首页 > 最新文献

Environmental Progress & Sustainable Energy最新文献

英文 中文
Performance analysis of refuse-derived fuel gasification plant with carbon capture and storage for power, heating, and hydrogen production 用于发电、供热和制氢的带碳捕集与封存功能的垃圾衍生燃料气化厂性能分析
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1002/ep.14472
Dario Balaban, Jelena Lubura Stošić, Oskar Bera, Predrag Kojić

Among various waste-to-energy technologies, gasification is one of the most promising, because of high efficiency, feedstock flexibility, and carbon capture potential. This case study is focused on comprehensive analysis of integrated gasification combined cycle-based plant with refuse-derived fuel (RDF) as feedstock and carbon capture. As there are hardly any studies focused on simulation of waste gasification with carbon capture, most of which are lacking important process specifics, this study addresses existing research gap. Process flowsheets are developed in detail according to literature data for various process configurations and simulated in AspenPlus software, while obtained results on material and energy balance were used for estimation of plant efficiency and performance indicators. Waste generation data in Novi Sad, Serbia, were used for determination of RDF flowrate. Configurations include different syngas cleaning pathways, final products (power, heating, and hydrogen) and co-gasification with coal. Cogeneration increases overall plant efficiency from 27%–36% (power production only) to 63%–76%. High net hydrogen efficiencies, around 58%, compensate lower power and thermal energy production in hydrogen-based configurations. Overall, co-gasification produces better results due to higher feedstock heating value. Obtained results will be used in further research for environmental and economic evaluation to provide multi-level assessment of proposed processes.

在各种垃圾发电技术中,气化技术因其高效率、原料灵活性和碳捕集潜力而成为最有前途的技术之一。本案例研究的重点是全面分析以垃圾衍生燃料(RDF)为原料和碳捕集的综合气化联合循环发电厂。由于几乎没有任何研究侧重于模拟垃圾气化与碳捕集,其中大部分研究都缺乏重要的工艺细节,因此本研究填补了现有的研究空白。根据各种工艺配置的文献数据详细制定了工艺流程表,并在 AspenPlus 软件中进行了模拟,同时将获得的物料和能量平衡结果用于估算工厂效率和性能指标。塞尔维亚诺维萨德的废物产生数据用于确定 RDF 流量。配置包括不同的合成气净化途径、最终产品(发电、供热和制氢)以及与煤的联合气化。热电联产将工厂的整体效率从 27%-36%(仅发电)提高到 63%-76%。氢气净效率高,约为 58%,弥补了氢基配置中电力和热能生产的不足。总体而言,由于原料热值较高,联合气化产生的效果更好。获得的结果将用于进一步的环境和经济评估研究,以便对拟议的工艺进行多层次评估。
{"title":"Performance analysis of refuse-derived fuel gasification plant with carbon capture and storage for power, heating, and hydrogen production","authors":"Dario Balaban,&nbsp;Jelena Lubura Stošić,&nbsp;Oskar Bera,&nbsp;Predrag Kojić","doi":"10.1002/ep.14472","DOIUrl":"https://doi.org/10.1002/ep.14472","url":null,"abstract":"<p>Among various waste-to-energy technologies, gasification is one of the most promising, because of high efficiency, feedstock flexibility, and carbon capture potential. This case study is focused on comprehensive analysis of integrated gasification combined cycle-based plant with refuse-derived fuel (RDF) as feedstock and carbon capture. As there are hardly any studies focused on simulation of waste gasification with carbon capture, most of which are lacking important process specifics, this study addresses existing research gap. Process flowsheets are developed in detail according to literature data for various process configurations and simulated in AspenPlus software, while obtained results on material and energy balance were used for estimation of plant efficiency and performance indicators. Waste generation data in Novi Sad, Serbia, were used for determination of RDF flowrate. Configurations include different syngas cleaning pathways, final products (power, heating, and hydrogen) and co-gasification with coal. Cogeneration increases overall plant efficiency from 27%–36% (power production only) to 63%–76%. High net hydrogen efficiencies, around 58%, compensate lower power and thermal energy production in hydrogen-based configurations. Overall, co-gasification produces better results due to higher feedstock heating value. Obtained results will be used in further research for environmental and economic evaluation to provide multi-level assessment of proposed processes.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of absorber shape on energy, exergy efficiency and enviro-economic analysis of solar air collector: An experimental study 吸收器形状对太阳能空气集热器能量、放能效率和环境经济分析的影响:实验研究
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-23 DOI: 10.1002/ep.14481
Yassmin Touhami, Ridha Boudhiaf, Abd Elnaby Kabeel, Abdelkrim Khelifa, Mohammed El Hadi Attia, Moataz M. Abdel-Aziz, Noureddine Latrache, Abederrahmane Aissa, Zied Driss

The efficiency of solar air collectors, which are intended to convert solar energy into thermal energy, is the subject of numerous studies that aim to assess and improve it. Solutions for sustainable energy heavily rely on these systems. Making the right choice regarding the best method for absorbing solar radiation and reducing heat losses is what will ultimately lead to their improved performance. In this work, wavy and corrugated absorbers were suggested inside a solar air collector. The aim of this article is to study experimentally the thermal performance of the solar air collector when using wavy shape of absorber and corrugated shape of absorber instead of the flat shape of absorber under the same weather conditions of Sfax region central-eastern of Tunisia. The suggested shapes of absorber augmented sun exposure and heating area. The results obtained from this experimental study show that switching from a flat plate absorber to both wavy and corrugated absorbers resulting significant performance gains. The absorber with waves showed a significant improvement in daily thermal efficiency of 22.89%, and the absorber with corrugations showed an even greater improvement of 40.56%. Comparable patterns were noted in daily exergy efficiency, where the corrugated absorber demonstrated an astounding 44.83% increase and the wavy absorber provided a 23.24% improvement. Notably, when total cost savings and monthly CO2 reduction were taken into account, the corrugated absorber turned out to be the best option. These findings highlight the importance of absorber form in optimizing thermal and energy efficiency, which may have positive effects on the economy and environment.

太阳能空气集热器旨在将太阳能转化为热能,其效率是许多旨在评估和提高其效率的研究的主题。可持续能源解决方案在很大程度上依赖于这些系统。正确选择吸收太阳辐射和减少热量损失的最佳方法,才能最终提高这些系统的性能。在这项工作中,建议在太阳能空气集热器内使用波浪形和波纹形吸收器。本文的目的是通过实验研究在突尼斯中东部斯法克斯地区相同的天气条件下,使用波浪形吸收器和波纹形吸收器代替平面吸收器时太阳能空气集热器的热性能。建议的吸收器形状增加了阳光照射和加热面积。实验研究结果表明,将平板吸收器改成波浪形和波纹形吸收器都能显著提高性能。波浪形吸收器的日热效率显著提高了 22.89%,而波纹吸收器的日热效率提高了 40.56%。在日能效方面,波纹吸收器的能效提高了 44.83%,波浪吸收器的能效提高了 23.24%。值得注意的是,当考虑到总成本节约和每月二氧化碳减排量时,波纹吸收器被证明是最佳选择。这些研究结果凸显了吸收器形式在优化热效率和能源效率方面的重要性,这可能会对经济和环境产生积极影响。
{"title":"Effect of absorber shape on energy, exergy efficiency and enviro-economic analysis of solar air collector: An experimental study","authors":"Yassmin Touhami,&nbsp;Ridha Boudhiaf,&nbsp;Abd Elnaby Kabeel,&nbsp;Abdelkrim Khelifa,&nbsp;Mohammed El Hadi Attia,&nbsp;Moataz M. Abdel-Aziz,&nbsp;Noureddine Latrache,&nbsp;Abederrahmane Aissa,&nbsp;Zied Driss","doi":"10.1002/ep.14481","DOIUrl":"https://doi.org/10.1002/ep.14481","url":null,"abstract":"<p>The efficiency of solar air collectors, which are intended to convert solar energy into thermal energy, is the subject of numerous studies that aim to assess and improve it. Solutions for sustainable energy heavily rely on these systems. Making the right choice regarding the best method for absorbing solar radiation and reducing heat losses is what will ultimately lead to their improved performance. In this work, wavy and corrugated absorbers were suggested inside a solar air collector. The aim of this article is to study experimentally the thermal performance of the solar air collector when using wavy shape of absorber and corrugated shape of absorber instead of the flat shape of absorber under the same weather conditions of Sfax region central-eastern of Tunisia. The suggested shapes of absorber augmented sun exposure and heating area. The results obtained from this experimental study show that switching from a flat plate absorber to both wavy and corrugated absorbers resulting significant performance gains. The absorber with waves showed a significant improvement in daily thermal efficiency of 22.89%, and the absorber with corrugations showed an even greater improvement of 40.56%. Comparable patterns were noted in daily exergy efficiency, where the corrugated absorber demonstrated an astounding 44.83% increase and the wavy absorber provided a 23.24% improvement. Notably, when total cost savings and monthly CO<sub>2</sub> reduction were taken into account, the corrugated absorber turned out to be the best option. These findings highlight the importance of absorber form in optimizing thermal and energy efficiency, which may have positive effects on the economy and environment.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative method of environmental safety research of starch-based films with silver nanoparticles 淀粉基薄膜与纳米银粒子环境安全研究的创新方法
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-23 DOI: 10.1002/ep.14480
Renata Dobrucka, Mikołaj Urbaniak, Wojciech Kozak, Marcin Szymański

In this work, films based on three different starches have been developed and modified by adding silver nanoparticles. We examined the films in terms of their mechanical properties, barrier properties and environmental toxicity to plants and invertebrates. For the toxicity studies, we used the following seeds: Berny rapeseed, Brassica napus; Salvia hispanica—chia, Salvia hispanica; and Karo narrowleaf lupine, Lupinus angustifolius. The invertebrates used for toxicity studies were Daphnia pulex, Tubifex tubifex, Chaoborus sp. (larva), Chironomus aprilinus, and Artemia sp. The tests showed that KD, TD, and ZD films were the most phytotoxic, which was confirmed by the percentages of germination and growth inhibition calculated for all test plants. K2D, D2T, and Z2D films exhibited considerable toxicity to lupine and chia. The conducted biotoxicity tests concerning the modified films and their effect on the selected invertebrates showed that Daphnia pulex and Artemia were highly sensitive to the tested factors. Only Chaoborus sp. (larva) exhibited total resistance to the tested films, which did not cause death of the organism in any case. Biotests on invertebrates and plants developed and used in this research can be successfully used to determine the toxicity of other substances.

在这项工作中,我们开发了基于三种不同淀粉的薄膜,并通过添加纳米银粒子对薄膜进行了改性。我们考察了薄膜的机械性能、阻隔性能以及对植物和无脊椎动物的环境毒性。在毒性研究中,我们使用了以下种子:伯尔尼油菜籽(Brassica napus)、西班牙鼠尾草(Salvia hispanica-chia)和卡洛狭叶羽扇豆(Lupinus angustifolius)。试验表明,KD、TD 和 ZD 薄膜的植物毒性最强,这从计算的所有试验植物的发芽率和生长抑制率可以得到证实。K2D、D2T 和 Z2D 薄膜对羽扇豆和奇异果有相当大的毒性。就改良薄膜及其对所选无脊椎动物的影响进行的生物毒性测试表明,水蚤(Daphnia pulex)和蒿鱼(Artemia)对测试因子高度敏感。只有 Chaoborus sp.(幼虫)表现出对测试薄膜的完全抵抗力,在任何情况下都不会导致生物死亡。本研究开发和使用的无脊椎动物和植物生物测试可成功用于确定其他物质的毒性。
{"title":"Innovative method of environmental safety research of starch-based films with silver nanoparticles","authors":"Renata Dobrucka,&nbsp;Mikołaj Urbaniak,&nbsp;Wojciech Kozak,&nbsp;Marcin Szymański","doi":"10.1002/ep.14480","DOIUrl":"https://doi.org/10.1002/ep.14480","url":null,"abstract":"<p>In this work, films based on three different starches have been developed and modified by adding silver nanoparticles. We examined the films in terms of their mechanical properties, barrier properties and environmental toxicity to plants and invertebrates. For the toxicity studies, we used the following seeds: Berny rapeseed, <i>Brassica napus</i>; Salvia hispanica—chia, <i>Salvia hispanica</i>; and Karo narrowleaf lupine, <i>Lupinus angustifolius.</i> The invertebrates used for toxicity studies were <i>Daphnia pulex</i>, <i>Tubifex tubifex</i>, <i>Chaoborus</i> sp. (larva), <i>Chironomus aprilinus</i>, and <i>Artemia</i> sp. The tests showed that KD, TD, and ZD films were the most phytotoxic, which was confirmed by the percentages of germination and growth inhibition calculated for all test plants. K2D, D2T, and Z2D films exhibited considerable toxicity to lupine and chia. The conducted biotoxicity tests concerning the modified films and their effect on the selected invertebrates showed that <i>Daphnia pulex</i> and Artemia were highly sensitive to the tested factors. Only <i>Chaoborus</i> sp. (larva) exhibited total resistance to the tested films, which did not cause death of the organism in any case. Biotests on invertebrates and plants developed and used in this research can be successfully used to determine the toxicity of other substances.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of zero-valent copper nanoparticles for removal of D-yellow 119 textile dye from aqueous medium 用于去除水介质中 D 黄 119 纺织染料的零价铜纳米粒子的绿色合成方法
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-23 DOI: 10.1002/ep.14473
Mohamed A. Zayed, Soha A. Abdel-Gawad, Hossam M. Abdel-Aziz

Zero-valent copper nanoparticles (CuNPs) were beneficially green synthesized via Ficus Benjamina leaves. Applying scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), Ficus Benjamina nano zero-valent copper (FB-nZVCu), an innovative adsorbent, was examined. The obtained zero-valent CuNPs have a size range of 16–18 nm. The removal of D-yellow 119 dye from textile wastewater was tested using this novel adsorbent. Many operating parameters were examined and tested to control the adsorbent's maximum removal efficiency. These variables included dye concentration, stirring rate, time, pH, and adsorbent dosage. Different adsorption mechanisms have been tested, and the Langmuir isotherm (qmax = 21.83 mg g−1) and (R2 = 0.9993) represent adequate for the adsorption process. The FB-nZVCu green adsorbent is a promising material for eliminating D-yellow 119 from simulated and real samples, according to the data obtained and the fruitful analysis. The impact of different operating factors was examined using IBM SPSS Statistics software. They were shown to be responsible for approximately 94% of the factors influencing the removal process.

通过本榕树叶合成了零价纳米铜粒子(CuNPs),这是一种有益的绿色合成物。应用扫描电子显微镜(SEM)和傅立叶变换红外光谱(FT-IR)对本榕树纳米零价铜(FB-nZVCu)这一创新吸附剂进行了检测。获得的零价 CuNPs 尺寸范围为 16-18 nm。使用这种新型吸附剂对去除纺织废水中的 D-yellow 119 染料进行了测试。为了控制吸附剂的最大去除效率,对许多操作参数进行了研究和测试。这些变量包括染料浓度、搅拌速率、时间、pH 值和吸附剂用量。对不同的吸附机理进行了测试,Langmuir 等温线(qmax = 21.83 mg g-1)和(R2 = 0.9993)足以代表吸附过程。根据所获得的数据和富有成效的分析,FB-nZVCu 绿色吸附剂是消除模拟和实际样品中 D-yellow 119 的理想材料。使用 IBM SPSS 统计软件研究了不同操作因素的影响。结果表明,影响去除过程的因素中约有 94% 与这些因素有关。
{"title":"Green synthesis of zero-valent copper nanoparticles for removal of D-yellow 119 textile dye from aqueous medium","authors":"Mohamed A. Zayed,&nbsp;Soha A. Abdel-Gawad,&nbsp;Hossam M. Abdel-Aziz","doi":"10.1002/ep.14473","DOIUrl":"https://doi.org/10.1002/ep.14473","url":null,"abstract":"<p>Zero-valent copper nanoparticles (CuNPs) were beneficially green synthesized via Ficus Benjamina leaves. Applying scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), Ficus Benjamina nano zero-valent copper (FB-nZVCu), an innovative adsorbent, was examined. The obtained zero-valent CuNPs have a size range of 16–18 nm. The removal of D-yellow 119 dye from textile wastewater was tested using this novel adsorbent. Many operating parameters were examined and tested to control the adsorbent's maximum removal efficiency. These variables included dye concentration, stirring rate, time, pH, and adsorbent dosage. Different adsorption mechanisms have been tested, and the Langmuir isotherm (<i>q</i><sub>max</sub> = 21.83 mg g<sup>−1</sup>) and (<i>R</i><sup>2</sup> = 0.9993) represent adequate for the adsorption process. The FB-nZVCu green adsorbent is a promising material for eliminating D-yellow 119 from simulated and real samples, according to the data obtained and the fruitful analysis. The impact of different operating factors was examined using IBM SPSS Statistics software. They were shown to be responsible for approximately 94% of the factors influencing the removal process.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-efficiency improvement strategies for disinfectants 提高消毒剂生态效益的战略
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-18 DOI: 10.1002/ep.14478
Italo Emmanoel Mesquita Oliveira de Moura, Elaine Aparecida da Silva

Disinfectants are essential products for reducing health risks, but they also have significant environmental impacts. This study assessed the Eco-efficiency of disinfectants based on the NBR ISO 14045:2014. Primary data were collected from Brazilian producers, while secondary data were obtained from patents and the Ecoinvent database. The system boundaries encompassed cradle-to-consumer use. The selling price was adopted as the product system value indicator (economic analysis). Raw materials production had the greatest impact on the environmental performance of disinfectants A (Antibacterial, surfactant and preservative) and C (Antibacterial, surfactant and opacifier). Disinfectant B, in addition to raw materials production (Antibacterial, opacifier and surfactant), also experienced significant impacts from consumer transport. These critical processes represent more than 60% of the overall impacts in both categories. The Eco-efficiency matrix (profile) related environmental and economic indicators. All disinfectants occupied quadrants three or four, indicating high impact on the environmental categories. Disinfectant C had the highest Eco-efficiency while disinfectant B had the lowest, mainly due to its product system value. Sensitivity analysis indicated environmentally viable changes in the products' composition, such as replacing the antibacterial, surfactant, preservative, and opacifier. Energy and water consumption did not significantly impact the assessed products.

消毒剂是降低健康风险的基本产品,但对环境也有重大影响。本研究根据 NBR ISO 14045:2014 评估了消毒剂的生态效益。原始数据收集自巴西生产商,二手数据则来自专利和 Ecoinvent 数据库。系统边界包括从摇篮到消费者的使用过程。采用销售价格作为产品系统价值指标(经济分析)。原材料生产对消毒剂 A(抗菌剂、表面活性剂和防腐剂)和 C(抗菌剂、表面活性剂和不透明剂)的环境绩效影响最大。消毒剂 B 除了原材料生产(抗菌剂、不透明剂和表面活性剂)外,消费者运输也对其产生了重大影响。这些关键工序占两类产品总体影响的 60% 以上。生态效益矩阵(概况)涉及环境和经济指标。所有消毒剂都占据了第三或第四象限,表明对环境类别的影响较大。消毒剂 C 的生态效益最高,而消毒剂 B 的生态效益最低,主要是由于其产品系统价值。敏感性分析表明,改变产品成分对环境是可行的,例如更换抗菌剂、表面活性剂、防腐剂和不透明剂。能耗和水耗对所评估的产品没有重大影响。
{"title":"Eco-efficiency improvement strategies for disinfectants","authors":"Italo Emmanoel Mesquita Oliveira de Moura,&nbsp;Elaine Aparecida da Silva","doi":"10.1002/ep.14478","DOIUrl":"10.1002/ep.14478","url":null,"abstract":"<p>Disinfectants are essential products for reducing health risks, but they also have significant environmental impacts. This study assessed the Eco-efficiency of disinfectants based on the NBR ISO 14045:2014. Primary data were collected from Brazilian producers, while secondary data were obtained from patents and the Ecoinvent database. The system boundaries encompassed cradle-to-consumer use. The selling price was adopted as the product system value indicator (economic analysis). Raw materials production had the greatest impact on the environmental performance of disinfectants A (Antibacterial, surfactant and preservative) and C (Antibacterial, surfactant and opacifier). Disinfectant B, in addition to raw materials production (Antibacterial, opacifier and surfactant), also experienced significant impacts from consumer transport. These critical processes represent more than 60% of the overall impacts in both categories. The Eco-efficiency matrix (profile) related environmental and economic indicators. All disinfectants occupied quadrants three or four, indicating high impact on the environmental categories. Disinfectant C had the highest Eco-efficiency while disinfectant B had the lowest, mainly due to its product system value. Sensitivity analysis indicated environmentally viable changes in the products' composition, such as replacing the antibacterial, surfactant, preservative, and opacifier. Energy and water consumption did not significantly impact the assessed products.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Info for Authors 期刊信息 - 作者信息
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-17 DOI: 10.1002/ep.14424
{"title":"Issue Information - Info for Authors","authors":"","doi":"10.1002/ep.14424","DOIUrl":"10.1002/ep.14424","url":null,"abstract":"","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ep.14424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Cover and Table of Contents 发行信息 - 封面和目录
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-17 DOI: 10.1002/ep.14181
{"title":"Issue Information - Cover and Table of Contents","authors":"","doi":"10.1002/ep.14181","DOIUrl":"10.1002/ep.14181","url":null,"abstract":"","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ep.14181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on stepped solar still equipped with reflectors for the concentration of sugarcane juice 配备反射器的阶梯式太阳能蒸馏器浓缩甘蔗汁的实验研究
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-14 DOI: 10.1002/ep.14477
Rahul Grewal, Mahesh Kumar, Ashok Chaudhary, Pankaj Yadav

The present study accentuate the noteworthiness of ongoing research in evolving sustainable sugarcane juice evaporation technologies to help the non-centrifugal sugar (NCS) industry. Concentrated sugarcane juice (CSJ) is the raw material for the production of variety of value added products. A stepped solar still (SSS) could be one of the inexpensive solutions to evaporate water from sugarcane juice. In this study, a SSS having internal and external reflectors (SSS-IR-ER) is tested at 25 mL/min of sugarcane juice for obtaining CSJ. The thermo-enviro-economic performance of SSS-IR-ER unit is compared with SSS and SSS-IR (SSS having internal reflectors) units. The final brix content (oB) of the CSJ obtained from SSS-IR-ER is found to be maximum (20.7 oB) which is respectively, 16.90% and 7.25% higher than those of SSS and SSS-IR units. The total distillate output (condensate) and heat transfer coefficients show similar trends as that of brix values, which proves thermal dominance of SSS-IR-ER unit. For SSS-IR-ER, the convective and evaporative heat transfer coefficients were found to be maximum as 3.89 and 73.78 W/m2°C, respectively. The average values of energy and exergy efficiencies for SSS-IR-ER were, respectively, evaluated as 55.25% and 2.7% which were also observed maximum among the tested units. SSS-IR-ER also found to command in environmental and economic aspects with maximum values of total productive cost ($0.218), CO2 mitigation (14.93 tonnes) and carbon credit earned ($186.73). It is inferred that SSS-IR-ER is more economical and thermally efficient than SSS and SSS-IR units.

本研究强调了正在进行的研究的重要性,即发展可持续的甘蔗汁蒸发技术,以帮助非离心制糖(NCS)行业。浓缩甘蔗汁(CSJ)是生产各种增值产品的原料。阶梯式太阳能蒸馏器(SSS)是蒸发甘蔗汁中水分的廉价解决方案之一。在这项研究中,测试了一种带有内部和外部反射器(SSS-IR-ER)的阶梯式太阳能蒸发器,在每分钟 25 毫升甘蔗汁的条件下获得 CSJ。将 SSS-IR-ER 装置的热环境经济性能与 SSS 和 SSS-IR(具有内部反射器的 SSS)装置进行了比较。发现 SSS-IR-ER 获得的 CSJ 最终糖度(oB)最高(20.7 oB),分别比 SSS 和 SSS-IR 装置高出 16.90% 和 7.25%。馏出物总产量(冷凝物)和传热系数的变化趋势与 brix 值的变化趋势相似,这证明 SSS-IR-ER 装置在热能方面占主导地位。SSS-IR-ER 的对流和蒸发传热系数最大,分别为 3.89 和 73.78 W/m2°C。SSS-IR-ER 的能量效率和放能效率的平均值分别为 55.25% 和 2.7%,也是所有测试设备中最高的。SSS-IR-ER 在环境和经济方面也具有优势,总生产成本(0.218 美元)、二氧化碳减排量(14.93 吨)和获得的碳信用额(186.73 美元)均为最大值。由此推断,SSS-IR-ER 比 SSS 和 SSS-IR 设备更经济,热效率更高。
{"title":"Experimental study on stepped solar still equipped with reflectors for the concentration of sugarcane juice","authors":"Rahul Grewal,&nbsp;Mahesh Kumar,&nbsp;Ashok Chaudhary,&nbsp;Pankaj Yadav","doi":"10.1002/ep.14477","DOIUrl":"10.1002/ep.14477","url":null,"abstract":"<p>The present study accentuate the noteworthiness of ongoing research in evolving sustainable sugarcane juice evaporation technologies to help the non-centrifugal sugar (NCS) industry. Concentrated sugarcane juice (CSJ) is the raw material for the production of variety of value added products. A stepped solar still (SSS) could be one of the inexpensive solutions to evaporate water from sugarcane juice. In this study, a SSS having internal and external reflectors (SSS-IR-ER) is tested at 25 mL/min of sugarcane juice for obtaining CSJ. The thermo-enviro-economic performance of SSS-IR-ER unit is compared with SSS and SSS-IR (SSS having internal reflectors) units. The final brix content (<sup>o</sup>B) of the CSJ obtained from SSS-IR-ER is found to be maximum (20.7 <sup>o</sup>B) which is respectively, 16.90% and 7.25% higher than those of SSS and SSS-IR units. The total distillate output (condensate) and heat transfer coefficients show similar trends as that of brix values, which proves thermal dominance of SSS-IR-ER unit. For SSS-IR-ER, the convective and evaporative heat transfer coefficients were found to be maximum as 3.89 and 73.78 W/m<sup>2</sup>°C, respectively. The average values of energy and exergy efficiencies for SSS-IR-ER were, respectively, evaluated as 55.25% and 2.7% which were also observed maximum among the tested units. SSS-IR-ER also found to command in environmental and economic aspects with maximum values of total productive cost ($0.218), CO<sub>2</sub> mitigation (14.93 tonnes) and carbon credit earned ($186.73). It is inferred that SSS-IR-ER is more economical and thermally efficient than SSS and SSS-IR units.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on the application of a composite MIL88A(Fe)/TiO2 in a hexagonal photoreactor for phenol removal: Response surface methodology and kinetic modeling 关于在六角光反应器中应用 MIL88A(Fe)/TiO2复合材料去除苯酚的研究:响应面方法和动力学建模
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-14 DOI: 10.1002/ep.14462
Mehrazin Nikseresht, Davood Iranshahi, Alireza Badiei

The application of a novel composite MIL88A(Fe)/TiO2 for phenol removal in a new hexagonal photoreactor design was investigated. The unique hexagonal shape of the reactor increases the surface area available for irradiation, leading to more efficient removal of contaminants. The composite was characterized using X ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images to determine its properties. Photocatalyst dosage, reaction time, phenol concentration, pH, and mL H2O2/L PW (phenol wastewater) were chosen as effective parameters on the process. To plan an experiment and maximize phenol removal, the response surface methodology (RSM) was applied. Ideal conditions for optimum efficiency (95.96%) include initial phenol concentration of 58 mg/L, pH of 7.51, reaction time of 68.61 min, mL H2O2/L PW of 0.18, and catalyst dosage of 0.4 g/L PW. Trapping experiments prove that ˙O2 and ˙OH produced in Fenton and photocatalytic processes are the predominant active radicals in this process. The kinetics was fitted with the first-order, second-order, n-order, and Langmuir–Hinshelwood models using nonlinear least squares techniques. The n-order model with n = 0.54 was found to be the most suitable model (R2 0.998), with a model constant of k = 0.11 (mol0.46/L0.46.s).

研究了新型复合材料 MIL88A(Fe)/TiO2在新型六边形光反应器设计中去除苯酚的应用。反应器独特的六边形增加了可用于辐照的表面积,从而提高了去除污染物的效率。利用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR) 和扫描电子显微镜 (SEM) 图像对复合材料进行了表征,以确定其特性。光催化剂用量、反应时间、苯酚浓度、pH 值和 mL H2O2/L PW(苯酚废水)被选为该过程的有效参数。为了规划实验并最大限度地去除苯酚,采用了响应面方法(RSM)。最佳效率(95.96%)的理想条件包括初始苯酚浓度为 58 mg/L、pH 值为 7.51、反应时间为 68.61 分钟、mL H2O2/L PW 为 0.18、催化剂用量为 0.4 g/L PW。捕集实验证明,在 Fenton 和光催化过程中产生的 ˙O2 和 ˙OH 是该过程中最主要的活性自由基。利用非线性最小二乘法技术,用一阶、二阶、n 阶和 Langmuir-Hinshelwood 模型对动力学进行了拟合。n = 0.54 的 n 阶模型是最合适的模型(R2 0.998),模型常数为 k = 0.11(mol0.46/L0.46.s)。
{"title":"A study on the application of a composite MIL88A(Fe)/TiO2 in a hexagonal photoreactor for phenol removal: Response surface methodology and kinetic modeling","authors":"Mehrazin Nikseresht,&nbsp;Davood Iranshahi,&nbsp;Alireza Badiei","doi":"10.1002/ep.14462","DOIUrl":"10.1002/ep.14462","url":null,"abstract":"<p>The application of a novel composite MIL88A(Fe)/TiO<sub>2</sub> for phenol removal in a new hexagonal photoreactor design was investigated. The unique hexagonal shape of the reactor increases the surface area available for irradiation, leading to more efficient removal of contaminants. The composite was characterized using X ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images to determine its properties. Photocatalyst dosage, reaction time, phenol concentration, pH, and mL H<sub>2</sub>O<sub>2</sub>/L PW (phenol wastewater) were chosen as effective parameters on the process. To plan an experiment and maximize phenol removal, the response surface methodology (RSM) was applied. Ideal conditions for optimum efficiency (95.96%) include initial phenol concentration of 58 mg/L, pH of 7.51, reaction time of 68.61 min, mL H<sub>2</sub>O<sub>2</sub>/L PW of 0.18, and catalyst dosage of 0.4 g/L PW. Trapping experiments prove that ˙O<sub>2</sub> and ˙OH produced in Fenton and photocatalytic processes are the predominant active radicals in this process. The kinetics was fitted with the first-order, second-order, <i>n</i>-order, and Langmuir–Hinshelwood models using nonlinear least squares techniques. The <i>n</i>-order model with <i>n</i> = 0.54 was found to be the most suitable model (<i>R</i><sup>2</sup> 0.998), with a model constant of <i>k</i> = 0.11 (mol<sup>0.46</sup>/L<sup>0.46</sup>.s).</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coral reefs-like shape AgI/polypyrrole nanocomposite through the intercalation of iodide ions in the network for optoelectronic applications 通过碘离子在网络中的插层将珊瑚礁状的 AgI/ 聚吡咯纳米复合材料应用于光电领域
IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-14 DOI: 10.1002/ep.14475
Mohamed Rabia, Asmaa M. Elsayed, Eman Aldosari, Ahmed Adel A. Abdelazeez

A promising optoelectronic device for light sensing in both the UV and Vis regions is fabricated. This device consists of a nanocomposite resembling coral reefs, termed AgI/polypyrrole-iodide (AgI/Ppy-I). The resulting nanocomposite exhibits a hierarchical structure wherein larger particles, comprising smaller particles ~45 nm and an optical bandgap measuring 2.4 eV, form a coral reef-like morphology. The sensitivity estimation of this constructed optoelectronic device relies on evaluating the current density (Jph) values. Under illumination, a remarkable augmentation in current density (Jph = 0.46 mA cm−2) with a promising value compared to the dark condition's 0.12 mA cm−2. The optical characteristics of this nanocomposite make it highly conducive to efficient UV–Vis light sensing. The values of D (detectivity), reflecting the device's sensitivity, are notably high at 4 × 108 and 3.82 × 108 Jones in the UV and Vis regions, correspondingly. The potential of this photodetector is reinforced by the computed R-values, which denote the device's responsivity. With values of 1.8 and 1.72 mA W−1 across these two optical regions, correspondingly, it showcases the nanocomposite's effectiveness in transforming incident light into electrical current. Moreover, the appeal of this photodetector extends beyond its performance characteristics. Its cost-effectiveness, eco-friendliness, straightforward preparation methodology, scalability for mass production, and high stability collectively. The versatility of this material, coupled with its advantageous attributes, opens avenues for its widespread application, catering to the diverse needs of industries and contributing to the accessibility of efficient optoelectronic devices for a broader audience.

我们制造出了一种用于紫外线和可见光区域光感应的前景广阔的光电设备。该器件由一种类似珊瑚礁的纳米复合材料组成,称为 AgI/聚吡咯-碘化物(AgI/Ppy-I)。由此产生的纳米复合材料呈现出一种分层结构,其中较大的颗粒由约 45 nm 的较小颗粒组成,光带隙为 2.4 eV,形成类似珊瑚礁的形态。对这种构建的光电器件的灵敏度估计依赖于对电流密度(Jph)值的评估。在光照条件下,电流密度(Jph = 0.46 mA cm-2)明显增加,与黑暗条件下的 0.12 mA cm-2 相比,其值很有希望。这种纳米复合材料的光学特性非常有利于实现高效的紫外可见光传感。在紫外区和可见光区,反映器件灵敏度的 D 值(检测率)分别高达 4 × 108 琼斯和 3.82 × 108 琼斯。计算得出的 R 值(表示器件的响应度)进一步证实了这种光电探测器的潜力。这两个光学区域的响应值分别为 1.8 mA W-1 和 1.72 mA W-1,这表明纳米复合材料能有效地将入射光转化为电流。此外,这种光电探测器的吸引力还不止于其性能特点。它具有成本效益、环保、制备方法简单、可大规模生产以及高稳定性等特点。这种材料的多功能性加上其优势特性,为其广泛应用开辟了道路,满足了各行各业的不同需求,并有助于为更多人提供高效的光电设备。
{"title":"Coral reefs-like shape AgI/polypyrrole nanocomposite through the intercalation of iodide ions in the network for optoelectronic applications","authors":"Mohamed Rabia,&nbsp;Asmaa M. Elsayed,&nbsp;Eman Aldosari,&nbsp;Ahmed Adel A. Abdelazeez","doi":"10.1002/ep.14475","DOIUrl":"10.1002/ep.14475","url":null,"abstract":"<p>A promising optoelectronic device for light sensing in both the UV and Vis regions is fabricated. This device consists of a nanocomposite resembling coral reefs, termed AgI/polypyrrole-iodide (AgI/Ppy-I). The resulting nanocomposite exhibits a hierarchical structure wherein larger particles, comprising smaller particles ~45 nm and an optical bandgap measuring 2.4 eV, form a coral reef-like morphology. The sensitivity estimation of this constructed optoelectronic device relies on evaluating the current density (J<sub>ph</sub>) values. Under illumination, a remarkable augmentation in current density (J<sub>ph</sub> = 0.46 mA cm<sup>−2</sup>) with a promising value compared to the dark condition's 0.12 mA cm<sup>−2</sup>. The optical characteristics of this nanocomposite make it highly conducive to efficient UV–Vis light sensing. The values of D (detectivity), reflecting the device's sensitivity, are notably high at 4 × 10<sup>8</sup> and 3.82 × 10<sup>8</sup> Jones in the UV and Vis regions, correspondingly. The potential of this photodetector is reinforced by the computed R-values, which denote the device's responsivity. With values of 1.8 and 1.72 mA W<sup>−1</sup> across these two optical regions, correspondingly, it showcases the nanocomposite's effectiveness in transforming incident light into electrical current. Moreover, the appeal of this photodetector extends beyond its performance characteristics. Its cost-effectiveness, eco-friendliness, straightforward preparation methodology, scalability for mass production, and high stability collectively. The versatility of this material, coupled with its advantageous attributes, opens avenues for its widespread application, catering to the diverse needs of industries and contributing to the accessibility of efficient optoelectronic devices for a broader audience.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Progress & Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1