首页 > 最新文献

Environmental Progress & Sustainable Energy最新文献

英文 中文
Exploring the interplay of renewable energy and carbon dioxide emissions across US sectors through wavelet approach 通过小波方法探索美国各行业可再生能源与二氧化碳排放的相互作用
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-12 DOI: 10.1002/ep.14454
Anyssa Trimech

Climate change presents urgent challenges that require simultaneous attention to environmental and economic dimensions. Addressing this global issue involves tackling its root causes and closely monitoring progress in energy transition efforts to formulate effective strategies. Understanding the complexities and opportunities of shifting toward low-carbon economies underscores the necessity for innovative sector-specific policies promoting sustainable energy practices and reducing air pollution. An insightful grasp of how energy transitions impact environmental sustainability is critical, highlighting sector-specific dynamics for informed policy and decision-making. This study employs a wavelet approach to explore the relationship between CO2 emissions and renewable energy consumption, analyzing both aggregate and sector-specific metrics. This time-varying analysis offers a view of how this relationship evolves over time, providing valuable insights into the effectiveness and outcomes of sustainable energy strategies. Drawing on a dataset spanning from January 1989 to March 2022 in the United States, the research identifies coherence and co-movements across different frequencies and time dimensions. Results underscore the need to tailor energy strategies to sector-specific dynamics, particularly noting that despite the growing adoption of renewable energies in industrial and transportation sectors, their impact on reducing CO2 emissions remains limited. However, the electric power sector shows a promising potential for reducing emissions through increased renewable energy integration.

气候变化带来了紧迫的挑战,需要同时关注环境和经济层面。要解决这一全球性问题,就必须从根本上解决问题,并密切监测能源转型工作的进展情况,以制定有效的战略。要了解向低碳经济转型的复杂性和机遇,就必须针对具体部门制定创新政策,促进可持续能源实践,减少空气污染。深刻把握能源转型对环境可持续性的影响至关重要,这可以突出特定部门的动态变化,从而制定明智的政策和决策。本研究采用小波方法探索二氧化碳排放与可再生能源消费之间的关系,分析总体指标和特定行业指标。通过这种时变分析,我们可以了解这种关系是如何随着时间的推移而演变的,从而为可持续能源战略的有效性和成果提供有价值的见解。研究利用美国 1989 年 1 月至 2022 年 3 月的数据集,确定了不同频率和时间维度的一致性和共同运动。研究结果表明,有必要根据具体行业的动态调整能源战略,特别是注意到尽管工业和交通部门越来越多地采用可再生能源,但其对减少二氧化碳排放的影响仍然有限。不过,电力部门显示出通过增加可再生能源整合减少排放的巨大潜力。
{"title":"Exploring the interplay of renewable energy and carbon dioxide emissions across US sectors through wavelet approach","authors":"Anyssa Trimech","doi":"10.1002/ep.14454","DOIUrl":"10.1002/ep.14454","url":null,"abstract":"<p>Climate change presents urgent challenges that require simultaneous attention to environmental and economic dimensions. Addressing this global issue involves tackling its root causes and closely monitoring progress in energy transition efforts to formulate effective strategies. Understanding the complexities and opportunities of shifting toward low-carbon economies underscores the necessity for innovative sector-specific policies promoting sustainable energy practices and reducing air pollution. An insightful grasp of how energy transitions impact environmental sustainability is critical, highlighting sector-specific dynamics for informed policy and decision-making. This study employs a wavelet approach to explore the relationship between CO<sub>2</sub> emissions and renewable energy consumption, analyzing both aggregate and sector-specific metrics. This time-varying analysis offers a view of how this relationship evolves over time, providing valuable insights into the effectiveness and outcomes of sustainable energy strategies. Drawing on a dataset spanning from January 1989 to March 2022 in the United States, the research identifies coherence and co-movements across different frequencies and time dimensions. Results underscore the need to tailor energy strategies to sector-specific dynamics, particularly noting that despite the growing adoption of renewable energies in industrial and transportation sectors, their impact on reducing CO<sub>2</sub> emissions remains limited. However, the electric power sector shows a promising potential for reducing emissions through increased renewable energy integration.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on effect of hybrid nanofluid as a passive heat transfer enhancement technique and different climates on thermal performance in a linear Fresnel collector 混合纳米流体作为被动传热增强技术及不同气候条件对线性菲涅尔集热器热性能影响的数值研究
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-11 DOI: 10.1002/ep.14402
Najmeh Salehi, Arash Mirabdolah Lavasani, Ramin Mehdipour, Mohammad Eftekhari Yazdi

A notable distinction in this research is the utilization of a new method for calculating critical heat flux (CHF) based on a Look-Up Table. The present study comprehensively investigates the effects of hybrid nanofluid, a type of passive heat transfer enhancement technique, on convection heat transfer coefficients and CHF. The study covers five different climates representing significant climate conditions in Iran, namely Bandar Abbas, Esfahan, Shiraz, Tehran, and Yazd, each with different solar irradiations. The nanoparticles considered in this study include silver, nickel, and aluminum, as well as Ag-Au hybrid nanofluid with volumetric concentrations of 0.1%, 0.3%, 0.5%, 1%, and 2%. The modeling results reveal that the heat transfer coefficient increases with the volumetric concentration of nanoparticles. According to the results, at the CHF point for 2 vol% Ag–Au hybrid nanofluid and Ag, Ni, and Al nanoparticles, the heat transfer coefficient shows an increase of 28%, 11.5%, 10.6%, and 4.9%, respectively, compared to the results for pure water in Shiraz. Despite the acceptable results and effective performance of 2 vol% Ag–Au hybrid nanofluid for a linear Fresnel reflector, economically, 2 vol% nickel nanoparticles are identified as the most suitable choice.

本研究的一个显著特点是采用了一种基于查找表的计算临界热通量(CHF)的新方法。本研究全面调查了混合纳米流体(一种被动传热增强技术)对对流传热系数和 CHF 的影响。研究涵盖了代表伊朗重要气候条件的五种不同气候,即阿巴斯港、伊斯法罕、设拉子、德黑兰和亚兹德,每种气候都有不同的太阳辐照度。本研究考虑的纳米粒子包括银、镍和铝,以及体积浓度分别为 0.1%、0.3%、0.5%、1% 和 2% 的银铝混合纳米流体。建模结果表明,传热系数随纳米颗粒体积浓度的增加而增大。结果显示,与设拉子纯水的结果相比,在 2 Vol% 的银-金混合纳米流体以及银、镍和铝纳米粒子的 CHF 点,传热系数分别增加了 28%、11.5%、10.6% 和 4.9%。尽管 2 Vol% 的银-金混合纳米流体用于线性菲涅尔反射器的结果和性能可以接受,但从经济角度来看,2 Vol% 的镍纳米粒子被认为是最合适的选择。
{"title":"Numerical study on effect of hybrid nanofluid as a passive heat transfer enhancement technique and different climates on thermal performance in a linear Fresnel collector","authors":"Najmeh Salehi,&nbsp;Arash Mirabdolah Lavasani,&nbsp;Ramin Mehdipour,&nbsp;Mohammad Eftekhari Yazdi","doi":"10.1002/ep.14402","DOIUrl":"10.1002/ep.14402","url":null,"abstract":"<p>A notable distinction in this research is the utilization of a new method for calculating critical heat flux (CHF) based on a Look-Up Table. The present study comprehensively investigates the effects of hybrid nanofluid, a type of passive heat transfer enhancement technique, on convection heat transfer coefficients and CHF. The study covers five different climates representing significant climate conditions in Iran, namely Bandar Abbas, Esfahan, Shiraz, Tehran, and Yazd, each with different solar irradiations. The nanoparticles considered in this study include silver, nickel, and aluminum, as well as Ag-Au hybrid nanofluid with volumetric concentrations of 0.1%, 0.3%, 0.5%, 1%, and 2%. The modeling results reveal that the heat transfer coefficient increases with the volumetric concentration of nanoparticles. According to the results, at the CHF point for 2 vol% Ag–Au hybrid nanofluid and Ag, Ni, and Al nanoparticles, the heat transfer coefficient shows an increase of 28%, 11.5%, 10.6%, and 4.9%, respectively, compared to the results for pure water in Shiraz. Despite the acceptable results and effective performance of 2 vol% Ag–Au hybrid nanofluid for a linear Fresnel reflector, economically, 2 vol% nickel nanoparticles are identified as the most suitable choice.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptionally crystalline nature of CrO3-Cr2O3/Ppy nanocomposite as a prospective photoelectrode for efficient green hydrogen generation in the context of environmentally friendly water-splitting reactions using sanitized water 具有特殊结晶性质的 CrO3-Cr2O3/Ppy 纳米复合材料有望成为利用消毒水进行环境友好型水分离反应的高效绿色制氢光电电极
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-11 DOI: 10.1002/ep.14455
Mohamed Rabia, Eman Aldosari, Adbelrhaman Hamdeldein Ahmed Geneidy

This research introduces a novel technique for transforming wastewater into renewable hydrogen gas using an innovative photoelectrode composed of CrO3-Cr2O3/polypyrrole (Ppy), synthesized through a one-pot method. The photoelectrode is applied to split wastewater under different light conditions: darkness, white light, and monochromatic light. In the absence of light, the CrO3-Cr2O3/Ppy photoelectrode produces a photocurrent density (Jph) value of 0.54 mA cm−2, which significantly increases to 0.78 mA cm−2 under white light exposure. The Jph values range from 0.68 to 0.76 mA cm−2 at wavelengths between 730 and 340 nm, showcasing the photoelectrode's remarkable sensitivity. This sensitivity highlights the potential of the photoelectrode to efficiently capture light energy for applications in wastewater treatment and green hydrogen production. By utilizing wastewater as a renewable energy source and employing the CrO3-Cr2O3/Ppy photoelectrode, this approach addresses environmental concerns and energy needs concurrently. The proposed prototype for a three-electrode cell aims to directly produce hydrogen gas from wastewater, with the ultimate goal of generating hydrogen suitable for industrial applications. This innovative solution not only addresses wastewater treatment but also transforms it into a valuable source of green energy, emphasizing the potential for positive environmental and energy-related advancements.

本研究介绍了一种将废水转化为可再生氢气的新技术,该技术采用了一种由 CrO3-Cr2O3/ 聚吡咯(Ppy)组成的创新型光电极,该光电极是通过一锅法合成的。该光电电极可在不同的光照条件下分离废水:黑暗、白光和单色光。在无光条件下,CrO3-Cr2O3/Ppy 光电极产生的光电流密度(Jph)值为 0.54 mA cm-2,而在白光照射下,光电流密度显著增加到 0.78 mA cm-2。在波长介于 730 纳米和 340 纳米之间时,Jph 值介于 0.68 至 0.76 毫安厘米-2 之间,显示了光电极的卓越灵敏度。这种灵敏度凸显了光电极在废水处理和绿色制氢应用中有效捕捉光能的潜力。通过利用废水作为可再生能源并采用 CrO3-Cr2O3/Ppy 光电极,这种方法可同时解决环境问题和能源需求。拟议的三电极电池原型旨在直接从废水中产生氢气,最终目标是产生适用于工业应用的氢气。这一创新解决方案不仅解决了废水处理问题,还将废水转化为宝贵的绿色能源,强调了在环境和能源方面取得积极进展的潜力。
{"title":"Exceptionally crystalline nature of CrO3-Cr2O3/Ppy nanocomposite as a prospective photoelectrode for efficient green hydrogen generation in the context of environmentally friendly water-splitting reactions using sanitized water","authors":"Mohamed Rabia,&nbsp;Eman Aldosari,&nbsp;Adbelrhaman Hamdeldein Ahmed Geneidy","doi":"10.1002/ep.14455","DOIUrl":"10.1002/ep.14455","url":null,"abstract":"<p>This research introduces a novel technique for transforming wastewater into renewable hydrogen gas using an innovative photoelectrode composed of CrO<sub>3</sub>-Cr<sub>2</sub>O<sub>3</sub>/polypyrrole (Ppy), synthesized through a one-pot method. The photoelectrode is applied to split wastewater under different light conditions: darkness, white light, and monochromatic light. In the absence of light, the CrO<sub>3</sub>-Cr<sub>2</sub>O<sub>3</sub>/Ppy photoelectrode produces a photocurrent density (<i>J</i><sub>ph</sub>) value of 0.54 mA cm<sup>−2</sup>, which significantly increases to 0.78 mA cm<sup>−2</sup> under white light exposure. The <i>J</i><sub>ph</sub> values range from 0.68 to 0.76 mA cm<sup>−2</sup> at wavelengths between 730 and 340 nm, showcasing the photoelectrode's remarkable sensitivity. This sensitivity highlights the potential of the photoelectrode to efficiently capture light energy for applications in wastewater treatment and green hydrogen production. By utilizing wastewater as a renewable energy source and employing the CrO<sub>3</sub>-Cr<sub>2</sub>O<sub>3</sub>/Ppy photoelectrode, this approach addresses environmental concerns and energy needs concurrently. The proposed prototype for a three-electrode cell aims to directly produce hydrogen gas from wastewater, with the ultimate goal of generating hydrogen suitable for industrial applications. This innovative solution not only addresses wastewater treatment but also transforms it into a valuable source of green energy, emphasizing the potential for positive environmental and energy-related advancements.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption mechanism and electrochemical properties of disperse blue 2BLN onto magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles prepared via the rapid combustion process 通过快速燃烧工艺制备的磁性 Cu0.2Zn0.3Co0.5Fe2O4 纳米粒子对分散蓝 2BLN 的吸附机理和电化学特性
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-11 DOI: 10.1002/ep.14456
Wenjun Zhou, Zhixiang Lv, Yao Wang, Sheng Luo, Dan Zhou, Guodong Su

Magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles were prepared by the rapid combustion method and characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average particle size and the saturation magnetization of the nanoparticles prepared at 400°C with 25 mL absolute alcohol were about 60.9 nm and 50 emu/g. The results of the experiment displayed that the adsorption process agreed with the pseudo-second-order kinetics model (R2 > 0.98) and Langmuir isotherm model (R2 = 0.9982), indicating that the adsorption of DB-2BLN onto magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles was monolayer chemisorption. ΔHH = −28.0135 kJ/mol) of the thermodynamic experiment was less than 0, indicating that the adsorption was an exothermic process. The effects of pH, initial concentration of dye, ionic strength, temperature, and adsorbent dosage on the adsorption process of DB-2BLN onto magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles and the regeneration performance of the nanoparticles were investigated. When the pH was determined to be 2 and the adsorbent dosage was 5 mg, the adsorption capacity reached the maximum. After 7 cycles, the removal rate of DB-2BLN still reached 92.6% of that for the first adsorption, showing excellent regeneration performance. Finally, the electrochemical properties of the magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

采用快速燃烧法制备了磁性 Cu0.2Zn0.3Co0.5Fe2O4 纳米粒子,并通过扫描电子显微镜(SEM)、能量色散光谱(EDS)、X 射线衍射(XRD)和振动样品磁力计(VSM)对其进行了表征。在 400°C、25 mL 绝热酒精条件下制备的纳米粒子的平均粒径和饱和磁化率分别约为 60.9 nm 和 50 emu/g。实验结果表明,DB-2BLN 在磁性 Cu0.2Zn0.3Co0.5Fe2O4 纳米粒子上的吸附过程符合伪二阶动力学模型(R2 >0.98)和 Langmuir 等温线模型(R2 = 0.9982),表明 DB-2BLN 在磁性 Cu0.2Zn0.3Co0.5Fe2O4 纳米粒子上的吸附为单层化学吸附。热力学实验的ΔH(ΔH = -28.0135 kJ/mol)小于 0,表明吸附是一个放热过程。研究了pH值、染料初始浓度、离子强度、温度和吸附剂用量对磁性Cu0.2Zn0.3Co0.5Fe2O4纳米粒子吸附DB-2BLN过程的影响以及纳米粒子的再生性能。当 pH 值为 2、吸附剂用量为 5 mg 时,吸附容量达到最大。经过 7 次循环后,DB-2BLN 的去除率仍然达到了第一次吸附的 92.6%,显示出优异的再生性能。最后,通过循环伏安法(CV)和电化学阻抗谱(EIS)研究了磁性 Cu0.2Zn0.3Co0.5Fe2O4 纳米粒子的电化学特性。
{"title":"Adsorption mechanism and electrochemical properties of disperse blue 2BLN onto magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles prepared via the rapid combustion process","authors":"Wenjun Zhou,&nbsp;Zhixiang Lv,&nbsp;Yao Wang,&nbsp;Sheng Luo,&nbsp;Dan Zhou,&nbsp;Guodong Su","doi":"10.1002/ep.14456","DOIUrl":"10.1002/ep.14456","url":null,"abstract":"<p>Magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles were prepared by the rapid combustion method and characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average particle size and the saturation magnetization of the nanoparticles prepared at 400°C with 25 mL absolute alcohol were about 60.9 nm and 50 emu/g. The results of the experiment displayed that the adsorption process agreed with the pseudo-second-order kinetics model (<i>R</i><sup>2</sup> &gt; 0.98) and Langmuir isotherm model (<i>R</i><sup>2</sup> = 0.9982), indicating that the adsorption of DB-2BLN onto magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles was monolayer chemisorption. Δ<i>H</i> (Δ<i>H</i> = −28.0135 kJ/mol) of the thermodynamic experiment was less than 0, indicating that the adsorption was an exothermic process. The effects of pH, initial concentration of dye, ionic strength, temperature, and adsorbent dosage on the adsorption process of DB-2BLN onto magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles and the regeneration performance of the nanoparticles were investigated. When the pH was determined to be 2 and the adsorbent dosage was 5 mg, the adsorption capacity reached the maximum. After 7 cycles, the removal rate of DB-2BLN still reached 92.6% of that for the first adsorption, showing excellent regeneration performance. Finally, the electrochemical properties of the magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite with iodine intercalation as a promising electrode for potentiometric sensing of Pb2+ ions in water 具有碘插层的氧化钨-碘化物/聚-2-氨基苯硫酚纳米复合材料有望成为电位法检测水中 Pb2+ 离子的电极
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-09 DOI: 10.1002/ep.14453
Maha Abdallah Alnuwaiser, Mohamed Rabia

Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite (WO2I2/P2ABT) is created through the introduction of iodine into polymer chains, where iodine serves as an oxidizing agent during the synthesis process. With a highly porous structure, the sensing capabilities of WO2I2/P2ABT for detecting Pb2+ ions are successfully demonstrated, revealing a Nernstian slope of 26.2 mV/decade. This detection is accomplished through a simple potentiometric technique, employing a simple two-electrode cell setup. To further validate its performance, cyclic voltammetry is conducted using a three-electrode system, revealing a remarkable sensitivity of 7.2 × 10−5 A M−1 for Pb2+ ions. The nanocomposite sensor's selectivity is rigorously examined by subjecting it to testing in the presence of 0.01 M interfering ions. The results unequivocally demonstrate that the sensor remains unresponsive to these interfering ions, underscoring its remarkable selectivity for Pb2+ ions. Moreover, the sensor's behavior is evaluated under real-world conditions using natural samples, where, no indications of interference from other ions are observed. This is estimated by the absence of cyclic peaks in the voltammogram, indicating the sensor's unique ability to selectively detect Pb2+ ions without being perturbed by other ions that may be naturally occurring in the samples. These findings emphasize the nanocomposite sensor's potential for a wide array of applications in environmental monitoring and analytical chemistry. Its extraordinary combination of high sensitivity, impeccable selectivity, and robust performance in practical scenarios establishes it as an invaluable tool for detecting Pb2+ ions across various contexts.

氧化钨-碘化物/聚-2-氨基苯硫酚纳米复合材料(WO2I2/P2ABT)是通过在聚合物链中引入碘而制成的,碘在合成过程中充当氧化剂。WO2I2/P2ABT 具有高多孔结构,其检测 Pb2+ 离子的传感能力得到了成功验证,其 Nernstian 斜坡为 26.2 mV/decade。这种检测是通过简单的电位计技术,采用简单的双电极电池设置实现的。为了进一步验证其性能,使用三电极系统进行了循环伏安法检测,结果表明其对 Pb2+ 离子的灵敏度高达 7.2 × 10-5 A M-1。在存在 0.01 M 干扰离子的情况下,对纳米复合传感器的选择性进行了严格检测。结果明确表明,该传感器对这些干扰离子没有任何反应,突出了其对 Pb2+ 离子的显著选择性。此外,还利用天然样品对传感器在实际条件下的表现进行了评估,结果显示传感器没有受到其他离子的干扰。伏安图中没有循环峰,这表明传感器具有选择性检测 Pb2+ 离子的独特能力,而不会受到样品中可能天然存在的其他离子的干扰。这些发现强调了纳米复合传感器在环境监测和分析化学领域的广泛应用潜力。它集高灵敏度、无懈可击的选择性和在实际应用中的强大性能于一身,是在各种情况下检测 Pb2+ 离子的宝贵工具。
{"title":"Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite with iodine intercalation as a promising electrode for potentiometric sensing of Pb2+ ions in water","authors":"Maha Abdallah Alnuwaiser,&nbsp;Mohamed Rabia","doi":"10.1002/ep.14453","DOIUrl":"10.1002/ep.14453","url":null,"abstract":"<p>Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite (WO<sub>2</sub>I<sub>2</sub>/P2ABT) is created through the introduction of iodine into polymer chains, where iodine serves as an oxidizing agent during the synthesis process. With a highly porous structure, the sensing capabilities of WO<sub>2</sub>I<sub>2</sub>/P2ABT for detecting Pb<sup>2+</sup> ions are successfully demonstrated, revealing a Nernstian slope of 26.2 mV/decade. This detection is accomplished through a simple potentiometric technique, employing a simple two-electrode cell setup. To further validate its performance, cyclic voltammetry is conducted using a three-electrode system, revealing a remarkable sensitivity of 7.2 × 10<sup>−5</sup> A M<sup>−1</sup> for Pb<sup>2+</sup> ions. The nanocomposite sensor's selectivity is rigorously examined by subjecting it to testing in the presence of 0.01 M interfering ions. The results unequivocally demonstrate that the sensor remains unresponsive to these interfering ions, underscoring its remarkable selectivity for Pb<sup>2+</sup> ions. Moreover, the sensor's behavior is evaluated under real-world conditions using natural samples, where, no indications of interference from other ions are observed. This is estimated by the absence of cyclic peaks in the voltammogram, indicating the sensor's unique ability to selectively detect Pb<sup>2+</sup> ions without being perturbed by other ions that may be naturally occurring in the samples. These findings emphasize the nanocomposite sensor's potential for a wide array of applications in environmental monitoring and analytical chemistry. Its extraordinary combination of high sensitivity, impeccable selectivity, and robust performance in practical scenarios establishes it as an invaluable tool for detecting Pb<sup>2+</sup> ions across various contexts.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel 对使用生物柴油的柴油发动机中扩展相干火焰模型 3 区(ECFM-3Z)的燃烧特性进行数值研究
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-08 DOI: 10.1002/ep.14422
Şeyma Karahan Özbilen, Emrullah Hakan Kaleli, Emir Aydar

This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C19H36O2) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO2) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NOx) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O2) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.

本研究调查了扩展相干火焰模型-3 区(ECFM-3Z)在评估菜籽油甲酯(ROME)的性能和排放方面的应用。实验测试使用了一台 Lombardini 3 LD 350 型单缸柴油发动机,在满负荷条件下,转速为 1600-3000 rpm,增量为 200 rpm。数值分析采用了 STAR-CD/ESICE 软件。根据气相色谱(GC)分析和平均质量计算,预测油酸甲酯(C19H36O2)为代用生物柴油。值得注意的是,数值分析表明,实验和计算研究的制动功率非常相似。在 2400-3000 rpm 的转速范围内,生物柴油的性能表现出 5% 的最大偏差,这主要归因于泵送、热和摩擦损失。在排放方面,二氧化碳(CO2)排放与实验研究结果一致,最大偏差为 10%。不过,一氧化碳(CO)排放量比实验研究结果低 57% 至 65%,而氮氧化物(NOx)排放量则减少了 63% 至 84%。相比之下,氧气(O2)排放量明显增加,与实验研究相比增加了 93% 至 117%,排气温度也比实验结果高出 33% 至 49%。
{"title":"Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel","authors":"Şeyma Karahan Özbilen,&nbsp;Emrullah Hakan Kaleli,&nbsp;Emir Aydar","doi":"10.1002/ep.14422","DOIUrl":"10.1002/ep.14422","url":null,"abstract":"<p>This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C<sub>19</sub>H<sub>36</sub>O<sub>2</sub>) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO<sub>2</sub>) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NO<sub>x</sub>) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O<sub>2</sub>) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141577519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbonized sawdust based solar absorber in a solar still for seawater desalination 用于海水淡化的太阳能蒸馏器中以碳化锯末为基础的太阳能吸收器
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-07 DOI: 10.1002/ep.14449
Wong Min Jin Karen, Peter Advent Stephen, Zhipeng Wang, Bih Lii Chua, Willey Y. H. Liew, G. J. H. Melvin

Current industrial technologies for seawater desalination involve high cost and energy consumption, that is, distillation and reverse osmosis, where these technologies are difficult to implement especially in developing countries. A cost-effective, environmental-friendly, and sustainable technology is essential in providing alternative methods for generation of clean water. Solar vapor generation is one of the potential green technologies in generating clean water, where the production and collection of clean water is made possible by using a solar absorber in a solar still. The practicality and performance of the carbonized sawdust based solar absorber in a solar still for the seawater desalination towards clean water generation was conducted outdoors with gradual enhancement on the solar still setup. The enhanced solar still with reflective surface and external thermal insulator improved the solar absorber performance, in contrast to the evaporation of the bulk seawater only and using solar absorber in the solar still without any enhancement. The average efficiency and evaporation rate of the solar absorber in the enhanced solar still was recorded at 61.5% and 0.98 kg m−2 h−1, respectively. The pH (7.52) and salinity (10 ppm) of the collected clean water meets the standard of safe water by the World Health Organization.

目前的海水淡化工业技术(即蒸馏和反渗透)成本高、能耗大,尤其是在发展中国家难以实施。成本效益高、环境友好和可持续的技术对于提供生产清洁水的替代方法至关重要。太阳能蒸气发电是生产清洁水的潜在绿色技术之一,通过在太阳能蒸馏器中使用太阳能吸收器,可以生产和收集清洁水。在室外进行了基于碳化锯屑的太阳能吸收器的实用性和性能研究,该吸收器用于海水淡化以产生清洁水,并对太阳能蒸发器的设置进行了逐步改进。与仅蒸发散装海水和在太阳能蒸馏器中使用太阳能吸收器而不做任何改进相比,带有反射面和外部隔热材料的增强型太阳能蒸馏器提高了太阳能吸收器的性能。增强型太阳能蒸馏器中太阳能吸收器的平均效率和蒸发率分别为 61.5% 和 0.98 kg m-2 h-1。收集的净水的 pH 值(7.52)和盐度(10 ppm)符合世界卫生组织的安全用水标准。
{"title":"Carbonized sawdust based solar absorber in a solar still for seawater desalination","authors":"Wong Min Jin Karen,&nbsp;Peter Advent Stephen,&nbsp;Zhipeng Wang,&nbsp;Bih Lii Chua,&nbsp;Willey Y. H. Liew,&nbsp;G. J. H. Melvin","doi":"10.1002/ep.14449","DOIUrl":"10.1002/ep.14449","url":null,"abstract":"<p>Current industrial technologies for seawater desalination involve high cost and energy consumption, that is, distillation and reverse osmosis, where these technologies are difficult to implement especially in developing countries. A cost-effective, environmental-friendly, and sustainable technology is essential in providing alternative methods for generation of clean water. Solar vapor generation is one of the potential green technologies in generating clean water, where the production and collection of clean water is made possible by using a solar absorber in a solar still. The practicality and performance of the carbonized sawdust based solar absorber in a solar still for the seawater desalination towards clean water generation was conducted outdoors with gradual enhancement on the solar still setup. The enhanced solar still with reflective surface and external thermal insulator improved the solar absorber performance, in contrast to the evaporation of the bulk seawater only and using solar absorber in the solar still without any enhancement. The average efficiency and evaporation rate of the solar absorber in the enhanced solar still was recorded at 61.5% and 0.98 kg m<sup>−2</sup> h<sup>−1</sup>, respectively. The pH (7.52) and salinity (10 ppm) of the collected clean water meets the standard of safe water by the World Health Organization.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of CI engine characteristics using Jatropha-Camphor oil blends with diethyl ether as an additive 使用以二乙醚为添加剂的麻风树-樟脑混合油对 CI 发动机特性的评估
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-30 DOI: 10.1002/ep.14414
Manikandaraja Gurusamy, Malarmannan Subramaniyan

The compression-ignition properties of crude Jatropha and camphor oil blends with di ethyl ether (DEE) added is covered in this research. Six fuel samples are made based on volume: 90% C70J30 with 10% diethyl ether (C70J30 + 10% DEE), 90% C30J70 with 10% di-ethyl ether (C50J50 + 10% DEE), 70% Camphor oil with 30% crude Jatropha oil (C70J30), 50% Camphor oil with 50% crude Jatropha oil (C50J50), 30% Camphor oil with 70% crude Jatropha oil (C30750). A four-stroke, one-cylinder, naturally aspirated, compression-ignition engine operating at a constant 1500 rpm with a load range of 0%–100% with a 25% interval is used for the experiment. According to test findings, the C70J30 + 10% DEE has the lowest brake-specific energy consumption of 11.68 kJ/kWh, the maximum energy efficiency of 62.56%, and the highest thermal efficiency of 30.81%. Compared to the other biofuels examined, this puts it more in line with diesel. Additionally, blends of crude Jatropha oil and camphor oil showed at least 4.46 g/kWh of CO, 0.259 g/kWh of HC, and 74% of smoke opacity when DEE was added. However, it raises CO2 to 0.792 kg/kWh and NO to 9.54 g/kWh. The greatest peak pressure and quickest heat release are produced by adding more DEE as a fuel additive and using a larger percentage of camphor oil. It also increases the coefficient of variation of the peak pressure throughout 100 cycles. All things considered, the C70J30 + 10% DEE's CI engine features are better.

本研究涉及粗麻风树油和添加二乙醚(DEE)的樟脑混合油的压燃特性。根据体积制作了六种燃料样品:90% C70J30 与 10% 二乙醚(C70J30 + 10% DEE)、90% C30J70 与 10% 二乙醚(C50J50 + 10% DEE)、70% 樟脑油与 30% 粗麻风树油(C70J30)、50% 樟脑油与 50% 粗麻风树油(C50J50)、30% 樟脑油与 70% 粗麻风树油(C30750)。实验使用了一台四冲程、单缸、自然吸气、压燃式发动机,转速恒定在 1500 rpm,负载范围为 0%-100%,间隔为 25%。根据测试结果,C70J30 + 10% DEE 的制动特定能耗最低,为 11.68 kJ/kWh,能效最高,为 62.56%,热效率最高,为 30.81%。与考察的其他生物燃料相比,这使其更接近柴油。此外,添加 DEE 后,粗麻疯树油和樟脑油的混合物显示 CO 至少为 4.46 克/千瓦时,HC 为 0.259 克/千瓦时,烟雾不透明度为 74%。然而,它将 CO2 提高到 0.792 kg/kWh,将 NO 提高到 9.54 g/kWh。通过添加更多的 DEE 作为燃料添加剂和使用更大比例的樟脑油,可产生最大的峰值压力和最快的热量释放。这也增加了峰值压力在 100 个循环中的变化系数。综合考虑,C70J30 + 10% DEE 的 CI 发动机性能更好。
{"title":"Evaluation of CI engine characteristics using Jatropha-Camphor oil blends with diethyl ether as an additive","authors":"Manikandaraja Gurusamy,&nbsp;Malarmannan Subramaniyan","doi":"10.1002/ep.14414","DOIUrl":"10.1002/ep.14414","url":null,"abstract":"<p>The compression-ignition properties of crude Jatropha and camphor oil blends with di ethyl ether (DEE) added is covered in this research. Six fuel samples are made based on volume: 90% C70J30 with 10% diethyl ether (C70J30 + 10% DEE), 90% C30J70 with 10% di-ethyl ether (C50J50 + 10% DEE), 70% Camphor oil with 30% crude Jatropha oil (C70J30), 50% Camphor oil with 50% crude Jatropha oil (C50J50), 30% Camphor oil with 70% crude Jatropha oil (C30750). A four-stroke, one-cylinder, naturally aspirated, compression-ignition engine operating at a constant 1500 rpm with a load range of 0%–100% with a 25% interval is used for the experiment. According to test findings, the C70J30 + 10% DEE has the lowest brake-specific energy consumption of 11.68 kJ/kWh, the maximum energy efficiency of 62.56%, and the highest thermal efficiency of 30.81%. Compared to the other biofuels examined, this puts it more in line with diesel. Additionally, blends of crude Jatropha oil and camphor oil showed at least 4.46 g/kWh of CO, 0.259 g/kWh of HC, and 74% of smoke opacity when DEE was added. However, it raises CO<sub>2</sub> to 0.792 kg/kWh and NO to 9.54 g/kWh. The greatest peak pressure and quickest heat release are produced by adding more DEE as a fuel additive and using a larger percentage of camphor oil. It also increases the coefficient of variation of the peak pressure throughout 100 cycles. All things considered, the C70J30 + 10% DEE's CI engine features are better.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ epoxidation of oleic acid with applied natural zeolite as a catalyst 应用天然沸石作为催化剂原位环氧化油酸
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-27 DOI: 10.1002/ep.14421
Intan Suhada Azmi, Siti Aisyah Adnan, Asiah Nusaibah Masri, Silvana Dwi Nurherdiana, Siti Nadia Abdullah, Mohd Jumain Jalil

In recent years, there has been a growing demand for environmentally friendly epoxides made from vegetable oils. Therefore, the use of materials from renewable resources, was implemented in this study with natural zeolite as a catalyst being chosen over synthetic zeolite because synthetic zeolite mostly consists of strong corrosive materials. The aims of this research to determine the effect of catalyst concentration on the relative conversion of oxirane (RCO). RCO was the highest at 30 min of the reaction for sunflower oil, being 72% at 80°C using a 0.25 g concentration of catalyst. Meanwhile, for palm oil, the highest RCO was only 52% at 80°C. Lastly, MATLAB software was used to develop a mathematical model for determination rate constant. In this model, the Runge–Kutta method of the fourth order was combined with genetic algorithm optimization to for development of kinetic model that best fitted with the experimental data.

近年来,人们对由植物油制成的环保型环氧化物的需求日益增长。因此,本研究使用了可再生资源材料,并选择天然沸石作为催化剂,而不是合成沸石,因为合成沸石大多由强腐蚀性材料组成。本研究旨在确定催化剂浓度对环氧乙烷相对转化率(RCO)的影响。使用 0.25 克浓度的催化剂,葵花籽油在反应 30 分钟时的 RCO 最高,80°C 时为 72%。而棕榈油在 80°C 时的 RCO 最高,仅为 52%。最后,使用 MATLAB 软件开发了一个确定速率常数的数学模型。在该模型中,四阶 Runge-Kutta 法与遗传算法优化相结合,以建立与实验数据最匹配的动力学模型。
{"title":"In situ epoxidation of oleic acid with applied natural zeolite as a catalyst","authors":"Intan Suhada Azmi,&nbsp;Siti Aisyah Adnan,&nbsp;Asiah Nusaibah Masri,&nbsp;Silvana Dwi Nurherdiana,&nbsp;Siti Nadia Abdullah,&nbsp;Mohd Jumain Jalil","doi":"10.1002/ep.14421","DOIUrl":"10.1002/ep.14421","url":null,"abstract":"<p>In recent years, there has been a growing demand for environmentally friendly epoxides made from vegetable oils. Therefore, the use of materials from renewable resources, was implemented in this study with natural zeolite as a catalyst being chosen over synthetic zeolite because synthetic zeolite mostly consists of strong corrosive materials. The aims of this research to determine the effect of catalyst concentration on the relative conversion of oxirane (RCO). RCO was the highest at 30 min of the reaction for sunflower oil, being 72% at 80°C using a 0.25 g concentration of catalyst. Meanwhile, for palm oil, the highest RCO was only 52% at 80°C. Lastly, MATLAB software was used to develop a mathematical model for determination rate constant. In this model, the Runge–Kutta method of the fourth order was combined with genetic algorithm optimization to for development of kinetic model that best fitted with the experimental data.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable renewable energy supply chain with current technological adaptation: Macro energy progress policy in Iran 可持续的可再生能源供应链与当前的技术改造:伊朗的宏观能源进步政策
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-26 DOI: 10.1002/ep.14433
Hamed Fazlollahtabar

Climate change is a global challenge today that has been highly considered due to the wide impacts on different sectors of a society. That is why the use of renewable energy for countries and communities should be considered. In addition, the limitation of fossil fuels and the problems incurred by greenhouse gas emissions have made it increasingly important to make renewable energy more attractive. Sustainable energy means continuous supply of energy for today's needs without compromising the ability of future generations to meet their needs. Sustainable energy technologies include renewable energy sources such as hydroelectric power, solar energy, wind energy, geothermal energy, synthetic photo center and wave energy, as well as technologies designed to improve energy efficiency. Thus, this article discusses the development and performance of renewable supply chain energy in Iran. A strategic model is proposed and investigated to cover various aspects of sustainable renewable energy within a supply chain configuration integrated with machine learning method for quantification purpose. The novelty is on integrating machine learning and strategic plan to handle sustainability indicators within a renewable energy supply chain. The study also provides managerial insights to governments, researchers and stakeholders for the initiation of renewable energy use and suggestions for overcoming the barriers to its developments.

气候变化是当今全球面临的一项挑战,由于其对社会各部门的广泛影响而备受关注。因此,国家和社区应考虑使用可再生能源。此外,化石燃料的局限性和温室气体排放带来的问题,使得可再生能源变得越来越重要。可持续能源是指在不影响后代满足其需求的情况下,持续供应能源以满足当今的需求。可持续能源技术包括水力发电、太阳能、风能、地热能、合成光电中心和波浪能等可再生能源,以及旨在提高能源效率的技术。因此,本文讨论了伊朗可再生能源供应链的发展和绩效。本文提出并研究了一个战略模型,该模型涵盖了供应链配置中可持续可再生能源的各个方面,并结合了机器学习方法进行量化。新颖之处在于整合了机器学习和战略计划,以处理可再生能源供应链中的可持续性指标。这项研究还为政府、研究人员和利益相关者提供了启动可再生能源利用的管理见解,以及克服其发展障碍的建议。
{"title":"Sustainable renewable energy supply chain with current technological adaptation: Macro energy progress policy in Iran","authors":"Hamed Fazlollahtabar","doi":"10.1002/ep.14433","DOIUrl":"10.1002/ep.14433","url":null,"abstract":"<p>Climate change is a global challenge today that has been highly considered due to the wide impacts on different sectors of a society. That is why the use of renewable energy for countries and communities should be considered. In addition, the limitation of fossil fuels and the problems incurred by greenhouse gas emissions have made it increasingly important to make renewable energy more attractive. Sustainable energy means continuous supply of energy for today's needs without compromising the ability of future generations to meet their needs. Sustainable energy technologies include renewable energy sources such as hydroelectric power, solar energy, wind energy, geothermal energy, synthetic photo center and wave energy, as well as technologies designed to improve energy efficiency. Thus, this article discusses the development and performance of renewable supply chain energy in Iran. A strategic model is proposed and investigated to cover various aspects of sustainable renewable energy within a supply chain configuration integrated with machine learning method for quantification purpose. The novelty is on integrating machine learning and strategic plan to handle sustainability indicators within a renewable energy supply chain. The study also provides managerial insights to governments, researchers and stakeholders for the initiation of renewable energy use and suggestions for overcoming the barriers to its developments.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Progress & Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1