A special dust storm characterized by high PM10 mass concentrations (921.9 ± 632.3 μg m−3) and high relative humidity (RH; 60.1 % ± 11.1 %) was observed on March 22–24, 2023 at a coastal city of North China. Aerosol particles of PM10 were analyzed by a scanning electron microscope coupled with energy dispersive X-ray and an ion chromatograph. The results showed that individual mineral particles were dominated by clay minerals, followed by quartz, feldspar, and carbonate. Bulk water-soluble inorganic ions analysis showed that SO42- mass concentrations varied from 3.7 μg m−3 to 23.3 μg m−3 with an average value of 12.4 μg m−3. However, their mass ratios to PM10 were relatively stable, being 1.15–2.01 % with an average value of 1.49 % ± 0.25 %, similar to the value near the dust sources (Tengger Desert). Although S-containing individual mineral dust varied from 5.2 % to 70.7 %, the average weight ratio of S on individual mineral dust was 2.1 %, much lower than that of non-dust periods (11.0 %). The results suggested limited sulfate formation on mineral dust surfaces even under high RH. In contrast, NO3-, which was very limited in dust sources, varied from 0.21 % to 4.11 % of the total PM10 with an average value of 1.61 % ± 1.07 %. The research highlighted that nitrate formation has exceeded sulfate formation during severe dust storm episodes, which might because the atmospheric compositions in China have changed significantly with a high mass ratio of NO2/SO2 after the implementation of the strict emission control measures.
{"title":"Morphology and chemical composition of mineral particles in a special dust storm with high relative humidity in North China","authors":"Wenhua Wang , Hui Zhou , Yutao Gao , Ruihe Lyu , Jiaoping Xing , Xiuyan Zhou , Xian Li , Longyi Shao","doi":"10.1016/j.eti.2024.103823","DOIUrl":"10.1016/j.eti.2024.103823","url":null,"abstract":"<div><p>A special dust storm characterized by high PM<sub>10</sub> mass concentrations (921.9 ± 632.3 μg m<sup>−3</sup>) and high relative humidity (RH; 60.1 % ± 11.1 %) was observed on March 22–24, 2023 at a coastal city of North China. Aerosol particles of PM<sub>10</sub> were analyzed by a scanning electron microscope coupled with energy dispersive X-ray and an ion chromatograph. The results showed that individual mineral particles were dominated by clay minerals, followed by quartz, feldspar, and carbonate. Bulk water-soluble inorganic ions analysis showed that SO<sub>4</sub><sup>2-</sup> mass concentrations varied from 3.7 μg m<sup>−3</sup> to 23.3 μg m<sup>−3</sup> with an average value of 12.4 μg m<sup>−3</sup>. However, their mass ratios to PM<sub>10</sub> were relatively stable, being 1.15–2.01 % with an average value of 1.49 % ± 0.25 %, similar to the value near the dust sources (Tengger Desert). Although S-containing individual mineral dust varied from 5.2 % to 70.7 %, the average weight ratio of S on individual mineral dust was 2.1 %, much lower than that of non-dust periods (11.0 %). The results suggested limited sulfate formation on mineral dust surfaces even under high RH. In contrast, NO<sub>3</sub><sup>-</sup>, which was very limited in dust sources, varied from 0.21 % to 4.11 % of the total PM<sub>10</sub> with an average value of 1.61 % ± 1.07 %. The research highlighted that nitrate formation has exceeded sulfate formation during severe dust storm episodes, which might because the atmospheric compositions in China have changed significantly with a high mass ratio of NO<sub>2</sub>/SO<sub>2</sub> after the implementation of the strict emission control measures.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103823"},"PeriodicalIF":6.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002992/pdfft?md5=ecb8b5918a3dbe58686e26e0101c073a&pid=1-s2.0-S2352186424002992-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.eti.2024.103825
Jibao Jia , Huiping Dai , Jie Zhan , Shuhe Wei , Lidia Skuza , Junjun Chang
Determining the hyperaccumulation mechanism of Solanum nigrum L., which exclusively accumulates cadmium (Cd), presents significant challenges due to the difficulty in identifying its unique characteristics. While some metabolic pathways related to Cd accumulation can be explored, there are no methods to ascertain if other heavy metals may share the same pathways. Isobaric tags for relative and absolute quantitation (iTRAQ) were employed to investigate the metabolic pathways associated with Cd hyperaccumulation and Cu accumulation (non-Cu hyperaccumulator) by comparing differentially expressed proteins (DEPs). The results showed that 27 intersecting DEPs reflecting relative metabolic pathways related to Cd accumulation were identified by comparing DEPs in leaves and roots, including carbon metabolism, aminoacyl-tRNA biosynthesis, phagosome, peroxisome, as well as starch and sucrose metabolism. These pathways might be responsible for the values of Cd enrichment factor (EF) and translocation factor (TF) exceeding 1, associated with key proteins participated in phosphoenolpyruvate, carboxylase, chloroplastic catalytic activity, and granule-bound starch synthase I. The combined metabolic pathways identified by 2 intersecting DEPs related to Cu accumulation could result in Cu EF >1 in the 0.2 Cu mg kg−1 treatment, EF <1 in the 5 mg kg−1 treatment, and TF<1 in both treatments, associated with key proteins, which might concern photosynthesis-antenna proteins and hydroxymethylbilane synthase. No metabolic pathways related to simultaneous accumulation of Cd and Cu has been identified. The identified DEPs were validated using Western blotting with five key proteins. Additionally, Western blotting and yeast mutant confirmed the presence of proteins related to carbon fixation in photosynthetic organisms, carbon metabolism, peroxisome, as well as starch and sucrose metabolism. Photosynthetic, O2•−, H2O2 and non-enzymatic antioxidants indices reflecting protein-related differences indirectly supported the above results. These findings are crucial for further exploration of the Cd hyperaccumulation mechanism.
茄科植物黑茄属(Solanum nigrum L.)只积累镉(Cd),由于难以确定其独特的特征,因此确定黑茄属植物的超积累机制是一项重大挑战。虽然可以探索与镉积累有关的一些代谢途径,但没有方法确定其他重金属是否可能具有相同的途径。通过比较差异表达蛋白(DEPs),采用等位相对和绝对定量标记(iTRAQ)研究了与镉高积累和铜积累(非铜高积累)相关的代谢途径。结果表明,通过比较叶和根的 DEPs,发现了 27 个交叉的 DEPs,反映了与镉积累有关的相对代谢途径,包括碳代谢、氨基酰-tRNA 生物合成、吞噬体、过氧化物酶体以及淀粉和蔗糖代谢。这些途径可能是镉富集因子(EF)和易位因子(TF)值超过 1 的原因,与参与磷酸烯醇丙酮酸、羧化酶、叶绿体催化活性和颗粒结合淀粉合成酶 I 的关键蛋白有关。与铜积累有关的 2 个交叉 DEPs 确定的综合代谢途径可能导致 0.2 Cu mg kg-1 处理中的铜 EF >1,5 mg kg-1 处理中的 EF <1,以及两种处理中的 TF <1,与关键蛋白有关,可能涉及光合作用天线蛋白和羟甲基比兰合成酶。没有发现与镉和铜同时积累有关的代谢途径。利用五种关键蛋白的 Western 印迹法对已确定的 DEPs 进行了验证。此外,Western 印迹和酵母突变体证实了与光合生物碳固定、碳代谢、过氧物酶体以及淀粉和蔗糖代谢有关的蛋白质的存在。反映蛋白质相关差异的光合、O2--、H2O2 和非酶抗氧化剂指数间接支持了上述结果。这些发现对进一步探索镉的过度积累机制至关重要。
{"title":"Main metabolic pathways of Solanum nigrum L. hyperaccumulating cadmium except of copper simultaneously through differentially expressed proteins analysis","authors":"Jibao Jia , Huiping Dai , Jie Zhan , Shuhe Wei , Lidia Skuza , Junjun Chang","doi":"10.1016/j.eti.2024.103825","DOIUrl":"10.1016/j.eti.2024.103825","url":null,"abstract":"<div><p>Determining the hyperaccumulation mechanism of <em>Solanum nigrum</em> L., which exclusively accumulates cadmium (Cd), presents significant challenges due to the difficulty in identifying its unique characteristics. While some metabolic pathways related to Cd accumulation can be explored, there are no methods to ascertain if other heavy metals may share the same pathways. Isobaric tags for relative and absolute quantitation (iTRAQ) were employed to investigate the metabolic pathways associated with Cd hyperaccumulation and Cu accumulation (non-Cu hyperaccumulator) by comparing differentially expressed proteins (DEPs). The results showed that 27 intersecting DEPs reflecting relative metabolic pathways related to Cd accumulation were identified by comparing DEPs in leaves and roots, including carbon metabolism, aminoacyl-tRNA biosynthesis, phagosome, peroxisome, as well as starch and sucrose metabolism. These pathways might be responsible for the values of Cd enrichment factor (EF) and translocation factor (TF) exceeding 1, associated with key proteins participated in phosphoenolpyruvate, carboxylase, chloroplastic catalytic activity, and granule-bound starch synthase I. The combined metabolic pathways identified by 2 intersecting DEPs related to Cu accumulation could result in Cu EF >1 in the 0.2 Cu mg kg<sup>−1</sup> treatment, EF <1 in the 5 mg kg<sup>−1</sup> treatment, and TF<1 in both treatments, associated with key proteins, which might concern photosynthesis-antenna proteins and hydroxymethylbilane synthase. No metabolic pathways related to simultaneous accumulation of Cd and Cu has been identified. The identified DEPs were validated using Western blotting with five key proteins. Additionally, Western blotting and yeast mutant confirmed the presence of proteins related to carbon fixation in photosynthetic organisms, carbon metabolism, peroxisome, as well as starch and sucrose metabolism. Photosynthetic, O<sub>2</sub><sup>•−</sup>, H<sub>2</sub>O<sub>2</sub> and non-enzymatic antioxidants indices reflecting protein-related differences indirectly supported the above results. These findings are crucial for further exploration of the Cd hyperaccumulation mechanism.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103825"},"PeriodicalIF":6.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003018/pdfft?md5=bbc7e38e3ade480dbf71bc03b24e5354&pid=1-s2.0-S2352186424003018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.eti.2024.103818
Shuaimin Chen, Zuowei Fan, Yangyang Li, Hongguang Cai, Yao Liang, Haiyan Wu, Lichun Wang
Shortening the initial activation time and extending the duration of the thermophilic phase are key to improving compost product quality in cold-climate regions. This study set up three treatments that cattle manure (CM), manure with rice straw (MR), and manure with maize straw (MM) in the field with ambient temperature ranging from –6–7 ℃. Compared with traditional manure composting, composting with straw performed more effectively, and the effect of the addition of maize straw surpassed that of the addition of rice straw. Straw additives markedly increased the compost pile temperature and extended the thermophilic phase duration. In addition, straw addition improved compost product maturity, as indicated by the humic-like substance content, absorbance ratio, and germination index. To further illustrate this result, the microbial community structure during the composting process was studied. During the thermophilic phase, straw additives, especially maize straw, improved the formation of a diverse aerobic bacterial community and a unitary thermophilic fungal community, and promoted a stronger relationship between the bacterial and fungal communities, as revealed by co-inertia analysis. The abundance of functional genes indicated that straw addition increased the activities of organic carbon degradation and transformation. This study demonstrated the necessity of enhancing the interaction between thermophilic–aerobic bacteria and thermophilic fungi to improve compost product quality.
{"title":"Straw additive enhances manure compost quality by promoting diverse aerobic bacteria and unitary thermophilic fungi","authors":"Shuaimin Chen, Zuowei Fan, Yangyang Li, Hongguang Cai, Yao Liang, Haiyan Wu, Lichun Wang","doi":"10.1016/j.eti.2024.103818","DOIUrl":"10.1016/j.eti.2024.103818","url":null,"abstract":"<div><p>Shortening the initial activation time and extending the duration of the thermophilic phase are key to improving compost product quality in cold-climate regions. This study set up three treatments that cattle manure (CM), manure with rice straw (MR), and manure with maize straw (MM) in the field with ambient temperature ranging from –6–7 ℃. Compared with traditional manure composting, composting with straw performed more effectively, and the effect of the addition of maize straw surpassed that of the addition of rice straw. Straw additives markedly increased the compost pile temperature and extended the thermophilic phase duration. In addition, straw addition improved compost product maturity, as indicated by the humic-like substance content, absorbance ratio, and germination index. To further illustrate this result, the microbial community structure during the composting process was studied. During the thermophilic phase, straw additives, especially maize straw, improved the formation of a diverse aerobic bacterial community and a unitary thermophilic fungal community, and promoted a stronger relationship between the bacterial and fungal communities, as revealed by co-inertia analysis. The abundance of functional genes indicated that straw addition increased the activities of organic carbon degradation and transformation. This study demonstrated the necessity of enhancing the interaction between thermophilic–aerobic bacteria and thermophilic fungi to improve compost product quality.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103818"},"PeriodicalIF":6.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002943/pdfft?md5=849a13ab42c94c6294278d1c8f8d120c&pid=1-s2.0-S2352186424002943-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.eti.2024.103824
Maosen Liao , Shan Niu , Wenhong Fan , Fujun Ma , Zhaomin Dong
The disparities in exposure to environmental hazards have fueled the environmental justice movement, which has garnered increasing attention and momentum over the past few decades. However, research addressing exposure disparities pertaining to chemicals remains notably limited. Here, leveraging data from the National Health and Nutrition Examination Survey spanning the period from 1999 to 2018, we unveiled that the perfluorooctanesulfonic acid (PFOS) exhibited the highest concentration in human biomonitoring in general U.S. population, with a mean value of 14.54 ± 19.59 ng/ml. Subsequently, the mean concentrations of Perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were 3.33 ± 3.19, 2.29 ± 3.13, 1.07 ± 1.30, and 0.34 ± 0.71, respectively. Meanwhile, although females or Non-hispanic White exhibited relatively higher levels for most per- and polyfluoroalkyl substances (PFASs) compared to other groups. The individuals with higher household incomes demonstrated elevated exposure to PFASs. Interestingly, despite lower exposure burdens were observed in Non-Hispanic Black individuals, females, and individuals with low family income, we identified relatively higher exposure disparities in these populations. In particular, exposure disparities for general U.S. population exposure to PFOS exhibited an approximate 50 % increase from 1999 to 2018, despite a concurrent decline of 84 % in biomonitoring levels. Meanwhile, the population aging has led to an exacerbation of human exposure to PFOS by 12.4 %. Our findings underscore the necessity of ensuring equitable protection from PFAS exposure for all populations, although further investigation is required to understand the underlying mechanisms driving these disparities.
{"title":"Increasing disparities in human exposure to perfluorooctanesulfonic acid: Findings from per- and polyfluoroalkyl substance concentrations in 1999–2018 NHANES","authors":"Maosen Liao , Shan Niu , Wenhong Fan , Fujun Ma , Zhaomin Dong","doi":"10.1016/j.eti.2024.103824","DOIUrl":"10.1016/j.eti.2024.103824","url":null,"abstract":"<div><p>The disparities in exposure to environmental hazards have fueled the environmental justice movement, which has garnered increasing attention and momentum over the past few decades. However, research addressing exposure disparities pertaining to chemicals remains notably limited. Here, leveraging data from the National Health and Nutrition Examination Survey spanning the period from 1999 to 2018, we unveiled that the perfluorooctanesulfonic acid (PFOS) exhibited the highest concentration in human biomonitoring in general U.S. population, with a mean value of 14.54 ± 19.59 ng/ml. Subsequently, the mean concentrations of Perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were 3.33 ± 3.19, 2.29 ± 3.13, 1.07 ± 1.30, and 0.34 ± 0.71, respectively. Meanwhile, although females or Non-hispanic White exhibited relatively higher levels for most per- and polyfluoroalkyl substances (PFASs) compared to other groups. The individuals with higher household incomes demonstrated elevated exposure to PFASs. Interestingly, despite lower exposure burdens were observed in Non-Hispanic Black individuals, females, and individuals with low family income, we identified relatively higher exposure disparities in these populations. In particular, exposure disparities for general U.S. population exposure to PFOS exhibited an approximate 50 % increase from 1999 to 2018, despite a concurrent decline of 84 % in biomonitoring levels. Meanwhile, the population aging has led to an exacerbation of human exposure to PFOS by 12.4 %. Our findings underscore the necessity of ensuring equitable protection from PFAS exposure for all populations, although further investigation is required to understand the underlying mechanisms driving these disparities.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103824"},"PeriodicalIF":6.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003006/pdfft?md5=7389f1a8d0d418f622335cb5c35ed51f&pid=1-s2.0-S2352186424003006-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.eti.2024.103819
Yubo Li , Zhibo Lu , Xin Zhang , Juan Wang , Shuiqian Zhao , Jian Shen , Lei Dong , Yunze Gao , Yifeng Yang , He Cui , Yinchuan Yang
Microplastics have now become an emerging contaminant with high concern in the Arctic and Sub-Arctic Region. Here, the Kongsfjorden system in the Arctic has been investigated for abundance, distribution, and characteristic of microplastics in surface seawater. Eighteen samples were collected using an in-situ filtration sampling method, and then analyzed by Fourier-transform infrared spectroscopy. The average abundance of microplastics in surface seawater was 3.6 items m−3, with an abundance range of 0.0—10.0 items m−3. The highest abundance of microplastics was located adjacent to the eddy in Kongsfjorden, where a microplastic accumulation zone might have formed. Microplastics transported by ocean currents and those from local discharges might converge in this zone. Two sampling stations were set up at the wastewater treatment plant outfall, which showed an abundance range of 4.0—6.0 items m−3, slightly higher than the average abundance. Of the six polymer types identified, rayon, polyester and polyamide were the most common composition. Proportions in fiber form in surface water was 84.6 %, and blue (28.2 %) and transparent (25.6 %) were predominant colors. Most microplastics (>90.0 %) were less than 1 mm in the longest dimension. This study provided important baseline data as well as a practical microplastic sampling method for polar marine environments.
{"title":"Microplastics in surface seawater of Kongsfjorden, Svalbard, Arctic","authors":"Yubo Li , Zhibo Lu , Xin Zhang , Juan Wang , Shuiqian Zhao , Jian Shen , Lei Dong , Yunze Gao , Yifeng Yang , He Cui , Yinchuan Yang","doi":"10.1016/j.eti.2024.103819","DOIUrl":"10.1016/j.eti.2024.103819","url":null,"abstract":"<div><p>Microplastics have now become an emerging contaminant with high concern in the Arctic and Sub-Arctic Region. Here, the Kongsfjorden system in the Arctic has been investigated for abundance, distribution, and characteristic of microplastics in surface seawater. Eighteen samples were collected using an in-situ filtration sampling method, and then analyzed by Fourier-transform infrared spectroscopy. The average abundance of microplastics in surface seawater was 3.6 items m<sup>−3</sup>, with an abundance range of 0.0—10.0 items m<sup>−3</sup>. The highest abundance of microplastics was located adjacent to the eddy in Kongsfjorden, where a microplastic accumulation zone might have formed. Microplastics transported by ocean currents and those from local discharges might converge in this zone. Two sampling stations were set up at the wastewater treatment plant outfall, which showed an abundance range of 4.0—6.0 items m<sup>−3</sup>, slightly higher than the average abundance. Of the six polymer types identified, rayon, polyester and polyamide were the most common composition. Proportions in fiber form in surface water was 84.6 %, and blue (28.2 %) and transparent (25.6 %) were predominant colors. Most microplastics (>90.0 %) were less than 1 mm in the longest dimension. This study provided important baseline data as well as a practical microplastic sampling method for polar marine environments.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103819"},"PeriodicalIF":6.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002955/pdfft?md5=0137f83b33f3eb38503f987e2b4eefb0&pid=1-s2.0-S2352186424002955-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1016/j.eti.2024.103814
Ranjna Sirohi , Manish Kumar , V. Vivekanand , Amita Shakya , Ayon Tarafdar , Rickwinder Singh , Ankush D. Sawarkar , Anh Tuan Hoang , Ashok Pandey
This review article intends to report the advances in the production and application of biochar from macroalgae and microalgae and its utilization in anaerobic digestion (AD), aiming to achieve zero waste and promote a circular economy. Biochar, a carbon-rich material derived through pyrolysis or gasification, offers environmental and agricultural benefits due to its stability and porosity. By incorporating biochar into AD systems, improved process efficiency, enhanced microbial activity, and nutrient retention can be achieved. An integrated approach on its production and application can minimize biomass disposal impacts, generate renewable energy, and improve the soil and nutrient management. The use of macroalgae and microalgae for biochar production aligns with the sustainability principles, as these resources have high growth rates and there is no direct competition with the arable land. Thus, the focus of this article is to highlight the advances in algal biochar production with emphasis to the factors influencing biochar properties, structure, characterization, mechanism of biochar action, and the impact of biochar addition on AD. It also evaluates the economic and environmental benefits, featuring the role of this approach in achieving a zero-waste paradigm and supporting circular economy development.
{"title":"Integrating biochar in anaerobic digestion: Insights into diverse feedstocks and algal biochar","authors":"Ranjna Sirohi , Manish Kumar , V. Vivekanand , Amita Shakya , Ayon Tarafdar , Rickwinder Singh , Ankush D. Sawarkar , Anh Tuan Hoang , Ashok Pandey","doi":"10.1016/j.eti.2024.103814","DOIUrl":"10.1016/j.eti.2024.103814","url":null,"abstract":"<div><p>This review article intends to report the advances in the production and application of biochar from macroalgae and microalgae and its utilization in anaerobic digestion (AD), aiming to achieve zero waste and promote a circular economy. Biochar, a carbon-rich material derived through pyrolysis or gasification, offers environmental and agricultural benefits due to its stability and porosity. By incorporating biochar into AD systems, improved process efficiency, enhanced microbial activity, and nutrient retention can be achieved. An integrated approach on its production and application can minimize biomass disposal impacts, generate renewable energy, and improve the soil and nutrient management. The use of macroalgae and microalgae for biochar production aligns with the sustainability principles, as these resources have high growth rates and there is no direct competition with the arable land. Thus, the focus of this article is to highlight the advances in algal biochar production with emphasis to the factors influencing biochar properties, structure, characterization, mechanism of biochar action, and the impact of biochar addition on AD. It also evaluates the economic and environmental benefits, featuring the role of this approach in achieving a zero-waste paradigm and supporting circular economy development.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103814"},"PeriodicalIF":6.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002906/pdfft?md5=b9995e14bd53991e055457b29623a204&pid=1-s2.0-S2352186424002906-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.eti.2024.103822
Jing Guo, Jing Zhang, Bo Tao
Fomesafen is mainly used in soybean and peanut fields to control annual and perennial broad-leaved weeds with strong selectivity and good weed control effects. However, fomesafen has strong persistence and a slow degradation rate in soil. This greatly affects grain yield and the adjustment of agricultural planting structure. In this study, the fomesafen degradation gene cyp57A1 from Fusarium verticillioides, which can be stably expressed in E. coli BL21(DE3), was cloned and transformed into the engineered bacterium P. The degradation rate of fomesafen was explored via high-performance liquid chromatography technology. High-performance liquid chromatography tandem mass spectrometry (HPLC-MS) was used to separate and identify the degradation products of fomesafen in different conditions, and microbial degradation pathways of fomesafen were proposed. Response surface methodology was used to optimize the conditions of the engineered bacteria, and the optimal degradation conditions for the strains were a temperature of 37 °C, a pH of 6.0, and 5 % inoculation. The engineered bacteria successfully degraded 5–500 mg/L fomesafen, and the degradation rate was 82.65 % when the concentration of fomesafen was 100 mg/L. The degradation products were isolated and identified by HPLC-MS, and a total of 8 degradation products were obtained. It was inferred that benzene ring dechlorination, S-N bond cleavage, phenoxy group cleavage, C-N bond cleavage, nitro reduction, amino acetylation, defluorination and other pathways were involved. The excavation of engineered bacteria is highly valuable for resolving the residual fomesafen in the environment.
{"title":"Cloning of cyp57A1 gene from Fusarium verticillioides for degradation of herbicide fomesafen","authors":"Jing Guo, Jing Zhang, Bo Tao","doi":"10.1016/j.eti.2024.103822","DOIUrl":"10.1016/j.eti.2024.103822","url":null,"abstract":"<div><p>Fomesafen is mainly used in soybean and peanut fields to control annual and perennial broad-leaved weeds with strong selectivity and good weed control effects. However, fomesafen has strong persistence and a slow degradation rate in soil. This greatly affects grain yield and the adjustment of agricultural planting structure. In this study, the fomesafen degradation gene <em>cyp57A1</em> from <em>Fusarium verticillioides</em>, which can be stably expressed in <em>E. coli</em> BL21(DE3), was cloned and transformed into the engineered bacterium P. The degradation rate of fomesafen was explored via high-performance liquid chromatography technology. High-performance liquid chromatography tandem mass spectrometry (HPLC-MS) was used to separate and identify the degradation products of fomesafen in different conditions, and microbial degradation pathways of fomesafen were proposed. Response surface methodology was used to optimize the conditions of the engineered bacteria, and the optimal degradation conditions for the strains were a temperature of 37 °C, a pH of 6.0, and 5 % inoculation. The engineered bacteria successfully degraded 5–500 mg/L fomesafen, and the degradation rate was 82.65 % when the concentration of fomesafen was 100 mg/L. The degradation products were isolated and identified by HPLC-MS, and a total of 8 degradation products were obtained. It was inferred that benzene ring dechlorination, S-N bond cleavage, phenoxy group cleavage, C-N bond cleavage, nitro reduction, amino acetylation, defluorination and other pathways were involved. The excavation of engineered bacteria is highly valuable for resolving the residual fomesafen in the environment.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103822"},"PeriodicalIF":6.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002980/pdfft?md5=634dfbcce22fb700d3f1a411f3fa5220&pid=1-s2.0-S2352186424002980-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.eti.2024.103806
Dongjia Li , Minghao Zhuang , Rui Liu , Weifeng Zhang , Deli Chen
Innovative fertilizer technology is an effective solution to enhance food security while achieving environmental sustainability. However, current fertilizer technologies aiming to consider the interaction of fertilizer-crop-environment are still insufficient. Here, we designed an innovation fertilizer technology of simple, safe, and biodegradable coating with differentiated release, and then proven the effectiveness to address abovementioned challenges. Our study provides a reference for promoting the innovation, transformation and upgrade of fertilizer industry.
{"title":"Novel coating with differentiated release enhances fertilizer performance","authors":"Dongjia Li , Minghao Zhuang , Rui Liu , Weifeng Zhang , Deli Chen","doi":"10.1016/j.eti.2024.103806","DOIUrl":"10.1016/j.eti.2024.103806","url":null,"abstract":"<div><p>Innovative fertilizer technology is an effective solution to enhance food security while achieving environmental sustainability. However, current fertilizer technologies aiming to consider the interaction of fertilizer-crop-environment are still insufficient. Here, we designed an innovation fertilizer technology of simple, safe, and biodegradable coating with differentiated release, and then proven the effectiveness to address abovementioned challenges. Our study provides a reference for promoting the innovation, transformation and upgrade of fertilizer industry.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103806"},"PeriodicalIF":6.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002827/pdfft?md5=eaebf7cc4dc2ce695f0df02cfc3c9b0b&pid=1-s2.0-S2352186424002827-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.eti.2024.103820
Jiajun Zou , Ruixue Zhang , Yuran Fu , Pan Wu , Yonglin Chen , Li An , Hong Yang , Min Yu
The remediation of arsenic (As) and antimony (Sb) contaminated water is now a global research priority. The concept of "treating waste with waste" by modifying and recycling acid mine drainage sludge (AMDs) for treating As and Sb-contaminated wastewater is widely supported by scholars worldwide. In this study, a novel composite material (MnOx@AMDs) was synthesized via co-precipitating Mn oxides with AMDs. Characterization and adsorption results indicated that, after optimal Mn oxide loading (Mn2+: MnO4- = 0.075: 0.05 (mol)), MnOx@AMDs-1 exhibited a significant increase in specific surface area and surface positive potential, as well as the formation of abundant mesoporous structures and functional hydroxyl groups. The adsorption of As(V) and Sb(V) onto MnOx@AMDs-1 was best described by the Pseudo-second-order (R² = 0.96 and 0.95) kinetics and Langmuir (R² = 0.99 and 0.96) models, indicating a monolayer homogeneous chemisorption process. The maximal theoretical adsorption capacities at 25°C were 49.31 mg g−1 for As(V) and 155.12 mg g−1 for Sb(V). Post-adsorption characterization revealed that the predominant adsorption mechanisms include complexation, electrostatic attraction, and hydrogen bonding. Furthermore, MnOx@AMDs-1 sustained a removal efficiency exceeding 75 % for As(V) and Sb(V) over five consecutive adsorption-desorption cycles, while the maximum concentration of dissolved Mn (1.87 mg L−1) remained under the 2 mg L−1 threshold set by GB 18918–2002 standards. In conclusion, MnOx@AMDs-1, as a novel adsorbent with high efficiency and environmental friendliness, demonstrates significant potential for application in treating As(V) and Sb(V) contaminated wastewater.
{"title":"Recycling of Mn oxide-loaded AMD sludge composite for the removal of As(V) and Sb(V) from wastewater: Adsorption performance and mechanisms","authors":"Jiajun Zou , Ruixue Zhang , Yuran Fu , Pan Wu , Yonglin Chen , Li An , Hong Yang , Min Yu","doi":"10.1016/j.eti.2024.103820","DOIUrl":"10.1016/j.eti.2024.103820","url":null,"abstract":"<div><p>The remediation of arsenic (As) and antimony (Sb) contaminated water is now a global research priority. The concept of \"treating waste with waste\" by modifying and recycling acid mine drainage sludge (AMDs) for treating As and Sb-contaminated wastewater is widely supported by scholars worldwide. In this study, a novel composite material (MnOx@AMDs) was synthesized via co-precipitating Mn oxides with AMDs. Characterization and adsorption results indicated that, after optimal Mn oxide loading (Mn<sup>2+</sup>: MnO<sub>4</sub><sup>-</sup> = 0.075: 0.05 (mol)), MnOx@AMDs-1 exhibited a significant increase in specific surface area and surface positive potential, as well as the formation of abundant mesoporous structures and functional hydroxyl groups. The adsorption of As(V) and Sb(V) onto MnOx@AMDs-1 was best described by the Pseudo-second-order (<em>R²</em> = 0.96 and 0.95) kinetics and Langmuir (<em>R²</em> = 0.99 and 0.96) models, indicating a monolayer homogeneous chemisorption process. The maximal theoretical adsorption capacities at 25°C were 49.31 mg g<sup>−1</sup> for As(V) and 155.12 mg g<sup>−1</sup> for Sb(V). Post-adsorption characterization revealed that the predominant adsorption mechanisms include complexation, electrostatic attraction, and hydrogen bonding. Furthermore, MnOx@AMDs-1 sustained a removal efficiency exceeding 75 % for As(V) and Sb(V) over five consecutive adsorption-desorption cycles, while the maximum concentration of dissolved Mn (1.87 mg L<sup>−1</sup>) remained under the 2 mg L<sup>−1</sup> threshold set by GB 18918–2002 standards. In conclusion, MnOx@AMDs-1, as a novel adsorbent with high efficiency and environmental friendliness, demonstrates significant potential for application in treating As(V) and Sb(V) contaminated wastewater.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103820"},"PeriodicalIF":6.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002967/pdfft?md5=e9aed0a8430daf48c8880400081b0c6e&pid=1-s2.0-S2352186424002967-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wastewater from agricultural activities poses significant environmental risks and requires proper treatment before discharge. Phytoremediation using microalgae offers a compelling solution by removing contaminants and generating valuable biomass. This study aimed to optimize glucose and indole-3-acetic acid (IAA) concentrations to maximize pollutant treatment and microalgal biomass production using Chlorella sp. AARL G049 in hydroponic wastewater from lettuce cultivation without added nitrogen and phosphorus. The results showed that Chlorella sp. effectively converted pollutants in undiluted wastewater into biomass, achieving a maximum yield of 1.32 g/L (0.12 g/L/day) with 10.89 g/L of glucose and 10.15 mg/L of IAA. Pollutant removal efficiencies for chemical oxygen demand, ammonium-nitrogen, nitrate-nitrogen, and phosphate-phosphorus exceeded 92 %. An integrated zero-waste biorefinery process produced three value-added products from the microalgal biomass: functional pigments, biodiesel, and biofertilizer. The extracted pigment demonstrated significant antioxidant activity, with DPPH activity of 0.05 mg GAE/g-extract, ABTS activity of 0.31 mg TE/g-extract, and FRAP activity of 0.28 mg GAE/g-extract, as well as high-efficiency UV protection. The lipids extracted contained biodiesel-quality fatty acids with a cetane number of 54 and a high heating value of 40 KJ/kg. Additionally, the residual biomass, post-extraction, contained essential nutrients with an N-P-K ratio of 4.87–0.03–0.68 and 76 % organic matter, making it suitable for plant growth and soil fertilization. Therefore, integrating wastewater treatment with a microalgal biomass-based zero-waste biorefinery demonstrates significant potential for enhancing profitability and sustainability, promoting the sustainable development of the Food-Energy-Agriculture-Environment Nexus.
{"title":"Heterotrophic upcycling of hydroponic wastewater supplemented with glucose and indole-3-acetic acid into high-quality Chlorella biomass for zero-waste multiproduct microalgal biorefinery","authors":"Jeeraporn Pekkoh , Antira Wichaphian , Apiwit Kamngoen , Nanthakrit Sriket , May Thu Zin , Sureeporn Lomakool , Wageeporn Maneechote , Yupa Chromkaew , Wasu Pathom-aree , Benjamas Cheirsilp , Sirasit Srinuanpan","doi":"10.1016/j.eti.2024.103813","DOIUrl":"10.1016/j.eti.2024.103813","url":null,"abstract":"<div><p>Wastewater from agricultural activities poses significant environmental risks and requires proper treatment before discharge. Phytoremediation using microalgae offers a compelling solution by removing contaminants and generating valuable biomass. This study aimed to optimize glucose and indole-3-acetic acid (IAA) concentrations to maximize pollutant treatment and microalgal biomass production using <em>Chlorella</em> sp. AARL G049 in hydroponic wastewater from lettuce cultivation without added nitrogen and phosphorus. The results showed that <em>Chlorella</em> sp. effectively converted pollutants in undiluted wastewater into biomass, achieving a maximum yield of 1.32 g/L (0.12 g/L/day) with 10.89 g/L of glucose and 10.15 mg/L of IAA. Pollutant removal efficiencies for chemical oxygen demand, ammonium-nitrogen, nitrate-nitrogen, and phosphate-phosphorus exceeded 92 %. An integrated zero-waste biorefinery process produced three value-added products from the microalgal biomass: functional pigments, biodiesel, and biofertilizer. The extracted pigment demonstrated significant antioxidant activity, with DPPH activity of 0.05 mg GAE/g-extract, ABTS activity of 0.31 mg TE/g-extract, and FRAP activity of 0.28 mg GAE/g-extract, as well as high-efficiency UV protection. The lipids extracted contained biodiesel-quality fatty acids with a cetane number of 54 and a high heating value of 40 KJ/kg. Additionally, the residual biomass, post-extraction, contained essential nutrients with an N-P-K ratio of 4.87–0.03–0.68 and 76 % organic matter, making it suitable for plant growth and soil fertilization. Therefore, integrating wastewater treatment with a microalgal biomass-based zero-waste biorefinery demonstrates significant potential for enhancing profitability and sustainability, promoting the sustainable development of the Food-Energy-Agriculture-Environment Nexus.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103813"},"PeriodicalIF":6.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235218642400289X/pdfft?md5=0b96d9ce5be7566e8542886f59230bcc&pid=1-s2.0-S235218642400289X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}