首页 > 最新文献

Environmental Progress & Sustainable Energy最新文献

英文 中文
Hydrothermal liquefaction of microalga with and without seawater: Effects of reaction temperature on yield and hydrocarbon species distribution in biocrude 有海水和无海水的微藻水热液化:反应温度对生物原油产量和碳氢化合物种类分布的影响
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-05 DOI: 10.1002/ep.14440
B. E. Eboibi, O. Eboibi, O. L. Okan, E. C. Udochukwu, P. E. Uku, S. E. Agarry

A halophytic microalga Tetraselmis sp. biomass diluted with deionized water and seawater was converted to biocrude with the hydrothermal liquefaction (HTL) process in a batch reactor at 310, 330, 350, and 370°C, 15 min with 20 %w/w solids. The biocrude yield, carbon, and energy recovery in biocrude and hydrocarbon species distribution from deionized water base HTL (DW HTL) and seawater base HTL (SW HTL) were evaluated. The results revealed that irrespective of reaction medium, the yield in biocrude increased with an increase in temperature, reaching a maximum of 50–56 wt% at 350°C, characterized by a higher heating value of up to 35.6 MJ/kg. The carbon and energy recovery at 350°C were 85% and 89% respectively, for SW HTL, while the DW HTL stream was 10% and 12% lower. Also, the GC MS analysis of biocrude obtained from both streams contains a complex mixture of compounds such as hydrocarbons, phenolics, and large amounts of nitrogenated and oxygenated compounds. The metallic constituents in biocrudes derived from both steams showed no substantial variations. The study showed a marginal increase in biocrude yield and its HHV with a reduction in oxygen and nitrogen contents from the SW HTL stream, suggesting the potential of seawater as a reaction medium.

用去离子水和海水稀释的卤代微藻 Tetraselmis sp.生物质在间歇式反应器中通过水热液化(HTL)工艺转化为生物原油,反应温度为 310、330、350 和 370°C,15 分钟,固体含量为 %w/w。评估了去离子水基础 HTL(DW HTL)和海水基础 HTL(SW HTL)的生物液产量、生物液中的碳和能量回收率以及碳氢化合物的种类分布。结果表明,无论反应介质如何,生物原油的产量都随着温度的升高而增加,在 350°C 时达到 50-56 wt%的最大值,其特点是热值更高,可达 35.6 MJ/kg。350°C 时,SW HTL 的碳回收率和能量回收率分别为 85% 和 89%,而 DW HTL 的碳回收率和能量回收率分别低 10% 和 12%。此外,对从这两种气流中获得的生物原油进行的气相色谱-质谱分析显示,其中含有复杂的化合物混合物,如碳氢化合物、酚类化合物以及大量的含氮和含氧化合物。从这两种水蒸气中提取的生物原油中的金属成分并无重大变化。研究表明,随着西南高温液流中氧和氮含量的降低,生物原油产量及其 HHV 也略有增加,这表明海水具有作为反应介质的潜力。
{"title":"Hydrothermal liquefaction of microalga with and without seawater: Effects of reaction temperature on yield and hydrocarbon species distribution in biocrude","authors":"B. E. Eboibi,&nbsp;O. Eboibi,&nbsp;O. L. Okan,&nbsp;E. C. Udochukwu,&nbsp;P. E. Uku,&nbsp;S. E. Agarry","doi":"10.1002/ep.14440","DOIUrl":"10.1002/ep.14440","url":null,"abstract":"<p>A halophytic microalga <i>Tetraselmis</i> sp. biomass diluted with deionized water and seawater was converted to biocrude with the hydrothermal liquefaction (HTL) process in a batch reactor at 310, 330, 350, and 370°C, 15 min with <span></span><math>\u0000 <mrow>\u0000 <mo>≈</mo>\u0000 <mn>20</mn>\u0000 </mrow></math> %w/w solids. The biocrude yield, carbon, and energy recovery in biocrude and hydrocarbon species distribution from deionized water base HTL (DW HTL) and seawater base HTL (SW HTL) were evaluated. The results revealed that irrespective of reaction medium, the yield in biocrude increased with an increase in temperature, reaching a maximum of 50–56 wt% at 350°C, characterized by a higher heating value of up to 35.6 MJ/kg. The carbon and energy recovery at 350°C were 85% and 89% respectively, for SW HTL, while the DW HTL stream was 10% and 12% lower. Also, the GC MS analysis of biocrude obtained from both streams contains a complex mixture of compounds such as hydrocarbons, phenolics, and large amounts of nitrogenated and oxygenated compounds. The metallic constituents in biocrudes derived from both steams showed no substantial variations. The study showed a marginal increase in biocrude yield and its HHV with a reduction in oxygen and nitrogen contents from the SW HTL stream, suggesting the potential of seawater as a reaction medium.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on efficient drying process of industrial silicon powder 工业硅粉高效干燥工艺研究
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-28 DOI: 10.1002/ep.14420
Hang Li, Lei Xu, Jiayu He, Xuan Li, Zhaohui Han, Junyu Lu, Sivasankar Koppala

The drying procedure is an important consideration for the silicon powder processing. Herein, a comparative investigation of the drying efficiency, drying performance, and energy consumption of silicon powder after separation and purification of monocrystal silicon cutting slurry by using the hot air, far-infrared and microwave drying treatments. The results show that microwave drying of 30 g silicon powder takes only 12 min, which is much shorter than hot air drying of 200 min and far infrared drying of 40 min. The water evaporation energy consumption of microwave drying reached 73.5 g/kW·h, which was 3.3 times than that of far infrared drying and 16.5 times than that of hot air drying. For 1 kg of silicon powder, the power consumption of microwave drying was 8 kW·h, while the far-infrared drying was 26.7 kW·h, and the hot air drying was 133.4 kW·h, respectively. Therefore, effects of microwave power, drying temperature and drying time on the dehydration rate of silicon powder were investigated and optimized by response surface method, demonstrating that the microwave drying dehydration rate of 30 g silicon powder could reach 97.65%, and the power consumption could be reduced to 6.7 kW·h/kg under the conditions of microwave power of 1000 W, drying temperature of 89°C and drying time of 12 min. The present study shows that microwave drying of silicon powder is an energy-saving and efficient process with good industrial application prospects.

干燥过程是硅粉加工的一个重要考虑因素。在此,采用热风、远红外和微波干燥处理,对单晶硅切割浆料分离提纯后硅粉的干燥效率、干燥性能和能耗进行了比较研究。结果表明,微波干燥 30 g 硅粉仅需 12 min,比热风干燥 200 min 和远红外干燥 40 min 短得多。微波干燥的水蒸发能耗达到 73.5 g/kW-h,是远红外干燥的 3.3 倍,热风干燥的 16.5 倍。对于 1 kg 硅粉,微波干燥的耗电量为 8 kW-h,而远红外干燥为 26.7 kW-h,热风干燥为 133.4 kW-h。因此,采用响应面法研究并优化了微波功率、干燥温度和干燥时间对硅粉脱水率的影响,结果表明,在微波功率为 1000 W、干燥温度为 89℃、干燥时间为 12 min 的条件下,30 g 硅粉的微波干燥脱水率可达 97.65%,耗电量可降至 6.7 kW-h/kg。本研究表明,微波干燥硅粉是一种节能高效的工艺,具有良好的工业应用前景。
{"title":"Study on efficient drying process of industrial silicon powder","authors":"Hang Li,&nbsp;Lei Xu,&nbsp;Jiayu He,&nbsp;Xuan Li,&nbsp;Zhaohui Han,&nbsp;Junyu Lu,&nbsp;Sivasankar Koppala","doi":"10.1002/ep.14420","DOIUrl":"10.1002/ep.14420","url":null,"abstract":"<p>The drying procedure is an important consideration for the silicon powder processing. Herein, a comparative investigation of the drying efficiency, drying performance, and energy consumption of silicon powder after separation and purification of monocrystal silicon cutting slurry by using the hot air, far-infrared and microwave drying treatments. The results show that microwave drying of 30 g silicon powder takes only 12 min, which is much shorter than hot air drying of 200 min and far infrared drying of 40 min. The water evaporation energy consumption of microwave drying reached 73.5 g/kW·h, which was 3.3 times than that of far infrared drying and 16.5 times than that of hot air drying. For 1 kg of silicon powder, the power consumption of microwave drying was 8 kW·h, while the far-infrared drying was 26.7 kW·h, and the hot air drying was 133.4 kW·h, respectively. Therefore, effects of microwave power, drying temperature and drying time on the dehydration rate of silicon powder were investigated and optimized by response surface method, demonstrating that the microwave drying dehydration rate of 30 g silicon powder could reach 97.65%, and the power consumption could be reduced to 6.7 kW·h/kg under the conditions of microwave power of 1000 W, drying temperature of 89°C and drying time of 12 min. The present study shows that microwave drying of silicon powder is an energy-saving and efficient process with good industrial application prospects.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of ten different physical parameters on solar still productivity: Theoretical modeling 十种不同物理参数对太阳能蒸发器生产率的影响:理论建模
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-20 DOI: 10.1002/ep.14416
Adil A. M. Omara, Omer Elfarouk E. Mohamed, Abubaker A. M. Mohammedali, Mustafa Ahmed Khogley Ahmed

Solar distillation using solar stills is widely recognized as a clean and cost-effective method for producing freshwater. However, due to its straightforward design, solar still performance is greatly influenced by various physical characteristics. Many researches have evaluated solar still parameters, while only a few articles have concerned physical ones. Therefore, this article aims to investigate the effect of different physical parameters on solar still productivity through thermal modeling. The theoretical results were validated with those of a previous experimental model, showing a good agreement with each other. The results reveal that daily productivity experiences significant improvement with an increase in plate emissivity or insulation thickness. Conversely, an increase in water mass, glass absorptivity or insulation thermal conductivity leads to a substantial reduction in productivity. Notably, water transmissivity and plate absorptivity do not affect productivity. Modest enhancements in productivity can be achieved by reducing the effective emissivity between water and glass. While the initial temperature of water has a minor impact on productivity at low water mass, it exhibits a substantial improvement effect at high water mass. These results can be a good guidance for the designers and manufacturers to develop more efficient designs that maximize the production of clean water.

利用太阳能蒸馏器进行太阳能蒸馏被公认为是一种生产淡水的清洁而经济的方法。然而,由于设计简单,太阳能蒸馏器的性能在很大程度上受到各种物理特性的影响。许多研究对太阳能蒸馏器的参数进行了评估,但只有少数文章涉及物理参数。因此,本文旨在通过热建模研究不同物理参数对太阳能蒸馏器生产率的影响。理论结果与之前实验模型的结果进行了验证,两者显示出良好的一致性。结果表明,随着平板发射率或隔热层厚度的增加,日产量会显著提高。相反,水质量、玻璃吸收率或隔热导热率的增加会导致生产率大幅下降。值得注意的是,透水率和板吸收率不会影响生产率。降低水和玻璃之间的有效发射率可适度提高生产率。在水的质量较低时,水的初始温度对生产率的影响较小,而在水的质量较高时,水的初始温度对生产率的提高有很大影响。这些结果可以很好地指导设计人员和制造商开发更高效的设计,最大限度地提高净水产量。
{"title":"Effect of ten different physical parameters on solar still productivity: Theoretical modeling","authors":"Adil A. M. Omara,&nbsp;Omer Elfarouk E. Mohamed,&nbsp;Abubaker A. M. Mohammedali,&nbsp;Mustafa Ahmed Khogley Ahmed","doi":"10.1002/ep.14416","DOIUrl":"10.1002/ep.14416","url":null,"abstract":"<p>Solar distillation using solar stills is widely recognized as a clean and cost-effective method for producing freshwater. However, due to its straightforward design, solar still performance is greatly influenced by various physical characteristics. Many researches have evaluated solar still parameters, while only a few articles have concerned physical ones. Therefore, this article aims to investigate the effect of different physical parameters on solar still productivity through thermal modeling. The theoretical results were validated with those of a previous experimental model, showing a good agreement with each other. The results reveal that daily productivity experiences significant improvement with an increase in plate emissivity or insulation thickness. Conversely, an increase in water mass, glass absorptivity or insulation thermal conductivity leads to a substantial reduction in productivity. Notably, water transmissivity and plate absorptivity do not affect productivity. Modest enhancements in productivity can be achieved by reducing the effective emissivity between water and glass. While the initial temperature of water has a minor impact on productivity at low water mass, it exhibits a substantial improvement effect at high water mass. These results can be a good guidance for the designers and manufacturers to develop more efficient designs that maximize the production of clean water.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified xanthan gum (natural polymeric material) and its derivative for wastewater treatment: A review 用于废水处理的改性黄原胶(天然高分子材料)及其衍生物:综述
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-20 DOI: 10.1002/ep.14419
Kopal Kashaudhan, Poorn Prakash Pande, Jyoti Sharma, Ravi Shankar, Amar Nath

Naturally occurring xanthan gum (XG) has much commercial importance because of its excellent physicochemical, eco-friendly, and non-toxic properties. It is used in various applications like protein extraction, wastewater treatment, tissue engineering, drug delivery, food packaging, and so forth. XG is a natural material, and it has some limitations related to the mechanical stress, thermal stability, and hydration. To overcome the limitation, XG can be modified by adding third component or modification of operation for specific applications. XG can be modified by physical, genetically, enzymatically, or chemical processes. Revamped XG also enhances the efficiency toward adsorbing toxic metal ions and organics from synthetic or industrial effluents. The emphasis of present review article is to address the structural characteristics along with the focus on the developing chemically modified XG like grafted, cross-linked, nanocomposites, and functionally modified biopolymer. However, this review commences thorough discussion on numerous ways of modifications, which can be attempted in XG structure, expanding its applications for heavy metal ion along with dye removal.

天然黄原胶(XG)因其优异的物理化学、生态友好和无毒特性而具有重要的商业价值。它被广泛应用于蛋白质提取、废水处理、组织工程、药物输送、食品包装等领域。XG 是一种天然材料,在机械应力、热稳定性和水合方面有一定的局限性。为了克服这些局限性,可以通过添加第三种成分或改变操作方式对 XG 进行改性,以满足特定应用的需要。XG 可通过物理、遗传、酶或化学过程进行改性。改造后的 XG 还能提高吸附合成或工业废水中有毒金属离子和有机物的效率。本综述文章的重点是探讨 XG 的结构特征,同时关注接枝、交联、纳米复合材料和功能改性生物聚合物等化学改性 XG 的发展。不过,本综述还将深入探讨 XG 结构可尝试的多种改性方法,从而扩大其在去除重金属离子和染料方面的应用。
{"title":"Modified xanthan gum (natural polymeric material) and its derivative for wastewater treatment: A review","authors":"Kopal Kashaudhan,&nbsp;Poorn Prakash Pande,&nbsp;Jyoti Sharma,&nbsp;Ravi Shankar,&nbsp;Amar Nath","doi":"10.1002/ep.14419","DOIUrl":"10.1002/ep.14419","url":null,"abstract":"<p>Naturally occurring xanthan gum (XG) has much commercial importance because of its excellent physicochemical, eco-friendly, and non-toxic properties. It is used in various applications like protein extraction, wastewater treatment, tissue engineering, drug delivery, food packaging, and so forth. XG is a natural material, and it has some limitations related to the mechanical stress, thermal stability, and hydration. To overcome the limitation, XG can be modified by adding third component or modification of operation for specific applications. XG can be modified by physical, genetically, enzymatically, or chemical processes. Revamped XG also enhances the efficiency toward adsorbing toxic metal ions and organics from synthetic or industrial effluents. The emphasis of present review article is to address the structural characteristics along with the focus on the developing chemically modified XG like grafted, cross-linked, nanocomposites, and functionally modified biopolymer. However, this review commences thorough discussion on numerous ways of modifications, which can be attempted in XG structure, expanding its applications for heavy metal ion along with dye removal.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immobilizing of polyethyleneimine on bamboo viscose fiber using epichlorohydrin crosslinker for enhancing adsorption ability with lac dye 使用环氧氯丙烷交联剂将聚乙烯亚胺固定在竹粘胶纤维上,以增强对漆树染料的吸附能力
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-20 DOI: 10.1002/ep.14417
Onanong Cheerarot, Sunan Saikrasun

Immobilization of polyethyleneimine (PEI) on bamboo viscose fiber using epichlorohydrin (ECH) crosslinker (ABF-e-PEI) was employed to enhance the ability of dyeing with lac. The results from morphological observation, thermal degradation behavior, Fourier transform infrared (FTIR) analysis, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) clearly revealed the success of PEI-immobilizing on fiber surface with no significant change in intrinsic properties of the fiber after modification. The modified fiber exhibited fast and efficient adsorption with the adsorption capacity >90 mg/g which was much higher than that of the unmodified adsorbent (did not exceed 10 mg/g). The results from kinetic and isotherm studies showed that the adsorption process conformed to the pseudo-second-order, intra-particle diffusion and Langmuir models. Adsorption temperatures have less effect to the adsorption performance of the modified adsorbent. Electrostatic ion-dipole interaction between protonated amines of PEI and negative charged sites of lac dye was the main proposed mechanism. Good resistance of color changes for ABF-e-PEI was confirmed by the color-fastness assessment (grade 4–5), suggesting efficient method of PEI-immobilizing using ECH crosslinker. The binding reaction of between amine groups of PEI and hydroxyl groups of the cellulosic fiber using ECH crosslinker can be expected to have a broad potential application in dyeing processes or pollution treatments due to its simple, cost-effective, flexible and efficient method.

利用环氧氯丙烷(ECH)交联剂将聚乙烯亚胺(PEI)固定在竹粘胶纤维上(ABF-e-PEI),以增强其与漆的染色能力。形态学观察、热降解行为、傅立叶变换红外光谱(FTIR)分析、X 射线光电子能谱(XPS)和 X 射线衍射(XRD)等研究结果表明,PEI 在纤维表面的固定非常成功,改性后纤维的内在性能没有发生显著变化。改性后的纤维具有快速高效的吸附能力,吸附量大于 90 mg/g,远高于未改性吸附剂的吸附量(未超过 10 mg/g)。动力学和等温线研究结果表明,吸附过程符合伪二阶、颗粒内扩散和 Langmuir 模型。吸附温度对改性吸附剂的吸附性能影响较小。PEI 的质子化胺与漆染料的负电荷位点之间的静电离子-偶极子相互作用是主要的机理。色牢度评估(4-5 级)证实 ABF-e-PEI 具有良好的抗变色性,这表明使用 ECH 交联剂固定 PEI 是一种有效的方法。利用 ECH 交联剂使 PEI 的胺基与纤维素纤维的羟基发生结合反应的方法简单、经济、灵活、高效,有望在染色工艺或污染处理中得到广泛应用。
{"title":"Immobilizing of polyethyleneimine on bamboo viscose fiber using epichlorohydrin crosslinker for enhancing adsorption ability with lac dye","authors":"Onanong Cheerarot,&nbsp;Sunan Saikrasun","doi":"10.1002/ep.14417","DOIUrl":"10.1002/ep.14417","url":null,"abstract":"<p>Immobilization of polyethyleneimine (PEI) on bamboo viscose fiber using epichlorohydrin (ECH) crosslinker (ABF-<i>e</i>-PEI) was employed to enhance the ability of dyeing with lac. The results from morphological observation, thermal degradation behavior, Fourier transform infrared (FTIR) analysis, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) clearly revealed the success of PEI-immobilizing on fiber surface with no significant change in intrinsic properties of the fiber after modification. The modified fiber exhibited fast and efficient adsorption with the adsorption capacity &gt;90 mg/g which was much higher than that of the unmodified adsorbent (did not exceed 10 mg/g). The results from kinetic and isotherm studies showed that the adsorption process conformed to the pseudo-second-order, intra-particle diffusion and Langmuir models. Adsorption temperatures have less effect to the adsorption performance of the modified adsorbent. Electrostatic ion-dipole interaction between protonated amines of PEI and negative charged sites of lac dye was the main proposed mechanism. Good resistance of color changes for ABF-<i>e</i>-PEI was confirmed by the color-fastness assessment (grade 4–5), suggesting efficient method of PEI-immobilizing using ECH crosslinker. The binding reaction of between amine groups of PEI and hydroxyl groups of the cellulosic fiber using ECH crosslinker can be expected to have a broad potential application in dyeing processes or pollution treatments due to its simple, cost-effective, flexible and efficient method.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced removing of cyanobacterium by NZVI coupled with H2O2: Influencing factors and removal mechanisms NZVI 与 H2O2 联用可增强对蓝藻的去除:影响因素和去除机制
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-20 DOI: 10.1002/ep.14411
Lipeng Ji, Hao Lu, Yue Wang, Fuhao Chu, Danni Wang, Jiake Li, Shuhong Mo, Yun Kong

As advanced oxidation processes (AOPs) is considered to be a highly effective approach for degrading organic pollutants, the simultaneous coagulation and oxidation process by the Fenton-like reaction of nanoscale zero-valent iron (NZVI) and hydrogen peroxide (H2O2) is investigated to eliminate the harmful cyanobacterium Microcystis aeruginosa in this study, and the process conditions are optimized using the central composite design of response surface methodology (RSM); in addition, the removal efficiency of M. aeruginosa (in terms of chlorophyll a, Chl a) and the verifications of the antioxidant abilities, as well as extracellular organic matters (EOM) and intracellular organic matters (IOM) are investigated under the optimized conditions. Results indicate that H2O2 concentration is the key factor affecting the Chl a removal efficiency, and the maximum Chl a removal reaches 98.10% under the optimized conditions: NZVI concentration 62.82 mg L−1, H2O2 concentration 54.2 mmol L−1, pH 4.38 and rotating speed 67 rpm. The high correlation coefficient (R2 > 0.80) of analysis of variance (ANOVA) demonstrates the RSM model is extremely significant and suitable for experimental results. Moreover, the total organic carbon (TOC) and fluorescent substances (soluble cyanobacteria metabolic byproducts, aromatic proteins II, humic and fulvic acid-like compounds) for both EOM and IOM are enhanced removal. It is speculated the removal mechanisms of the Fenton-like process of NZVI/H2O2 for cyanobacterium belongs to the combined actions of the oxidation of Fe(II)/H2O2 and the coagulation of Fe(III), which destroy the defense system and result in the removal of M. aeruginosa.

由于高级氧化过程(AOPs)被认为是降解有机污染物的一种高效方法,本研究考察了纳米级零价铁(NZVI)和过氧化氢(H2O2)的类似芬顿反应的同时混凝氧化过程来去除有害蓝藻铜绿微囊藻,并采用响应面方法(RSM)的中心复合设计对工艺条件进行了优化;此外,还考察了铜绿微囊藻的去除率(以叶绿素 a 计)、抗氧化能力验证以及胞外有机物(EOM)和胞内有机物(IOM)的去除率。此外,还研究了在优化条件下铜绿微囊藻的去除效率(以叶绿素 a 计)、抗氧化能力验证以及胞外有机物(EOM)和胞内有机物(IOM)。结果表明,H2O2 浓度是影响 Chl a 去除效率的关键因素,在优化条件下,最大 Chl a 去除率达到 98.10%:在 NZVI 浓度 62.82 mg L-1、H2O2 浓度 54.2 mmol L-1、pH 值 4.38 和转速 67 rpm 的优化条件下,对 Chl a 的最大去除率达到 98.10%。方差分析(ANOVA)的高相关系数(R2 > 0.80)表明 RSM 模型非常显著,适合实验结果。此外,EOM 和 IOM 的总有机碳(TOC)和荧光物质(可溶性蓝藻代谢副产物、芳香族蛋白 II、腐殖酸和富里酸类化合物)的去除率均有所提高。据推测,NZVI/H2O2 的 Fenton 类过程对蓝藻的去除机制属于 Fe(II)/H2O2 氧化作用和 Fe(III) 凝聚作用的联合作用,这两种作用破坏了蓝藻的防御系统,从而导致铜绿微囊藻的去除。
{"title":"Enhanced removing of cyanobacterium by NZVI coupled with H2O2: Influencing factors and removal mechanisms","authors":"Lipeng Ji,&nbsp;Hao Lu,&nbsp;Yue Wang,&nbsp;Fuhao Chu,&nbsp;Danni Wang,&nbsp;Jiake Li,&nbsp;Shuhong Mo,&nbsp;Yun Kong","doi":"10.1002/ep.14411","DOIUrl":"10.1002/ep.14411","url":null,"abstract":"<p>As advanced oxidation processes (AOPs) is considered to be a highly effective approach for degrading organic pollutants, the simultaneous coagulation and oxidation process by the Fenton-like reaction of nanoscale zero-valent iron (NZVI) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is investigated to eliminate the harmful cyanobacterium <i>Microcystis aeruginosa</i> in this study, and the process conditions are optimized using the central composite design of response surface methodology (RSM); in addition, the removal efficiency of <i>M. aeruginosa</i> (in terms of chlorophyll <i>a</i>, Chl <i>a</i>) and the verifications of the antioxidant abilities, as well as extracellular organic matters (EOM) and intracellular organic matters (IOM) are investigated under the optimized conditions. Results indicate that H<sub>2</sub>O<sub>2</sub> concentration is the key factor affecting the Chl <i>a</i> removal efficiency, and the maximum Chl <i>a</i> removal reaches 98.10% under the optimized conditions: NZVI concentration 62.82 mg L<sup>−1</sup>, H<sub>2</sub>O<sub>2</sub> concentration 54.2 mmol L<sup>−1</sup>, pH 4.38 and rotating speed 67 rpm. The high correlation coefficient (<i>R</i><sup>2</sup> &gt; 0.80) of analysis of variance (ANOVA) demonstrates the RSM model is extremely significant and suitable for experimental results. Moreover, the total organic carbon (TOC) and fluorescent substances (soluble cyanobacteria metabolic byproducts, aromatic proteins II, humic and fulvic acid-like compounds) for both EOM and IOM are enhanced removal. It is speculated the removal mechanisms of the Fenton-like process of NZVI/H<sub>2</sub>O<sub>2</sub> for cyanobacterium belongs to the combined actions of the oxidation of Fe(II)/H<sub>2</sub>O<sub>2</sub> and the coagulation of Fe(III), which destroy the defense system and result in the removal of <i>M. aeruginosa</i>.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of pine oil and hydrogen induction with hemp oil methyl ester on dual fuel reactivity controlled compression ignition combustion in diesel engine 松油和大麻油甲酯氢气诱导对柴油机双燃料反应控制压燃燃烧的影响
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-18 DOI: 10.1002/ep.14410
Senthamil Selvan Murugan, Prakash Ramasamy, Sundararajan Rajkumar, Nallusamy Nallusamy

The current research focuses on the impacts of pine oil injection and hydrogen induction separately with hemp oil methyl ester (HOME) in the single cylinder diesel engine in dual fuel-reactivity controlled compression ignition (DF-RCCI) combustion mode. The engine was tested under a DF-RCCI mode for the different energy shares of 10% pine oil with HOME (10P-HOME), 30% pine oil with HOME (30P-HOME), 3-lpm hydrogen with HOME (3-lpmH2-HOME), and 6-lpm hydrogen with HOME (6-lpmH2-HOME) separately at 345 °CA bTDC of low reactivity fuel (pine oil and hydrogen) and 23°C bTDC injection timing of high reactivity fuel (HOME). The results showed a higher Brake Thermal Efficiency (BTE) of 7.44%, 5.32%, 5.72%, and 2.46% for 6-lpmH2-HOME, 3-lpmH2-HOME, 30P-HOME, and 10P-HOME fuel shares, respectively, over the conventional diesel combustion (CDC) at full load. 30P-HOME, 3-lpmH2-HOME, and 6-lpmH2-HOME fuel combinations recorded 4.08% 4.42%, and 5.69% lower brake specific fuel consumption (BSFC), respectively, at full load. When comparing DF-RCCI combustion to CDC, an increase in the heat release rate (HRR) of 2.89%–26.50% and a rise in peak cylinder pressure of 0.77%–12.99% were observed. The 30P-HOME, 3-lpmH2-HOME, and 6-lpmH2-HOME emit less smoke in DF-RCCI combustion mode by 13.06%, 4.84%, and 7.26%, respectively at full load condition. When using 30P-HOME the exhaust gas temperature (EGT) decreased by 3.50% at full load condition. At part and full load conditions, the 30P-HOME fuel share reduced oxides of nitrogen (NOX) emissions by 3.93% and 5.26%, respectively.

目前的研究重点是在双燃料-反应控制压燃(DF-RCCI)燃烧模式下,在单缸柴油发动机中分别喷射松油和氢气诱导麻油甲酯(HOME)的影响。在低反应性燃料(松油和氢)的 345 °C bTDC 和高反应性燃料(HOME)的 23 °C bTDC 喷射时机下,分别对 10%松油加 HOME(10P-HOME)、30%松油加 HOME(30P-HOME)、3-lpm 氢加 HOME(3-lpmH2-HOME)和 6-lpm 氢加 HOME(6-lpmH2-HOME)的不同能量份额进行了 DF-RCCI 模式下的发动机测试。结果表明,在满负荷时,6-lpmH2-HOME、3-lpmH2-HOME、30P-HOME 和 10P-HOME 燃料份额的制动热效率(BTE)分别比传统柴油燃烧(CDC)高 7.44%、5.32%、5.72% 和 2.46%。满负荷时,30P-HOME、3-lpmH2-HOME 和 6-lpmH2-HOME 燃料组合的制动比油耗(BSFC)分别降低了 4.08% 4.42% 和 5.69%。在将 DF-RCCI 燃烧与 CDC 燃烧进行比较时,观察到热释放率(HRR)增加了 2.89%-26.50%,气缸压力峰值上升了 0.77%-12.99%。在 DF-RCCI 燃烧模式下,30P-HOME、3-lpmH2-HOME 和 6-lpmH2-HOME 在满负荷条件下排放的烟雾分别减少了 13.06%、4.84% 和 7.26%。使用 30P-HOME 时,满负荷条件下的废气温度(EGT)降低了 3.50%。在部分和全负荷条件下,30P-HOME 燃料份额分别减少了 3.93% 和 5.26% 的氮氧化物(NOX)排放量。
{"title":"Impacts of pine oil and hydrogen induction with hemp oil methyl ester on dual fuel reactivity controlled compression ignition combustion in diesel engine","authors":"Senthamil Selvan Murugan,&nbsp;Prakash Ramasamy,&nbsp;Sundararajan Rajkumar,&nbsp;Nallusamy Nallusamy","doi":"10.1002/ep.14410","DOIUrl":"10.1002/ep.14410","url":null,"abstract":"<p>The current research focuses on the impacts of pine oil injection and hydrogen induction separately with hemp oil methyl ester (HOME) in the single cylinder diesel engine in dual fuel-reactivity controlled compression ignition (DF-RCCI) combustion mode. The engine was tested under a DF-RCCI mode for the different energy shares of 10% pine oil with HOME (10P-HOME), 30% pine oil with HOME (30P-HOME), 3-lpm hydrogen with HOME (3-lpmH<sub>2</sub>-HOME), and 6-lpm hydrogen with HOME (6-lpmH<sub>2</sub>-HOME) separately at 345 °CA bTDC of low reactivity fuel (pine oil and hydrogen) and 23°C bTDC injection timing of high reactivity fuel (HOME). The results showed a higher Brake Thermal Efficiency (BTE) of 7.44%, 5.32%, 5.72%, and 2.46% for 6-lpmH<sub>2</sub>-HOME, 3-lpmH<sub>2</sub>-HOME, 30P-HOME, and 10P-HOME fuel shares, respectively, over the conventional diesel combustion (CDC) at full load. 30P-HOME, 3-lpmH<sub>2</sub>-HOME, and 6-lpmH<sub>2</sub>-HOME fuel combinations recorded 4.08% 4.42%, and 5.69% lower brake specific fuel consumption (BSFC), respectively, at full load. When comparing DF-RCCI combustion to CDC, an increase in the heat release rate (HRR) of 2.89%–26.50% and a rise in peak cylinder pressure of 0.77%–12.99% were observed. The 30P-HOME, 3-lpmH<sub>2</sub>-HOME, and 6-lpmH<sub>2</sub>-HOME emit less smoke in DF-RCCI combustion mode by 13.06%, 4.84%, and 7.26%, respectively at full load condition. When using 30P-HOME the exhaust gas temperature (EGT) decreased by 3.50% at full load condition. At part and full load conditions, the 30P-HOME fuel share reduced oxides of nitrogen (NO<sub>X</sub>) emissions by 3.93% and 5.26%, respectively.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the effect of ambient air temperature on the sustainability aspect of naphtha-based gas turbine power plant 评估环境空气温度对石脑油燃气轮机发电厂可持续性的影响
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-18 DOI: 10.1002/ep.14403
Sankalp Arpit

The exergy-based sustainability indices have been a cause of concern for gas turbine power plant as its performance is very sensitive to air temperature. Hence, the present study evaluates the impact of atmospheric air temperature on exergy sustainability and ecological function of a naphtha-based gas turbine power plant using EES. The outcome of the study shows that combustion chamber (CC_1) needs more attention compared with other components present, and it has least improvement potential as compared with other components. Further while carrying out parametric analysis with respect to ambient air, it was observed that for a 1.1°C increase in atmospheric air temperature a reduction in sustainability index about 0.66% was observed respectively, for GT_1. Thus, this study established that the power plant's exergy sustainability performance has a negative impact at high ambient air temperatures on exergy sustainability indices.

由于燃气轮机发电厂的性能对气温非常敏感,因此基于放能的可持续性指数一直备受关注。因此,本研究利用 EES 评估了大气空气温度对石脑油燃气轮机发电厂的放能可持续性和生态功能的影响。研究结果表明,与其他组件相比,燃烧室(CC_1)需要更多关注,与其他组件相比,它的改进潜力最小。此外,在对环境空气进行参数分析时发现,大气温度每升高 1.1°C,GT_1 的可持续性指数就会降低约 0.66%。因此,本研究确定,在环境空气温度较高时,发电厂的放电可持续性性能会对放电可持续性指数产生负面影响。
{"title":"Evaluating the effect of ambient air temperature on the sustainability aspect of naphtha-based gas turbine power plant","authors":"Sankalp Arpit","doi":"10.1002/ep.14403","DOIUrl":"10.1002/ep.14403","url":null,"abstract":"<p>The exergy-based sustainability indices have been a cause of concern for gas turbine power plant as its performance is very sensitive to air temperature. Hence, the present study evaluates the impact of atmospheric air temperature on exergy sustainability and ecological function of a naphtha-based gas turbine power plant using EES. The outcome of the study shows that combustion chamber (CC_1) needs more attention compared with other components present, and it has least improvement potential as compared with other components. Further while carrying out parametric analysis with respect to ambient air, it was observed that for a 1.1°C increase in atmospheric air temperature a reduction in sustainability index about 0.66% was observed respectively, for GT_1. Thus, this study established that the power plant's exergy sustainability performance has a negative impact at high ambient air temperatures on exergy sustainability indices.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of water extract from Nasturtium officinale R. Br. straw on growth and selenium uptake of peach seedlings Nasturtium officinale R. Br. 稻草水提取物对桃苗生长和硒吸收的影响
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-17 DOI: 10.1002/ep.14418
Jun Wang, Xingting Xu, Kexuan Zhou, Yaxin Xu, Xin Jin, Yunying Xiao, Xianmin Xia, Rongping Hu, Lijin Lin

The content of selenium (Se) in most horticultural crops is low. To improve Se uptake in fruit trees, we investigated the impact of water extract derived from Nasturtium officinale R. Br. straw on the growth and Se uptake of peach seedlings under Se-enriched soil by a pot experiment. The water extract of N. officinale straw exhibited notable effects on various growth parameters and Se accumulation in peach seedlings, with the most significant outcomes observed at a 200-fold dilution. Specifically, the extract led to substantial enhancements in biomass, photosynthetic pigment content, antioxidant enzyme activity, and soluble protein content in peach seedlings. Remarkably, the 200-fold dilution of N. officinale straw extract resulted in a 60.78% increase in root biomass and a 31.26% increase in shoot biomass when compared to the control. Moreover, the water extract augmented the levels of total Se, inorganic Se, and organic Se, along with the activities of Se metabolism-related enzymes in peach seedlings. Among various tested dilutions, the 300-fold and 400-fold dilutions of N. officinale straw extract exhibited the highest total Se contents in roots and shoots, respectively, indicating increments of 97.26% and 44.08% over their respective controls. Additionally, correlation and gray relational analyses unveiled significant associations between peroxidase activity, soluble protein content, chlorophyll a content, chlorophyll a/b ratio, and the total shoot Se content. In conclusion, the water extract of N. officinale straw holds substantial potential for promoting the growth and Se uptake in peach seedlings, with the best concentration of 300-fold dilution.

大多数园艺作物中的硒(Se)含量较低。为了提高果树对硒的吸收,我们通过盆栽实验研究了从金莲花(Nasturtium officinale R. Br.)秸秆中提取的水提取物对富硒土壤中桃幼苗的生长和硒吸收的影响。金莲花秸秆水提取物对桃幼苗的各种生长参数和硒积累都有显著影响,稀释 200 倍时效果最明显。具体来说,萃取物显著提高了桃幼苗的生物量、光合色素含量、抗氧化酶活性和可溶性蛋白质含量。值得注意的是,与对照组相比,稀释 200 倍的 N. officinale 稻草提取物使根部生物量增加了 60.78%,芽部生物量增加了 31.26%。此外,水提取物还能提高桃苗的总硒、无机硒和有机硒水平,以及硒代谢相关酶的活性。在各种测试稀释液中,300 倍和 400 倍稀释的 N. officinale 稻草提取物在根部和芽中的总硒含量最高,分别比各自的对照组增加了 97.26% 和 44.08%。此外,相关性和灰色关系分析揭示了过氧化物酶活性、可溶性蛋白质含量、叶绿素 a 含量、叶绿素 a/b 比值和嫩枝总 Se 含量之间的显著关联。总之,N. officinale 稻草水提取物具有促进桃幼苗生长和 Se 吸收的巨大潜力,最佳浓度为 300 倍稀释。
{"title":"Effects of water extract from Nasturtium officinale R. Br. straw on growth and selenium uptake of peach seedlings","authors":"Jun Wang,&nbsp;Xingting Xu,&nbsp;Kexuan Zhou,&nbsp;Yaxin Xu,&nbsp;Xin Jin,&nbsp;Yunying Xiao,&nbsp;Xianmin Xia,&nbsp;Rongping Hu,&nbsp;Lijin Lin","doi":"10.1002/ep.14418","DOIUrl":"10.1002/ep.14418","url":null,"abstract":"<p>The content of selenium (Se) in most horticultural crops is low. To improve Se uptake in fruit trees, we investigated the impact of water extract derived from <i>Nasturtium officinale</i> R. Br. straw on the growth and Se uptake of peach seedlings under Se-enriched soil by a pot experiment. The water extract of <i>N. officinale</i> straw exhibited notable effects on various growth parameters and Se accumulation in peach seedlings, with the most significant outcomes observed at a 200-fold dilution. Specifically, the extract led to substantial enhancements in biomass, photosynthetic pigment content, antioxidant enzyme activity, and soluble protein content in peach seedlings. Remarkably, the 200-fold dilution of <i>N. officinale</i> straw extract resulted in a 60.78% increase in root biomass and a 31.26% increase in shoot biomass when compared to the control. Moreover, the water extract augmented the levels of total Se, inorganic Se, and organic Se, along with the activities of Se metabolism-related enzymes in peach seedlings. Among various tested dilutions, the 300-fold and 400-fold dilutions of <i>N. officinale</i> straw extract exhibited the highest total Se contents in roots and shoots, respectively, indicating increments of 97.26% and 44.08% over their respective controls. Additionally, correlation and gray relational analyses unveiled significant associations between peroxidase activity, soluble protein content, chlorophyll <i>a</i> content, chlorophyll <i>a</i>/<i>b</i> ratio, and the total shoot Se content. In conclusion, the water extract of <i>N. officinale</i> straw holds substantial potential for promoting the growth and Se uptake in peach seedlings, with the best concentration of 300-fold dilution.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of a hybrid advanced oxidation process for removal of pirimicarb insecticide in aqueous media: Statistical optimization and estimation of electrical energy consumption 评估去除水介质中吡蚜酮杀虫剂的混合高级氧化工艺:统计优化和电能消耗估算
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-16 DOI: 10.1002/ep.14412
Azam Ghavi, Ghadamali Bagherian, Hadi Rezaei-Vahidian

In this paper, the role of periodate and persulfate as inorganic oxidants were studied in presence of ultraviolet radiation and titanium dioxide nanoparticles as a hybrid advanced oxidation photocatalytic processes for degradation and mineralization of the pirimicarb insecticide in aqueous media. The effects of several factors such as the ultraviolet irradiation, initial oxidant concentration, titanium dioxide nanoparticles dosage, and pH on the process performance were investigated. The process optimization was performed by the central composite design as a tools of response surface methodology for 30 mg L−1 of the insecticide initial concentration at 25°C and 10 min of degradation process. A degradation efficiency of about 86% and 85% have been obtained for the persulfate and periodate processes, respectively, in the optimum conditions. The mineralization efficiency of the process using persulfate and periodate were about 35% and 46% after 60 min, respectively. The kinetic studies show that both processes follow a pseudo-first-order kinetic model and the rate constants were 0.1483 min−1 for the persulfate and 0.1152 min−1 for the periodate process. Generally, it can be concluded that this method is suitable for the degradation and mineralization of toxic aromatic compounds.

本文研究了作为无机氧化剂的高碘酸盐和过硫酸盐在紫外线辐射和二氧化钛纳米粒子混合高级氧化光催化过程中对水介质中吡蚜酮杀虫剂的降解和矿化作用。研究了紫外线辐照、初始氧化剂浓度、二氧化钛纳米颗粒用量和 pH 值等因素对工艺性能的影响。在 25 摄氏度和 10 分钟降解过程中,对 30 毫克/升的杀虫剂初始浓度采用中心复合设计作为响应面方法进行了工艺优化。在最佳条件下,过硫酸盐和高碘酸盐工艺的降解效率分别为 86% 和 85%。60 分钟后,使用过硫酸盐和高碘酸盐的矿化效率分别约为 35% 和 46% 。动力学研究表明,两个过程都遵循伪一阶动力学模型,过硫酸盐过程的速率常数为 0.1483 min-1,高碘酸盐过程的速率常数为 0.1152 min-1。总体而言,该方法适用于有毒芳香族化合物的降解和矿化。
{"title":"Evaluation of a hybrid advanced oxidation process for removal of pirimicarb insecticide in aqueous media: Statistical optimization and estimation of electrical energy consumption","authors":"Azam Ghavi,&nbsp;Ghadamali Bagherian,&nbsp;Hadi Rezaei-Vahidian","doi":"10.1002/ep.14412","DOIUrl":"10.1002/ep.14412","url":null,"abstract":"<p>In this paper, the role of periodate and persulfate as inorganic oxidants were studied in presence of ultraviolet radiation and titanium dioxide nanoparticles as a hybrid advanced oxidation photocatalytic processes for degradation and mineralization of the pirimicarb insecticide in aqueous media. The effects of several factors such as the ultraviolet irradiation, initial oxidant concentration, titanium dioxide nanoparticles dosage, and pH on the process performance were investigated. The process optimization was performed by the central composite design as a tools of response surface methodology for 30 mg L<sup>−1</sup> of the insecticide initial concentration at 25°C and 10 min of degradation process. A degradation efficiency of about 86% and 85% have been obtained for the persulfate and periodate processes, respectively, in the optimum conditions. The mineralization efficiency of the process using persulfate and periodate were about 35% and 46% after 60 min, respectively. The kinetic studies show that both processes follow a pseudo-first-order kinetic model and the rate constants were 0.1483 min<sup>−1</sup> for the persulfate and 0.1152 min<sup>−1</sup> for the periodate process. Generally, it can be concluded that this method is suitable for the degradation and mineralization of toxic aromatic compounds.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Progress & Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1