially without additional parameters for new tasks. Interestingly, we show that this also improves performance for every equation in the sequence. Our approach learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnetwork to overlap with previously learned subnetworks. We demonstrate that previous subnetworks are a good initialization for a new equation if PDEs share similarities. We also show that iPINNs achieve lower prediction error than regular PINNs for two different scenarios: (1) learning a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting from a combination of processes (e.g., 1-D reaction–diffusion PDE). The ability to learn all problems with a single network together with learning more complex PDEs with better generalization than regular PINNs will open new avenues in this field.

物理信息神经网络(PINN)近来已成为求解偏微分方程(PDE)的有力工具。然而,由于需要穿越的损失景观的复杂性,要在边界和感兴趣的域内找到一组满足偏微分方程的神经网络参数可能具有挑战性和非唯一性。虽然已经提出了多种多任务学习和迁移学习方法来克服这些问题,但还没有针对 PINN 提出增量训练程序。正如本文所展示的,通过开发增量 PINNs(iPINNs),我们可以有效地缓解这些训练难题,并连续学习多个任务(方程),而无需为新任务添加参数。有趣的是,我们发现这还能提高序列中每个方程的性能。我们的方法通过为每个 PDE 创建自己的子网络,并允许每个子网络与之前学习的子网络重叠,从最简单的 PDE 开始学习多个 PDE。我们证明,如果 PDE 有相似之处,以前的子网络对新方程来说是一个很好的初始化。我们还证明,在两种不同情况下,iPINN 比普通 PINN 的预测误差更低:(1) 学习一个方程组(如一维对流 PDE);(2) 学习由多个过程组合而成的 PDE(如一维反应-扩散 PDE)。用一个网络学习所有问题的能力,以及学习比普通 PINN 更复杂的 PDE 的能力,将为这一领域开辟新的道路。
{"title":"iPINNs: incremental learning for Physics-informed neural networks","authors":"Aleksandr Dekhovich, Marcel H. F. Sluiter, David M. J. Tax, Miguel A. Bessa","doi":"10.1007/s00366-024-02010-1","DOIUrl":"https://doi.org/10.1007/s00366-024-02010-1","url":null,"abstract":"<p>Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations (PDEs). However, finding a set of neural network parameters that fulfill a PDE at the boundary and within the domain of interest can be challenging and non-unique due to the complexity of the loss landscape that needs to be traversed. Although a variety of multi-task learning and transfer learning approaches have been proposed to overcome these issues, no incremental training procedure has been proposed for PINNs. As demonstrated herein, by developing incremental PINNs (iPINNs) we can effectively mitigate such training challenges and learn multiple tasks (equations) sequentially without additional parameters for new tasks. Interestingly, we show that this also improves performance for every equation in the sequence. Our approach learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnetwork to overlap with previously learned subnetworks. We demonstrate that previous subnetworks are a good initialization for a new equation if PDEs share similarities. We also show that iPINNs achieve lower prediction error than regular PINNs for two different scenarios: (1) learning a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting from a combination of processes (e.g., 1-D reaction–diffusion PDE). The ability to learn all problems with a single network together with learning more complex PDEs with better generalization than regular PINNs will open new avenues in this field.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"26 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine-learning-based peridynamic surrogate model for characterizing deformation and failure of materials and structures 基于机器学习的围动力代用模型,用于表征材料和结构的变形与失效
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-19 DOI: 10.1007/s00366-024-02014-x
Han Wang, Liwei Wu, Dan Huang, Jianwei Chen, Junbin Guo, Chuanqiang Yu, Yayun Li, Yichang Wu

It is necessary to determine the input features and output results when constructing a surrogate model within the data-driven neural network. Since the law of features would be restrained when the surrogate mechanical model is employed, it is still a challenge to build a set of natural features to accurately describe the failure process of materials and structures within the traditional continuum mechanics framework. To address this challenge, a robust approach for constructing a surrogate model within the peridynamic-deep learning framework is proposed in this study, which is capable of representing material deformation and failure explicitly. The presented surrogate model integrates both reference and current configuration data to refine input features, enhancing model training. We incorporate a batch-normalization layer before the activation function to mitigate common issues such as slow convergence, low prediction accuracy, and overfitting due to the large numerical differences in the damage dataset. Additionally, numerical analyses on several typical examples are performed to validate the effectiveness and generality of the present model and methodology. The results demonstrate high accuracy in the training set as well as the testing set, confirming the model’s excellent generalization ability and significant potential for material failure analysis. According to this work, more peridynamic expressions can be further derived in the machine-learning-based peridynamic surrogate model by considering the reinforcement learning and symbol space, to potentially broaden its applicability to a wider range of mechanical issues.

在数据驱动神经网络中构建代用模型时,有必要确定输入特征和输出结果。由于在使用代用力学模型时,特征规律会受到限制,因此在传统连续介质力学框架内建立一套自然特征来准确描述材料和结构的失效过程仍然是一个挑战。为了应对这一挑战,本研究提出了一种在周动态-深度学习框架内构建代用模型的稳健方法,该方法能够明确地表示材料的变形和失效。所提出的代用模型整合了参考数据和当前配置数据,以完善输入特征,从而加强模型训练。我们在激活函数之前加入了批量归一化层,以缓解收敛速度慢、预测精度低以及因损伤数据集数值差异大而导致的过拟合等常见问题。此外,还对几个典型实例进行了数值分析,以验证本模型和方法的有效性和通用性。结果表明,该模型在训练集和测试集中都具有很高的准确性,证实了其出色的泛化能力和在材料失效分析中的巨大潜力。根据这项工作,通过考虑强化学习和符号空间,基于机器学习的周动态代用模型可以进一步推导出更多的周动态表达式,从而有可能将其应用范围扩大到更广泛的机械问题上。
{"title":"A machine-learning-based peridynamic surrogate model for characterizing deformation and failure of materials and structures","authors":"Han Wang, Liwei Wu, Dan Huang, Jianwei Chen, Junbin Guo, Chuanqiang Yu, Yayun Li, Yichang Wu","doi":"10.1007/s00366-024-02014-x","DOIUrl":"https://doi.org/10.1007/s00366-024-02014-x","url":null,"abstract":"<p>It is necessary to determine the input features and output results when constructing a surrogate model within the data-driven neural network. Since the law of features would be restrained when the surrogate mechanical model is employed, it is still a challenge to build a set of natural features to accurately describe the failure process of materials and structures within the traditional continuum mechanics framework. To address this challenge, a robust approach for constructing a surrogate model within the peridynamic-deep learning framework is proposed in this study, which is capable of representing material deformation and failure explicitly. The presented surrogate model integrates both reference and current configuration data to refine input features, enhancing model training. We incorporate a batch-normalization layer before the activation function to mitigate common issues such as slow convergence, low prediction accuracy, and overfitting due to the large numerical differences in the damage dataset. Additionally, numerical analyses on several typical examples are performed to validate the effectiveness and generality of the present model and methodology. The results demonstrate high accuracy in the training set as well as the testing set, confirming the model’s excellent generalization ability and significant potential for material failure analysis. According to this work, more peridynamic expressions can be further derived in the machine-learning-based peridynamic surrogate model by considering the reinforcement learning and symbol space, to potentially broaden its applicability to a wider range of mechanical issues.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"110 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generic volume transfer for distributed mesh dynamic repartitioning 分布式网格动态重新划分的通用体积转移
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-18 DOI: 10.1007/s00366-024-02008-9
Guillaume Damiand, Fabrice Jaillet, Vincent Vidal

Efficient and distributed adaptive mesh construction and editing pose several challenges, including selecting the appropriate distributed data structure, choosing strategies for distributing computational load, and managing inter-processor communication. Distributed Combinatorial Maps permit the representation and editing of distributed 3D meshes. This paper addresses computation load and expands communication aspects through volume transfer operation and repartitioning strategies. This work is the first one defining such transfer for cells of any topology. We demonstrate the benefits of our method by presenting a parallel adaptive hexahedral subdivision operation, involving fully generic volumes, in a process including a conversion to conformal mesh and surface fitting. Our experiments compare different strategies using multithreading and MPI implementations to highlight the benefits of volume transfer. Special attention has been paid to generic aspects and adaptability of the framework.

高效的分布式自适应网格构建和编辑提出了多项挑战,包括选择合适的分布式数据结构、选择计算负荷分配策略以及管理处理器间通信。分布式组合映射允许表示和编辑分布式三维网格。本文通过体积转移操作和重新分区策略,解决了计算负荷和扩展通信方面的问题。这是第一项为任何拓扑结构的单元定义这种转移的工作。我们展示了并行自适应六面体细分操作,涉及完全通用的体,在此过程中包括转换为保形网格和曲面拟合,从而证明了我们方法的优势。我们的实验比较了使用多线程和 MPI 实现的不同策略,以突出体积转移的优势。我们特别关注框架的通用性和适应性。
{"title":"Generic volume transfer for distributed mesh dynamic repartitioning","authors":"Guillaume Damiand, Fabrice Jaillet, Vincent Vidal","doi":"10.1007/s00366-024-02008-9","DOIUrl":"https://doi.org/10.1007/s00366-024-02008-9","url":null,"abstract":"<p>Efficient and distributed adaptive mesh construction and editing pose several challenges, including selecting the appropriate distributed data structure, choosing strategies for distributing computational load, and managing inter-processor communication. Distributed Combinatorial Maps permit the representation and editing of distributed 3D meshes. This paper addresses computation load and expands communication aspects through volume transfer operation and repartitioning strategies. This work is the first one defining such transfer for cells of any topology. We demonstrate the benefits of our method by presenting a parallel adaptive hexahedral subdivision operation, involving fully generic volumes, in a process including a conversion to conformal mesh and surface fitting. Our experiments compare different strategies using multithreading and MPI implementations to highlight the benefits of volume transfer. Special attention has been paid to generic aspects and adaptability of the framework.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"15 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MTGNet: multi-label mesh quality evaluation using topology-guided graph neural network MTGNet:利用拓扑引导图神经网络进行多标签网格质量评估
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-06-01 DOI: 10.1007/s00366-024-02006-x
Haoxuan Zhang, Haisheng Li, Xiaoqun Wu, Nan Li

Mesh quality directly affects the accuracy and efficiency of numerical simulation. Mesh quality evaluation aims to evaluate the suitability of the mesh generated in CAE pre-processing for numerical simulation. Recent work has introduced deep neural networks for mesh quality evaluation. However, these methods treat the mesh quality evaluation task as a multi-classification problem, resulting in serious correlations among different quality categories, which makes it difficult to learn the boundaries of different categories. In this paper, we propose a topology-guided graph neural network, MTGNet, which treats the mesh quality evaluation task as a multi-label task. Specifically, we first decomposed the categories in traditional multi-classification problems and obtained three completely orthogonal mesh quality labels, namely orthogonality, smoothness and, distribution. Then, MTGNet introduces a topology-guided feature representation for structured mesh data, which can generate multiple blocks of element-based graphs through the mesh topology. In order to better fuse features in different blocks, MTGNet also introduces an attention-based block graph pooling (ABGPool) method. Experimental results on the NACA-Market dataset demonstrate MTGNet shows superior or at least comparable performance to the state-of-the-art (SOTA) approaches.

网格质量直接影响数值模拟的精度和效率。网格质量评估旨在评价 CAE 预处理中生成的网格是否适合进行数值模拟。最近的研究引入了用于网格质量评估的深度神经网络。然而,这些方法将网格质量评估任务视为一个多分类问题,导致不同质量类别之间存在严重的相关性,从而难以学习不同类别的边界。在本文中,我们提出了一种拓扑引导的图神经网络 MTGNet,它将网格质量评估任务视为多标签任务。具体来说,我们首先分解了传统多分类问题中的类别,得到了三个完全正交的网格质量标签,即正交性、平滑度和分布。然后,MTGNet 为结构化网格数据引入了拓扑引导的特征表示,它可以通过网格拓扑生成多个基于元素的图块。为了更好地融合不同块中的特征,MTGNet 还引入了基于注意力的块图池化(ABGPool)方法。在 NACA-Market 数据集上的实验结果表明,MTGNet 的性能优于或至少可媲美最先进的(SOTA)方法。
{"title":"MTGNet: multi-label mesh quality evaluation using topology-guided graph neural network","authors":"Haoxuan Zhang, Haisheng Li, Xiaoqun Wu, Nan Li","doi":"10.1007/s00366-024-02006-x","DOIUrl":"https://doi.org/10.1007/s00366-024-02006-x","url":null,"abstract":"<p>Mesh quality directly affects the accuracy and efficiency of numerical simulation. Mesh quality evaluation aims to evaluate the suitability of the mesh generated in CAE pre-processing for numerical simulation. Recent work has introduced deep neural networks for mesh quality evaluation. However, these methods treat the mesh quality evaluation task as a multi-classification problem, resulting in serious correlations among different quality categories, which makes it difficult to learn the boundaries of different categories. In this paper, we propose a topology-guided graph neural network, MTGNet, which treats the mesh quality evaluation task as a multi-label task. Specifically, we first decomposed the categories in traditional multi-classification problems and obtained three completely orthogonal mesh quality labels, namely orthogonality, smoothness and, distribution. Then, MTGNet introduces a topology-guided feature representation for structured mesh data, which can generate multiple blocks of element-based graphs through the mesh topology. In order to better fuse features in different blocks, MTGNet also introduces an attention-based block graph pooling (ABGPool) method. Experimental results on the NACA-Market dataset demonstrate MTGNet shows superior or at least comparable performance to the state-of-the-art (SOTA) approaches.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"62 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general-purpose meshfree Kirchhoff–Love shell formulation 通用无网格基尔霍夫-洛夫壳公式
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-05-31 DOI: 10.1007/s00366-024-01989-x
Jiarui Wang, Yuri Bazilevs

A thin shell formulation is developed for the approximation by a meshfree Reproducing Kernel Particle Method (RKPM). The formulation is derived from a degenerated shell approach where the structure is treated as a 3D solid subjected to kinematic constraints of the Kirchhoff–Love (KL) shell theory. To address the challenge of surface geometry representation in a meshfree method, a local parameterization using principal component analysis (PCA) is employed. Taylor-series expansion adapted to the shell formulation is developed to address the accuracy and stability issues of nodal quadrature. Several approaches that address membrane locking are also considered. The effectiveness of the proposed RKPM KL shell formulation is demonstrated using an extensive set of linear-elastic and finite-deformation inelastic test cases.

通过无网格复制核粒子法(RKPM)开发了一种薄壳近似公式。该公式源自退化壳方法,在退化壳方法中,结构被视为受基尔霍夫-洛夫(KL)壳理论运动学约束的三维实体。为了解决无网格方法中表面几何表示的难题,采用了主成分分析(PCA)的局部参数化方法。为解决节点正交的准确性和稳定性问题,开发了适应壳公式的泰勒级数展开。此外,还考虑了几种解决膜锁定的方法。通过大量线性弹性和有限变形非弹性测试案例,证明了所提出的 RKPM KL 壳体公式的有效性。
{"title":"A general-purpose meshfree Kirchhoff–Love shell formulation","authors":"Jiarui Wang, Yuri Bazilevs","doi":"10.1007/s00366-024-01989-x","DOIUrl":"https://doi.org/10.1007/s00366-024-01989-x","url":null,"abstract":"<p>A thin shell formulation is developed for the approximation by a meshfree Reproducing Kernel Particle Method (RKPM). The formulation is derived from a degenerated shell approach where the structure is treated as a 3D solid subjected to kinematic constraints of the Kirchhoff–Love (KL) shell theory. To address the challenge of surface geometry representation in a meshfree method, a local parameterization using principal component analysis (PCA) is employed. Taylor-series expansion adapted to the shell formulation is developed to address the accuracy and stability issues of nodal quadrature. Several approaches that address membrane locking are also considered. The effectiveness of the proposed RKPM KL shell formulation is demonstrated using an extensive set of linear-elastic and finite-deformation inelastic test cases.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"20 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electromagnetic shape optimisation for perfectly electric conductors by the time-domain boundary integral equations 利用时域边界积分方程优化完全电导体的电磁形状
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-05-30 DOI: 10.1007/s00366-024-01990-4
Toru Takahashi

This study proposes a shape optimisation framework for unsteady electromagnetic scattering problems on the basis of the time-domain boundary integral equation method, focusing on the perfectly electric conductors (PECs). The boundary-only formulation is ideal for treating a shape optimisation problem in an exterior domain. However, the electromagnetic shape optimisation in concern has been unrealised with the boundary integral approach regardless of the fact that the boundary-type shape derivative has been known in the literature. The first contribution of the present study is to derive a novel expression of the shape derivative in terms of the surface current densities of the primary and adjoint problems, by considering that the surface current density is handled by usual integral equations methods. The second contribution is to clarify the integral representations and equations of the adjoint electromagnetic fields in terms of the reversal time. These theoretical achievements possess a high affinity with the standard spatial discretising approach (i.e. RWG basis) whenever the temporal basis is sufficiently smooth. The numerical experiments confirmed the reliability of the proposed shape optimisation methodology and indicated the capability to deal with scientific and engineering applications.

本研究以时域边界积分方程法为基础,针对非稳态电磁散射问题提出了一个形状优化框架,重点研究完全电导体(PECs)。纯边界公式非常适合处理外部域中的形状优化问题。然而,尽管边界型形状导数在文献中已为人所知,但采用边界积分法进行电磁形状优化却一直未能实现。本研究的第一个贡献是,通过考虑用通常的积分方程方法处理表面电流密度,以主问题和邻接问题的表面电流密度为基础,推导出形状导数的新表达式。第二个贡献是澄清了反转时间方面的积分表示和邻接电磁场方程。只要时间基础足够平滑,这些理论成果与标准空间离散化方法(即 RWG 基础)具有很高的亲和力。数值实验证实了所提出的形状优化方法的可靠性,并显示了处理科学和工程应用的能力。
{"title":"An electromagnetic shape optimisation for perfectly electric conductors by the time-domain boundary integral equations","authors":"Toru Takahashi","doi":"10.1007/s00366-024-01990-4","DOIUrl":"https://doi.org/10.1007/s00366-024-01990-4","url":null,"abstract":"<p>This study proposes a shape optimisation framework for unsteady electromagnetic scattering problems on the basis of the time-domain boundary integral equation method, focusing on the perfectly electric conductors (PECs). The boundary-only formulation is ideal for treating a shape optimisation problem in an exterior domain. However, the electromagnetic shape optimisation in concern has been unrealised with the boundary integral approach regardless of the fact that the boundary-type shape derivative has been known in the literature. The first contribution of the present study is to derive a novel expression of the shape derivative in terms of the surface current densities of the primary and adjoint problems, by considering that the surface current density is handled by usual integral equations methods. The second contribution is to clarify the integral representations and equations of the adjoint electromagnetic fields in terms of the reversal time. These theoretical achievements possess a high affinity with the standard spatial discretising approach (i.e. RWG basis) whenever the temporal basis is sufficiently smooth. The numerical experiments confirmed the reliability of the proposed shape optimisation methodology and indicated the capability to deal with scientific and engineering applications.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"44 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient multiscale topology optimization method for frequency response minimization of cellular composites 最小化蜂窝复合材料频率响应的高效多尺度拓扑优化方法
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-05-28 DOI: 10.1007/s00366-024-02000-3
Xiliang Liu, Liang Gao, Mi Xiao

It is vital to control the vibration of cellular composites under harmonic excitation in engineering. Due to numerous design variables and expensive frequency domain integration operation, the majority of multiscale topology optimization methods for frequency response minimization of cellular composites tend to be conservative, where a small number of types of microstructures are considered. This paper proposes an efficient multiscale topology optimization method to minimize the frequency response of cellular composites over specified frequency intervals. This method utilizes multiclass graded lattice unit cells (LUCs) as design candidates, offering great design space to improve the dynamic performance of cellular composites. At microscale, the proposed method leverages Kriging metamodels to replace the the homogenization method in each iteration step, thus accelerating the performance estimation of multiclass graded LUCs. At macroscale, the second-order Krylov subspace with moment-matching Gram-Schmidt orthonormalization (SOMMG) method is introduced to expedite the frequency response analysis of cellular composites. Two types of design variables are employed to construct the Kriging metamodel assisted Uniform Multiphase Materials Interpolation (KUMMI) model, facilitating the concurrent updating of LUCs’ classes and relative densities. Several numerical examples are presented to validate the effectiveness and efficiency of the proposed method in minimizing the frequency response of cellular composites.

在工程中,控制谐波激励下蜂窝复合材料的振动至关重要。由于设计变量众多且频域积分操作成本高昂,大多数用于蜂窝复合材料频率响应最小化的多尺度拓扑优化方法都趋于保守,只考虑了少量类型的微结构。本文提出了一种高效的多尺度拓扑优化方法,可在指定频率区间内最小化蜂窝复合材料的频率响应。该方法利用多类分级晶格单元(LUC)作为设计候选,为改善蜂窝复合材料的动态性能提供了巨大的设计空间。在微观尺度上,所提出的方法利用克里金元模型取代了每个迭代步骤中的均质化方法,从而加速了多类分级 LUC 的性能估计。在宏观尺度上,引入了二阶克雷洛夫子空间与矩匹配格拉姆-施密特正交化(SOMMG)方法,以加快蜂窝复合材料的频率响应分析。利用两类设计变量构建克里金元模型辅助均匀多相材料插值(KUMMI)模型,便于同时更新 LUC 的类别和相对密度。通过几个数值示例,验证了所提方法在最小化蜂窝复合材料频率响应方面的有效性和效率。
{"title":"An efficient multiscale topology optimization method for frequency response minimization of cellular composites","authors":"Xiliang Liu, Liang Gao, Mi Xiao","doi":"10.1007/s00366-024-02000-3","DOIUrl":"https://doi.org/10.1007/s00366-024-02000-3","url":null,"abstract":"<p>It is vital to control the vibration of cellular composites under harmonic excitation in engineering. Due to numerous design variables and expensive frequency domain integration operation, the majority of multiscale topology optimization methods for frequency response minimization of cellular composites tend to be conservative, where a small number of types of microstructures are considered. This paper proposes an efficient multiscale topology optimization method to minimize the frequency response of cellular composites over specified frequency intervals. This method utilizes multiclass graded lattice unit cells (LUCs) as design candidates, offering great design space to improve the dynamic performance of cellular composites. At microscale, the proposed method leverages Kriging metamodels to replace the the homogenization method in each iteration step, thus accelerating the performance estimation of multiclass graded LUCs. At macroscale, the second-order Krylov subspace with moment-matching Gram-Schmidt orthonormalization (SOMMG) method is introduced to expedite the frequency response analysis of cellular composites. Two types of design variables are employed to construct the Kriging metamodel assisted Uniform Multiphase Materials Interpolation (KUMMI) model, facilitating the concurrent updating of LUCs’ classes and relative densities. Several numerical examples are presented to validate the effectiveness and efficiency of the proposed method in minimizing the frequency response of cellular composites.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"21 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speculative anisotropic mesh adaptation on shared memory for CFD applications 在共享内存上为 CFD 应用程序进行各向异性网格适应性调整
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-05-25 DOI: 10.1007/s00366-024-01994-0
Christos Tsolakis, Nikos Chrisochoides

Efficient and robust anisotropic mesh adaptation is crucial for Computational Fluid Dynamics (CFD) simulations. The CFD Vision 2030 Study highlights the pressing need for this technology, particularly for simulations targeting supercomputers. This work applies a fine-grained speculative approach to anisotropic mesh operations. Our implementation exhibits more than 90% parallel efficiency on a multi-core node. Additionally, we evaluate our method within an adaptive pipeline for a spectrum of publicly available test-cases that includes both analytically derived and error-based fields. For all test-cases, our results are in accordance with published results in the literature. Support for CAD-based data is introduced, and its effectiveness is demonstrated on one of NASA’s High-Lift prediction workshop cases.

高效稳健的各向异性网格适应对于计算流体动力学(CFD)模拟至关重要。CFD 2030 愿景研究》强调了对这项技术的迫切需求,尤其是针对超级计算机的模拟。这项工作将细粒度投机方法应用于各向异性网格操作。我们的实现在多核节点上显示出 90% 以上的并行效率。此外,我们还在自适应流水线中对我们的方法进行了评估,该方法适用于一系列公开的测试案例,其中包括分析得出的场和基于误差的场。对于所有测试案例,我们的结果与文献中公布的结果一致。我们还介绍了对基于 CAD 的数据的支持,并在 NASA 的一个高升力预测研讨会案例中演示了其有效性。
{"title":"Speculative anisotropic mesh adaptation on shared memory for CFD applications","authors":"Christos Tsolakis, Nikos Chrisochoides","doi":"10.1007/s00366-024-01994-0","DOIUrl":"https://doi.org/10.1007/s00366-024-01994-0","url":null,"abstract":"<p>Efficient and robust anisotropic mesh adaptation is crucial for Computational Fluid Dynamics (CFD) simulations. The CFD Vision 2030 Study highlights the pressing need for this technology, particularly for simulations targeting supercomputers. This work applies a fine-grained speculative approach to anisotropic mesh operations. Our implementation exhibits more than 90% parallel efficiency on a multi-core node. Additionally, we evaluate our method within an adaptive pipeline for a spectrum of publicly available test-cases that includes both analytically derived and error-based fields. For all test-cases, our results are in accordance with published results in the literature. Support for CAD-based data is introduced, and its effectiveness is demonstrated on one of NASA’s High-Lift prediction workshop cases.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"69 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MPIPN: a multi physics-informed PointNet for solving parametric acoustic-structure systems MPIPN:用于求解参数声学结构系统的多物理信息点网
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-05-18 DOI: 10.1007/s00366-024-01998-w
Chu Wang, Jinhong Wu, Yanzhi Wang, Zhijian Zha, Qi Zhou

Machine learning is employed for solving physical systems governed by general nonlinear partial differential equations (PDEs). However, complex multi-physics systems such as acoustic-structure coupling are often described by a series of PDEs that incorporate variable physical quantities, which are referred to as parametric systems. There are lack of strategies for solving parametric systems governed by PDEs that involve explicit and implicit quantities. In this paper, a deep learning-based Multi Physics-Informed PointNet (MPIPN) is proposed for solving parametric acoustic-structure systems. First, the MPIPN introduces an enhanced point-cloud architecture that encompasses explicit physical quantities and geometric features of computational domains. Then, the MPIPN extracts local and global features of the reconstructed point-cloud as parts of solving criteria of parametric systems, respectively. Besides, implicit physical quantities are embedded by encoding techniques as another part of solving criteria. Finally, all solving criteria that characterize parametric systems are amalgamated to form distinctive sequences as the input of the MPIPN, whose outputs are solutions of systems. The proposed framework is trained by adaptive physics-informed loss functions for corresponding computational domains. The framework is generalized to deal with new parametric conditions of systems. The effectiveness of the MPIPN is validated by applying it to solve steady parametric acoustic-structure coupling systems governed by the Helmholtz equations. An ablation experiment has been implemented to demonstrate the efficacy of physics-informed impact with a minority of supervised data. The proposed method yields reasonable precision across all computational domains under constant parametric conditions and changeable combinations of parametric conditions for acoustic-structure systems.

机器学习被用于求解由一般非线性偏微分方程(PDE)支配的物理系统。然而,复杂的多物理场系统(如声-结构耦合)通常由一系列包含可变物理量的 PDEs 描述,这些 PDEs 被称为参数系统。目前缺乏解决由涉及显性和隐性量的 PDEs 所支配的参数系统的策略。本文提出了一种基于深度学习的多物理信息点网(MPIPN),用于求解参数声学结构系统。首先,MPIPN 引入了增强型点云架构,该架构包含计算域的显式物理量和几何特征。然后,MPIPN 从重建的点云中提取局部和全局特征,分别作为参数系统求解标准的一部分。此外,通过编码技术嵌入隐式物理量,作为求解标准的另一部分。最后,所有表征参数系统的求解标准被合并成独特的序列,作为 MPIPN 的输入,而 MPIPN 的输出则是系统的解。针对相应的计算域,提出的框架通过自适应物理信息损失函数进行训练。该框架可通用于处理新的系统参数条件。通过将 MPIPN 应用于求解受亥姆霍兹方程支配的稳定参数声学-结构耦合系统,验证了 MPIPN 的有效性。还实施了一项烧蚀实验,利用少数监督数据证明了物理信息影响的有效性。在声学-结构系统的恒定参数条件和可变参数条件组合下,所提出的方法在所有计算域都能获得合理的精度。
{"title":"MPIPN: a multi physics-informed PointNet for solving parametric acoustic-structure systems","authors":"Chu Wang, Jinhong Wu, Yanzhi Wang, Zhijian Zha, Qi Zhou","doi":"10.1007/s00366-024-01998-w","DOIUrl":"https://doi.org/10.1007/s00366-024-01998-w","url":null,"abstract":"<p>Machine learning is employed for solving physical systems governed by general nonlinear partial differential equations (PDEs). However, complex multi-physics systems such as acoustic-structure coupling are often described by a series of PDEs that incorporate variable physical quantities, which are referred to as parametric systems. There are lack of strategies for solving parametric systems governed by PDEs that involve explicit and implicit quantities. In this paper, a deep learning-based Multi Physics-Informed PointNet (MPIPN) is proposed for solving parametric acoustic-structure systems. First, the MPIPN introduces an enhanced point-cloud architecture that encompasses explicit physical quantities and geometric features of computational domains. Then, the MPIPN extracts local and global features of the reconstructed point-cloud as parts of solving criteria of parametric systems, respectively. Besides, implicit physical quantities are embedded by encoding techniques as another part of solving criteria. Finally, all solving criteria that characterize parametric systems are amalgamated to form distinctive sequences as the input of the MPIPN, whose outputs are solutions of systems. The proposed framework is trained by adaptive physics-informed loss functions for corresponding computational domains. The framework is generalized to deal with new parametric conditions of systems. The effectiveness of the MPIPN is validated by applying it to solve steady parametric acoustic-structure coupling systems governed by the Helmholtz equations. An ablation experiment has been implemented to demonstrate the efficacy of physics-informed impact with a minority of supervised data. The proposed method yields reasonable precision across all computational domains under constant parametric conditions and changeable combinations of parametric conditions for acoustic-structure systems.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"25 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Engineering with Computers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1