Pub Date : 2024-10-17DOI: 10.1017/S0950268824000979
Timothy J Wade, Carly Herbert
Legionellosis is a respiratory infection caused by Legionella sp. that is found in water and soil. Infection may cause pneumonia (Legionnaires' Disease) and a milder form (Pontiac Fever). Legionella colonizes water systems and results in exposure by inhalation of aerosolized bacteria. The incubation period ranges from 2 to 14 days. Precipitation and humidity may be associated with increased risk. We used Medicare records from 1999 to 2020 to identify hospitalizations for legionellosis. Precipitation, temperature, and relative humidity were obtained from the PRISM Climate Group for the zip code of residence. We used a time-stratified bi-directional case-crossover design with lags of 20 days. Data were analyzed using conditional logistic regression and distributed lag non-linear models. A total of 37 883 hospitalizations were identified. Precipitation and relative humidity at lags 8 through 13 days were associated with an increased risk of legionellosis. The strongest association was precipitation at day 10 lag (OR = 1.08, 95% CI = 1.05-1.11 per 1 cm). Over 20 days, 3 cm of precipitation increased the odds of legionellosis over four times. The association was strongest in the Northeast and Midwest and during summer and fall. Precipitation and humidity were associated with hospitalization among Medicare recipients for legionellosis at lags consistent with the incubation period for infection.
{"title":"Weather conditions and legionellosis: a nationwide case-crossover study among Medicare recipients.","authors":"Timothy J Wade, Carly Herbert","doi":"10.1017/S0950268824000979","DOIUrl":"10.1017/S0950268824000979","url":null,"abstract":"<p><p>Legionellosis is a respiratory infection caused by <i>Legionella</i> sp. that is found in water and soil. Infection may cause pneumonia (Legionnaires' Disease) and a milder form (Pontiac Fever). <i>Legionella</i> colonizes water systems and results in exposure by inhalation of aerosolized bacteria. The incubation period ranges from 2 to 14 days. Precipitation and humidity may be associated with increased risk. We used Medicare records from 1999 to 2020 to identify hospitalizations for legionellosis. Precipitation, temperature, and relative humidity were obtained from the PRISM Climate Group for the zip code of residence. We used a time-stratified bi-directional case-crossover design with lags of 20 days. Data were analyzed using conditional logistic regression and distributed lag non-linear models. A total of 37 883 hospitalizations were identified. Precipitation and relative humidity at lags 8 through 13 days were associated with an increased risk of legionellosis. The strongest association was precipitation at day 10 lag (OR = 1.08, 95% CI = 1.05-1.11 per 1 cm). Over 20 days, 3 cm of precipitation increased the odds of legionellosis over four times. The association was strongest in the Northeast and Midwest and during summer and fall. Precipitation and humidity were associated with hospitalization among Medicare recipients for legionellosis at lags consistent with the incubation period for infection.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subacute and chronic meningitis (SCM) presents significant diagnostic challenges, with numerous infectious and non-infectious inflammatory causes. This study examined patients aged 16 and older with SCM admitted to referral centers for neuroinfections and neuroinflammations in Mashhad, Iran, between March 2015 and October 2022. Among 183 episodes, tuberculous meningitis was the most common infectious cause (46.5%), followed by Brucella meningitis (24.6%). The cause of SCM was definitively proven in 40.4%, presumptive in 35.0%, and unknown in 24.6% of cases. In-hospital mortality was 14.4%, and 30.5% of survivors experienced unfavorable outcomes (Glasgow Outcome Scale 2-4). Patients with unknown causes had a significantly higher risk of death compared to those with presumptive or proven diagnoses (risk ratio 4.18). This study emphasizes the diagnostic difficulties of SCM, with one-quarter of cases remaining undiagnosed and over one-third having only a presumptive diagnosis. Improving diagnostic methods could potentially enhance prognosis and reduce mortality.
{"title":"The challenge of etiologic diagnosis of subacute and chronic meningitis: an analysis of 183 patients.","authors":"Mahboubeh Haddad, Fereshte Sheybani, Matin Shirazinia, Farzaneh Khoroushi, Zahra Baghestani","doi":"10.1017/S0950268824001225","DOIUrl":"https://doi.org/10.1017/S0950268824001225","url":null,"abstract":"<p><p>Subacute and chronic meningitis (SCM) presents significant diagnostic challenges, with numerous infectious and non-infectious inflammatory causes. This study examined patients aged 16 and older with SCM admitted to referral centers for neuroinfections and neuroinflammations in Mashhad, Iran, between March 2015 and October 2022. Among 183 episodes, tuberculous meningitis was the most common infectious cause (46.5%), followed by Brucella meningitis (24.6%). The cause of SCM was definitively proven in 40.4%, presumptive in 35.0%, and unknown in 24.6% of cases. In-hospital mortality was 14.4%, and 30.5% of survivors experienced unfavorable outcomes (Glasgow Outcome Scale 2-4). Patients with unknown causes had a significantly higher risk of death compared to those with presumptive or proven diagnoses (risk ratio 4.18). This study emphasizes the diagnostic difficulties of SCM, with one-quarter of cases remaining undiagnosed and over one-third having only a presumptive diagnosis. Improving diagnostic methods could potentially enhance prognosis and reduce mortality.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1017/S0950268824001183
Ben J Brintz, Josh M Colston, Sharia M Ahmed, Dennis L Chao, Benjamin F Zaitchik, Daniel T Leung
Recent advances in clinical prediction for diarrhoeal aetiology in low- and middle-income countries have revealed that the addition of weather data to clinical data improves predictive performance. However, the optimal source of weather data remains unclear. We aim to compare the use of model estimated satellite- and ground-based observational data with weather station directly observed data for the prediction of aetiology of diarrhoea. We used clinical and etiological data from a large multi-centre study of children with moderate to severe diarrhoea cases to compare their predictive performances. We show that the two sources of weather conditions perform similarly in most locations. We conclude that while model estimated data is a viable, scalable tool for public health interventions and disease prediction, given its ease of access, directly observed weather station data is likely adequate for the prediction of diarrhoeal aetiology in children in low- and middle-income countries.
{"title":"Assessment and comparison of model estimated and directly observed weather data for prediction of diarrhoea aetiology.","authors":"Ben J Brintz, Josh M Colston, Sharia M Ahmed, Dennis L Chao, Benjamin F Zaitchik, Daniel T Leung","doi":"10.1017/S0950268824001183","DOIUrl":"10.1017/S0950268824001183","url":null,"abstract":"<p><p>Recent advances in clinical prediction for diarrhoeal aetiology in low- and middle-income countries have revealed that the addition of weather data to clinical data improves predictive performance. However, the optimal source of weather data remains unclear. We aim to compare the use of model estimated satellite- and ground-based observational data with weather station directly observed data for the prediction of aetiology of diarrhoea. We used clinical and etiological data from a large multi-centre study of children with moderate to severe diarrhoea cases to compare their predictive performances. We show that the two sources of weather conditions perform similarly in most locations. We conclude that while model estimated data is a viable, scalable tool for public health interventions and disease prediction, given its ease of access, directly observed weather station data is likely adequate for the prediction of diarrhoeal aetiology in children in low- and middle-income countries.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1017/S0950268824001250
Sahil Kharwadkar, Philip Weinstein, Jessica Stanhope
Leptospirosis is a bacterial zoonosis that poses an increasing global public health risk. Pacific Island communities are highly vulnerable to leptospirosis outbreaks, yet the local drivers of infection remain poorly understood. We conducted a systematic review to identify the drivers of human Leptospira infection in the Pacific Islands. There were 42 included studies from which findings were synthesized descriptively. In tropical Pacific Islands, infections were a product of sociodemographic factors such as male gender/sex, age 20 to 60 years, Indigenous ethnicity, and poverty; lifestyle factors such as swimming, gardening, and open skin wounds; and environmental factors, including seasonality, heavy rainfall, and exposure to rodents, cattle, and pigs. Possible mitigation strategies in these islands include strengthening disease reporting standards at a regional level; improving water security, rodent control, and piggery management at a community level; and information campaigns to target individual-level drivers of infection. By contrast, in New Zealand, exposures were predominantly occupational, with infections occurring in meat and farm workers. Accordingly, interventions could include adjustments to occupational practices and promoting the uptake of animal vaccinations. Given the complexity of disease transmission and future challenges posed by climate change, further action is required for leptospirosis control in the Pacific Islands.
{"title":"Drivers of human <i>Leptospira</i> infection in the Pacific Islands: A systematic review.","authors":"Sahil Kharwadkar, Philip Weinstein, Jessica Stanhope","doi":"10.1017/S0950268824001250","DOIUrl":"10.1017/S0950268824001250","url":null,"abstract":"<p><p>Leptospirosis is a bacterial zoonosis that poses an increasing global public health risk. Pacific Island communities are highly vulnerable to leptospirosis outbreaks, yet the local drivers of infection remain poorly understood. We conducted a systematic review to identify the drivers of human <i>Leptospira</i> infection in the Pacific Islands. There were 42 included studies from which findings were synthesized descriptively. In tropical Pacific Islands, infections were a product of sociodemographic factors such as male gender/sex, age 20 to 60 years, Indigenous ethnicity, and poverty; lifestyle factors such as swimming, gardening, and open skin wounds; and environmental factors, including seasonality, heavy rainfall, and exposure to rodents, cattle, and pigs. Possible mitigation strategies in these islands include strengthening disease reporting standards at a regional level; improving water security, rodent control, and piggery management at a community level; and information campaigns to target individual-level drivers of infection. By contrast, in New Zealand, exposures were predominantly occupational, with infections occurring in meat and farm workers. Accordingly, interventions could include adjustments to occupational practices and promoting the uptake of animal vaccinations. Given the complexity of disease transmission and future challenges posed by climate change, further action is required for leptospirosis control in the Pacific Islands.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1017/S0950268824000955
Clifton D McKee, Emma X Yu, Andrés Garcia, Jules Jackson, Aybüke Koyuncu, Sophie Rose, Andrew S Azman, Katie Lobner, Emma Sacks, Maria D Van Kerkhove, Emily S Gurley
SARS-CoV-2 superspreading occurs when transmission is highly efficient and/or an individual infects many others, contributing to rapid spread. To better quantify heterogeneity in SARS-CoV-2 transmission, particularly superspreading, we performed a systematic review of transmission events with data on secondary attack rates or contact tracing of individual index cases published before September 2021 prior to the emergence of variants of concern and widespread vaccination. We reviewed 592 distinct events and 9,883 index cases from 491 papers. A meta-analysis of secondary attack rates identified substantial heterogeneity across 12 chosen event types/settings, with the highest transmission (25-35%) in co-living situations including households, nursing homes, and other congregate housing. Among index cases, 67% reported zero secondary cases and only 3% (287) infected >5 secondary cases ("superspreaders"). Index case demographic data were limited, with only 55% of individuals reporting age, sex, symptoms, real-time polymerase chain reaction (PCR) cycle threshold values, or total contacts. With the data available, we identified a higher percentage of superspreaders among symptomatic individuals, individuals aged 49-64 years, and individuals with over 100 total contacts. Addressing gaps in the literature regarding transmission events and contact tracing is needed to properly explain the heterogeneity in transmission and facilitate control efforts for SARS-CoV-2 and other infections.
{"title":"Superspreading of SARS-CoV-2: a systematic review and meta-analysis of event attack rates and individual transmission patterns.","authors":"Clifton D McKee, Emma X Yu, Andrés Garcia, Jules Jackson, Aybüke Koyuncu, Sophie Rose, Andrew S Azman, Katie Lobner, Emma Sacks, Maria D Van Kerkhove, Emily S Gurley","doi":"10.1017/S0950268824000955","DOIUrl":"10.1017/S0950268824000955","url":null,"abstract":"<p><p>SARS-CoV-2 superspreading occurs when transmission is highly efficient and/or an individual infects many others, contributing to rapid spread. To better quantify heterogeneity in SARS-CoV-2 transmission, particularly superspreading, we performed a systematic review of transmission events with data on secondary attack rates or contact tracing of individual index cases published before September 2021 prior to the emergence of variants of concern and widespread vaccination. We reviewed 592 distinct events and 9,883 index cases from 491 papers. A meta-analysis of secondary attack rates identified substantial heterogeneity across 12 chosen event types/settings, with the highest transmission (25-35%) in co-living situations including households, nursing homes, and other congregate housing. Among index cases, 67% reported zero secondary cases and only 3% (287) infected >5 secondary cases (\"superspreaders\"). Index case demographic data were limited, with only 55% of individuals reporting age, sex, symptoms, real-time polymerase chain reaction (PCR) cycle threshold values, or total contacts. With the data available, we identified a higher percentage of superspreaders among symptomatic individuals, individuals aged 49-64 years, and individuals with over 100 total contacts. Addressing gaps in the literature regarding transmission events and contact tracing is needed to properly explain the heterogeneity in transmission and facilitate control efforts for SARS-CoV-2 and other infections.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1017/S0950268824001249
Haoyi Wang, Tugce Varol, Thomas Gültzow, Hanne M L Zimmermann, Robert A C Ruiter, Kai J Jonas
In the transitioning era towards the COVID-19 endemic, there is still a sizable population that has never been vaccinated against COVID-19 in the Netherlands. This study employs Bayesian spatio-temporal modelling to assess the relative chances of COVID-19 vaccination uptake - first, second, and booster doses - both at the municipal and regional (public health services) levels. Incorporating ecological regression modelling to consider socio-demographic factors, our study unveils a diverse spatio-temporal distribution of vaccination uptake. Notably, the areas located in or around the Dutch main urban area (Randstad) and regions that are more religiously conservative exhibit a below-average likelihood of vaccination. Analysis at the municipal level within public health service regions indicates internal heterogeneity. Additionally, areas with a higher proportion of non-Western migrants consistently show lower chances of vaccination across vaccination dose scenarios. These findings highlight the need for tailored national and local vaccination strategies. Particularly, more regional efforts are essential to address vaccination disparities, especially in regions with elevated proportions of marginalized populations. This insight informs ongoing COVID-19 campaigns, emphasizing the importance of targeted interventions for optimizing health outcomes during the second booster phase, especially in regions with a relatively higher proportion of marginalized populations.
{"title":"Spatio-temporal distributions of COVID-19 vaccine doses uptake in the Netherlands: a Bayesian ecological modelling analysis.","authors":"Haoyi Wang, Tugce Varol, Thomas Gültzow, Hanne M L Zimmermann, Robert A C Ruiter, Kai J Jonas","doi":"10.1017/S0950268824001249","DOIUrl":"10.1017/S0950268824001249","url":null,"abstract":"<p><p>In the transitioning era towards the COVID-19 endemic, there is still a sizable population that has never been vaccinated against COVID-19 in the Netherlands. This study employs Bayesian spatio-temporal modelling to assess the relative chances of COVID-19 vaccination uptake - first, second, and booster doses - both at the municipal and regional (public health services) levels. Incorporating ecological regression modelling to consider socio-demographic factors, our study unveils a diverse spatio-temporal distribution of vaccination uptake. Notably, the areas located in or around the Dutch main urban area (Randstad) and regions that are more religiously conservative exhibit a below-average likelihood of vaccination. Analysis at the municipal level within public health service regions indicates internal heterogeneity. Additionally, areas with a higher proportion of non-Western migrants consistently show lower chances of vaccination across vaccination dose scenarios. These findings highlight the need for tailored national and local vaccination strategies. Particularly, more regional efforts are essential to address vaccination disparities, especially in regions with elevated proportions of marginalized populations. This insight informs ongoing COVID-19 campaigns, emphasizing the importance of targeted interventions for optimizing health outcomes during the second booster phase, especially in regions with a relatively higher proportion of marginalized populations.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1017/S0950268824001110
Patrick D Shaw Stewart
Several recent studies conclude that an increase in the pathogenicity of SARS-CoV-2 cannot be ruled out. However, it should be noted that SARS-CoV-2 is a 'direct' respiratory virus - meaning it is usually spread by the respiratory route but does not routinely pass through the lymphatics like measles and smallpox. Providing its tropism does not change, it will be unique if its pathogenicity does not decrease until it becomes similar to common cold viruses. Ewald noted in the 1980s that respiratory viruses may evolve mildness because their spread benefits from the mobility of their hosts. This review examines factors that usually lower respiratory viruses' severity, including heat sensitivity (which limits replication in the warmer lungs) and changes to the virus's surface proteins. Other factors may, however, increase pathogenicity, such as replication in the lymphatic system and spreading via solid surfaces or faecal matter. Furthermore, human activities and political events could increase the harmfulness of SARS-CoV-2, including the following: large-scale testing, especially when the results are delayed; transmission in settings where people are close together and not free to move around; poor hygiene facilities; and social, political, or cultural influences that encourage sick individuals to remain active, including crises such as wars. If we can avoid these eventualities, SARS-CoV-2 is likely to evolve to be milder, although the timescale is uncertain. Observations of influenza-like pandemics suggest it may take around two decades for COVID-19 to become as mild as seasonal colds.
{"title":"Will COVID-19 become mild, like a cold?","authors":"Patrick D Shaw Stewart","doi":"10.1017/S0950268824001110","DOIUrl":"10.1017/S0950268824001110","url":null,"abstract":"<p><p>Several recent studies conclude that an increase in the pathogenicity of SARS-CoV-2 cannot be ruled out. However, it should be noted that SARS-CoV-2 is a 'direct' respiratory virus - meaning it is usually spread by the respiratory route but does not routinely pass through the lymphatics like measles and smallpox. Providing its tropism does not change, it will be unique if its pathogenicity does not decrease until it becomes similar to common cold viruses. Ewald noted in the 1980s that respiratory viruses may evolve mildness because their spread benefits from the mobility of their hosts. This review examines factors that usually lower respiratory viruses' severity, including heat sensitivity (which limits replication in the warmer lungs) and changes to the virus's surface proteins. Other factors may, however, increase pathogenicity, such as replication in the lymphatic system and spreading via solid surfaces or faecal matter. Furthermore, human activities and political events could increase the harmfulness of SARS-CoV-2, including the following: large-scale testing, especially when the results are delayed; transmission in settings where people are close together and not free to move around; poor hygiene facilities; and social, political, or cultural influences that encourage sick individuals to remain active, including crises such as wars. If we can avoid these eventualities, SARS-CoV-2 is likely to evolve to be milder, although the timescale is uncertain. Observations of influenza-like pandemics suggest it may take around two decades for COVID-19 to become as mild as seasonal colds.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Escherichia albertii is an emerging foodborne enteropathogen associated with infectious diarrhoea in humans. In February 2023, an outbreak of acute gastroenteric cases was reported in a junior high school located in Hangzhou, Zhejiang province, China. Twenty-two investigated patients presented diarrhoea (22/22, 100%), abdominal pain (21/22, 95.5%), nausea (6/22, 27.3%), and vomiting (3/22, 13.6%). E. albertii strains were successfully isolated from anal swabs collected from six patients. Each isolate was classified as sequence type ST2686, harboured eae-β gene, and carried both cdtB-I and cdtB-II subtypes, being serotyped as EAOg32:EAHg4 serotype. A comprehensive whole-genome phylogenetic analysis revealed that the six isolates formed a distinct cluster, separate from other strains. These isolates exhibited minimal genetic variation, differing from one another by 0 to 1 single nucleotide polymorphism, suggesting a common origin from a single clone. To the best of our knowledge, this represented the first reported outbreak of gastroenteritis attributed to E. albertii outside of Japan on a global scale.
{"title":"An outbreak associated with <i>Escherichia albertii</i> in a junior high school, China.","authors":"Shiwang Huang, Qian Liu, Yezhen Fang, Hua Yu, Xi Yang, Jinfeng Hu, Yiyi Wang, Rui Tian, Yixiao Gao, Zhimin Ni, Yanwen Xiong","doi":"10.1017/S0950268824001341","DOIUrl":"10.1017/S0950268824001341","url":null,"abstract":"<p><p><i>Escherichia albertii</i> is an emerging foodborne enteropathogen associated with infectious diarrhoea in humans. In February 2023, an outbreak of acute gastroenteric cases was reported in a junior high school located in Hangzhou, Zhejiang province, China. Twenty-two investigated patients presented diarrhoea (22/22, 100%), abdominal pain (21/22, 95.5%), nausea (6/22, 27.3%), and vomiting (3/22, 13.6%). <i>E. albertii</i> strains were successfully isolated from anal swabs collected from six patients. Each isolate was classified as sequence type ST2686, harboured <i>eae</i>-β gene, and carried both <i>cdtB</i>-I and <i>cdtB</i>-II subtypes, being serotyped as EAOg32:EAHg4 serotype. A comprehensive whole-genome phylogenetic analysis revealed that the six isolates formed a distinct cluster, separate from other strains. These isolates exhibited minimal genetic variation, differing from one another by 0 to 1 single nucleotide polymorphism, suggesting a common origin from a single clone. To the best of our knowledge, this represented the first reported outbreak of gastroenteritis attributed to <i>E. albertii</i> outside of Japan on a global scale.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1017/S0950268824001031
Haruko Miyazaki, Bin Chang, Michinaga Ogawa, Rie Shibuya, Misako Takata, Shigeki Nakamura, Kimiko Ubukata, Yoshitsugu Miyazaki, Tetsuya Matsumoto, Yukihiro Akeda
Streptococcus pneumoniae serotype 35B, a non-vaccine type, is a major contributor to the increase in pneumococcal infection post-vaccination. We aimed to understand the mechanism of its spread by characterizing 35B. The serotype, type 1 pilus (T1P) positivity, and antimicrobial susceptibility of 319 isolates in 2018-2022 were analysed and compared with those of isolates in 2014-2017 to find the changes. 35B accounted for 40 (12.5%) isolates. T1P positivity was notably higher in 35B (87.5%) than in the other serotypes. To confirm the role of T1P, an adhesion factor, we compared adherence to A549 cells between T1P-positive 35B isolates and their T1P-deficient mutants, showing contribution of T1P to adherence. Penicillin-non-susceptible rate of 35B was 87.5%, and meropenem-resistant 35B rate was 35.0%, which increased from 14.5% of 2014-2017 (p = 0.009). Multilocus sequence typing was performed in 35B strains. Prevalence of clonal complex 558, harbouring T1P and exhibiting multidrug non-susceptibility, suggested the advantages of 35B in attachment and survival in the host. The emergence of ST156 isolates, T1P-positive and non-susceptible to β-lactams, has raised concern about expansion in Japan. The increase of serotype 35B in pneumococcal diseases might have occurred due to its predominant colonizing ability after the elimination of the vaccine-serotypes.
{"title":"Bacteriological characteristics and changes of <i>Streptococcus pneumoniae</i> serotype 35B after vaccine implementation in Japan.","authors":"Haruko Miyazaki, Bin Chang, Michinaga Ogawa, Rie Shibuya, Misako Takata, Shigeki Nakamura, Kimiko Ubukata, Yoshitsugu Miyazaki, Tetsuya Matsumoto, Yukihiro Akeda","doi":"10.1017/S0950268824001031","DOIUrl":"10.1017/S0950268824001031","url":null,"abstract":"<p><p><i>Streptococcus pneumoniae</i> serotype 35B, a non-vaccine type, is a major contributor to the increase in pneumococcal infection post-vaccination. We aimed to understand the mechanism of its spread by characterizing 35B. The serotype, type 1 pilus (T1P) positivity, and antimicrobial susceptibility of 319 isolates in 2018-2022 were analysed and compared with those of isolates in 2014-2017 to find the changes. 35B accounted for 40 (12.5%) isolates. T1P positivity was notably higher in 35B (87.5%) than in the other serotypes. To confirm the role of T1P, an adhesion factor, we compared adherence to A549 cells between <i>T1P</i>-positive 35B isolates and their <i>T1P</i>-deficient mutants, showing contribution of T1P to adherence. Penicillin-non-susceptible rate of 35B was 87.5%, and meropenem-resistant 35B rate was 35.0%, which increased from 14.5% of 2014-2017 (<i>p</i> = 0.009). Multilocus sequence typing was performed in 35B strains. Prevalence of clonal complex 558, harbouring <i>T1P</i> and exhibiting multidrug non-susceptibility, suggested the advantages of 35B in attachment and survival in the host. The emergence of ST156 isolates, <i>T1P</i>-positive and non-susceptible to β-lactams, has raised concern about expansion in Japan. The increase of serotype 35B in pneumococcal diseases might have occurred due to its predominant colonizing ability after the elimination of the vaccine-serotypes.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1017/S0950268824001122
Catherine G A Pendrey, Arseniy Khvorov, Son Nghiem, Md R Rahaman, Janet Strachan, Sheena G Sullivan
Seasonal influenza epidemics result in high levels of healthcare utilization. Vaccination is an effective strategy to reduce the influenza-related burden of disease. However, reporting vaccine effectiveness does not convey the population impacts of influenza vaccination. We aimed to calculate the burden of influenza-related hospitalizations and emergency department (ED) attendance averted by influenza vaccination in Victoria, Australia, from 2017 to 2019, and associated economic savings. We applied a compartmental model to hospitalizations and ED attendances with influenza-specific, and pneumonia and influenza (P&I) with the International Classification of Diseases, 10th Revision, Australian Modification (ICD-10-AM) diagnostic codes of J09-J11 and J09-J18, respectively. We estimated an annual average of 7657 (120 per 100000 population) hospitalizations and 20560 (322 per 100000 population) ED attendances over the study period, associated with A$85 million hospital expenditure. We estimated that influenza vaccination averted an annual average of 1182 [range: 556 - 2277] hospitalizations and 3286 [range: 1554 - 6257] ED attendances and reduced the demand for healthcare services at the influenza season peak. This equated to approximately A13 [range: A6 - A25] million of savings over the study period. Calculating the burden averted is feasible in Australia and auseful approach to demonstrate the health and economic benefits of influenza vaccination.
{"title":"Hospitalizations and emergency attendance averted by influenza vaccination in Victoria, Australia, 2017 - 2019.","authors":"Catherine G A Pendrey, Arseniy Khvorov, Son Nghiem, Md R Rahaman, Janet Strachan, Sheena G Sullivan","doi":"10.1017/S0950268824001122","DOIUrl":"10.1017/S0950268824001122","url":null,"abstract":"<p><p>Seasonal influenza epidemics result in high levels of healthcare utilization. Vaccination is an effective strategy to reduce the influenza-related burden of disease. However, reporting vaccine effectiveness does not convey the population impacts of influenza vaccination. We aimed to calculate the burden of influenza-related hospitalizations and emergency department (ED) attendance averted by influenza vaccination in Victoria, Australia, from 2017 to 2019, and associated economic savings. We applied a compartmental model to hospitalizations and ED attendances with influenza-specific, and pneumonia and influenza (P&I) with the International Classification of Diseases, 10<sup>th</sup> Revision, Australian Modification (ICD-10-AM) diagnostic codes of J09-J11 and J09-J18, respectively. We estimated an annual average of 7657 (120 per 100000 population) hospitalizations and 20560 (322 per 100000 population) ED attendances over the study period, associated with A$85 million hospital expenditure. We estimated that influenza vaccination averted an annual average of 1182 [range: 556 - 2277] hospitalizations and 3286 [range: 1554 - 6257] ED attendances and reduced the demand for healthcare services at the influenza season peak. This equated to approximately A13 [range: A6 - A25] million of savings over the study period. Calculating the burden averted is feasible in Australia and auseful approach to demonstrate the health and economic benefits of influenza vaccination.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}