The downstream processing of biocrudes obtained from direct biomass pyrolysis poses significant challenges due to stability issues, necessitating costly upgrading for further coprocessing with refinery feeds. This study examines the impact of torrefaction pretreatment on pyrolysis product distribution and biocrude composition using sawdust (SD) and groundnut shell (GS) feeds. Torrefaction was conducted at varying temperatures (200, 250 and 300°C) for 30 min under different reactor conditions. Increasing the severity of torrefaction resulted in decreased biocrude yields with reduced water content and gas formation, particularly evident with GS. A torrefaction temperature of 250°C and 30 min of pretreatment yielded higher phenolics and hydrocarbons. This increase in phenolics can be attributed to lignin enrichment during torrefaction, which, in the presence of a catalyst, undergoes deoxygenation leading to hydrocarbon formation. The influence of feed particle size, whether in powder or pellet form, on biocrude yield and composition was found to be minimal. Catalytic pyrolysis of SD using molecular sieve catalysts yielded the highest hydrocarbon (42%) and aromatic content (44%) at catalyst to biomass ratios of 1:1 and 2:3. The combination of torrefaction and pyrolysis was shown to enhance the quality of biocrude by increasing its hydrocarbon content, but at the expense of lower liquid yields. Experimental observations were supported by statistical analysis tools such as principal component analysis, which assessed pyrolysis product yields and composition.
{"title":"Catalytic pyrolysis of torrefied biomass with molecular sieve catalysts to produce hydrocarbon rich biocrude","authors":"Ranjita Singh, Sivasankar Kakku, Khushee Shah, Xiaolei Zhang, Abhishek Sharma, Nandana Chakinala, Anand G. Chakinala","doi":"10.1002/ep.14446","DOIUrl":"10.1002/ep.14446","url":null,"abstract":"<p>The downstream processing of biocrudes obtained from direct biomass pyrolysis poses significant challenges due to stability issues, necessitating costly upgrading for further coprocessing with refinery feeds. This study examines the impact of torrefaction pretreatment on pyrolysis product distribution and biocrude composition using sawdust (SD) and groundnut shell (GS) feeds. Torrefaction was conducted at varying temperatures (200, 250 and 300°C) for 30 min under different reactor conditions. Increasing the severity of torrefaction resulted in decreased biocrude yields with reduced water content and gas formation, particularly evident with GS. A torrefaction temperature of 250°C and 30 min of pretreatment yielded higher phenolics and hydrocarbons. This increase in phenolics can be attributed to lignin enrichment during torrefaction, which, in the presence of a catalyst, undergoes deoxygenation leading to hydrocarbon formation. The influence of feed particle size, whether in powder or pellet form, on biocrude yield and composition was found to be minimal. Catalytic pyrolysis of SD using molecular sieve catalysts yielded the highest hydrocarbon (42%) and aromatic content (44%) at catalyst to biomass ratios of 1:1 and 2:3. The combination of torrefaction and pyrolysis was shown to enhance the quality of biocrude by increasing its hydrocarbon content, but at the expense of lower liquid yields. Experimental observations were supported by statistical analysis tools such as principal component analysis, which assessed pyrolysis product yields and composition.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141366638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to promote syngas yield and reduce carbon emission, Ni loaded ZrO2 (Ni/ZrO2) catalysts were prepared for the co-pyrolysis of cypress sawdust and green algae in a two stage fixed bed reactor. The syngas yield, syngas component, and carbon emission were investigated. The results showed that Ni/ZrO2 catalyst could obviously increase the combustible gas component in syngas. H2 content was increased from 7.5% (single component) and 8.12% (co-pyrolysis) to 16.56% (catalytic pyrolysis). CO content was also increased from 19.62% (single component) and 19.46% (co-pyrolysis) to 25.94% (catalytic pyrolysis). However the catalyst had a little effect on the syngas yield compared with single component pyrolysis and co-pyrolysis. The pyrolysis temperature could make great influence on the carbon emission. The carbon emission reduction was increased from 33.32 to 234.25 g CO2 and from 105.94 to 369.23 g CO2, respectively for green algae and cypress sawdust.
{"title":"Co-pyrolysis of cypress sawdust and green algae over Ni/ZrO2 catalyst: Syngas yield and carbon emission","authors":"Ziliang Wan, Wei Sun, Longjin Tian, Guozhi Fan, Cheng Pan, Qunpeng Cheng","doi":"10.1002/ep.14441","DOIUrl":"10.1002/ep.14441","url":null,"abstract":"<p>In order to promote syngas yield and reduce carbon emission, Ni loaded ZrO<sub>2</sub> (Ni/ZrO<sub>2</sub>) catalysts were prepared for the co-pyrolysis of cypress sawdust and green algae in a two stage fixed bed reactor. The syngas yield, syngas component, and carbon emission were investigated. The results showed that Ni/ZrO<sub>2</sub> catalyst could obviously increase the combustible gas component in syngas. H<sub>2</sub> content was increased from 7.5% (single component) and 8.12% (co-pyrolysis) to 16.56% (catalytic pyrolysis). CO content was also increased from 19.62% (single component) and 19.46% (co-pyrolysis) to 25.94% (catalytic pyrolysis). However the catalyst had a little effect on the syngas yield compared with single component pyrolysis and co-pyrolysis. The pyrolysis temperature could make great influence on the carbon emission. The carbon emission reduction was increased from 33.32 to 234.25 g CO<sub>2</sub> and from 105.94 to 369.23 g CO<sub>2</sub>, respectively for green algae and cypress sawdust.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141366938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The outer prickly shells of the Ricinus communis (castor plant) have intrigued researchers interested in the synthesis of carbon black (CB) nanoparticles because of their excellent biocompatibility, low toxicity, and widespread availability. Both chemical and physical synthesis methods, such as pyrolysis and ball milling, are employed to obtain the fine-sized CB nanoparticles. The ball milling process is done for 5 h to reduce the size of the biochar from the pyrolysis process. The as-synthesized CB nanoparticles are characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and field emission scanning electron microscopy analysis. The energy dispersive spectrum also confirmed that the nanoparticles are highly composed of carbon and oxygen. CB nanoparticles made from green materials are added to a low-concentrated biodiesel blend of waste fried edible oil at a rate of 100 ppm. The experiment was performed in a single-cylinder diesel engine under varying compression ratios (CRs) (16:1–18:1), loads (0–16 kg), and exhaust gas recirculation (EGR) rates (0%, 15%, and 25%). The results revealed that the existence of carbon in nanoparticles increased the mean gas temperature, and the mass fraction burned was also slightly higher than diesel. Raising both CR (16:1–17:1 and 16:1–18:1) and EGR (25%) boosted the cylinder pressure of CBB30 (1.844% and 10.391%, respectively). In contrast, it lowered the net heat release rate (7.88% and 14.56%, respectively). Similar to this, smoke emissions decreased by 6.38% and 15.02%, respectively, at the same CR and EGR parameters. On the other hand, brake thermal efficiency slumped by 7.22% and 10.13% concurrently.
{"title":"Unlocking the potential of low concentration biodiesel blended with green synthesized novel carbon black nanoparticles from Ricinus communis outer shell: An experimental study under different compression ratios and EGR concentrations","authors":"M. Ananda Murugan, Nataraj Ganesan","doi":"10.1002/ep.14447","DOIUrl":"10.1002/ep.14447","url":null,"abstract":"<p>The outer prickly shells of the <i>Ricinus communis</i> (castor plant) have intrigued researchers interested in the synthesis of carbon black (CB) nanoparticles because of their excellent biocompatibility, low toxicity, and widespread availability. Both chemical and physical synthesis methods, such as pyrolysis and ball milling, are employed to obtain the fine-sized CB nanoparticles. The ball milling process is done for 5 h to reduce the size of the biochar from the pyrolysis process. The as-synthesized CB nanoparticles are characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and field emission scanning electron microscopy analysis. The energy dispersive spectrum also confirmed that the nanoparticles are highly composed of carbon and oxygen. CB nanoparticles made from green materials are added to a low-concentrated biodiesel blend of waste fried edible oil at a rate of 100 ppm. The experiment was performed in a single-cylinder diesel engine under varying compression ratios (CRs) (16:1–18:1), loads (0–16 kg), and exhaust gas recirculation (EGR) rates (0%, 15%, and 25%). The results revealed that the existence of carbon in nanoparticles increased the mean gas temperature, and the mass fraction burned was also slightly higher than diesel. Raising both CR (16:1–17:1 and 16:1–18:1) and EGR (25%) boosted the cylinder pressure of CBB30 (1.844% and 10.391%, respectively). In contrast, it lowered the net heat release rate (7.88% and 14.56%, respectively). Similar to this, smoke emissions decreased by 6.38% and 15.02%, respectively, at the same CR and EGR parameters. On the other hand, brake thermal efficiency slumped by 7.22% and 10.13% concurrently.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141367954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}