Pub Date : 2024-07-04DOI: 10.1127/entomologia/2023/2277
Yan Li, Shasha Wang, Huiru Si, Sijing Wan, Guoyong Li, Yinghua Shu, Xiaoyan Dai, Ruijuan Wang, Shigui Wang, Yifan Zhai, Can Li, Bin Tang
The impact of heavy metals on agricultural ecosystems has consistently been a topic of social concern. This study investigated the translocation of lead (Pb) along the soil – Vicia faba L. (Fabales: Fabaceae) – Megoura crassicauda (Hemiptera: Aphidoidea) – Harmonia axyridis (Coleoptera: Coccinellidae) system. Lead in soil could be transferred to broad bean, and the accumulation amount was highest in roots, followed by stems and leaves. Aphids and ladybirds could also accumulate lead through the food chain. Interestingly, the lead content of broad bean roots in the aphid feeding group was significantly higher than that in the non-aphid feeding group. Lead stress significantly reduced the germination rate and seedling height of broad bean, and inhibited root elongation. The expression levels of trehalase (TRE), trehalose-6-phosphate synthase (TPS), and vitellogenin (Vg), TRE activity, and carbohydrate content in aphids changed under lead treatment. The number of offspring produced by the second and fifth generation aphids was significantly reduced under lead treatment. Furthermore, high concentrations of lead treatment can prolong the development time of the 2nd and 3rd instar larvae of the ladybird. Feeding on aphids contaminated with lead can affect the survival of ladybirds. Our results further confirm the biological transfer of lead in the food chain and explore the adaptive mechanisms of aphids and ladybirds. These relevant results provide a theoretical basis for further exploring the molecular mechanism of lead homeostasis in plants and insects under lead stress.
{"title":"Responses of aphid and ladybird to lead transfer through soil and broad beans","authors":"Yan Li, Shasha Wang, Huiru Si, Sijing Wan, Guoyong Li, Yinghua Shu, Xiaoyan Dai, Ruijuan Wang, Shigui Wang, Yifan Zhai, Can Li, Bin Tang","doi":"10.1127/entomologia/2023/2277","DOIUrl":"https://doi.org/10.1127/entomologia/2023/2277","url":null,"abstract":"The impact of heavy metals on agricultural ecosystems has consistently been a topic of social concern. This study investigated the translocation of lead (Pb) along the soil – Vicia faba L. (Fabales: Fabaceae) – Megoura crassicauda (Hemiptera: Aphidoidea) – Harmonia axyridis (Coleoptera: Coccinellidae) system. Lead in soil could be transferred to broad bean, and the accumulation amount was highest in roots, followed by stems and leaves. Aphids and ladybirds could also accumulate lead through the food chain. Interestingly, the lead content of broad bean roots in the aphid feeding group was significantly higher than that in the non-aphid feeding group. Lead stress significantly reduced the germination rate and seedling height of broad bean, and inhibited root elongation. The expression levels of trehalase (TRE), trehalose-6-phosphate synthase (TPS), and vitellogenin (Vg), TRE activity, and carbohydrate content in aphids changed under lead treatment. The number of offspring produced by the second and fifth generation aphids was significantly reduced under lead treatment. Furthermore, high concentrations of lead treatment can prolong the development time of the 2nd and 3rd instar larvae of the ladybird. Feeding on aphids contaminated with lead can affect the survival of ladybirds. Our results further confirm the biological transfer of lead in the food chain and explore the adaptive mechanisms of aphids and ladybirds. These relevant results provide a theoretical basis for further exploring the molecular mechanism of lead homeostasis in plants and insects under lead stress.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"11 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1127/entomologia/2024/2482
Qian Zhang, Qiongqiong Wang, Kris A. G. Wyckhuys, Shuangxia Jin, Yanhui Lu
Plant-herbivore interactions dominate food web links in terrestrial settings, thereby shaping ecosystem structure and functioning. Within a given plant, both primary and secondary metabolites mediate the interplay between above- and below-ground herbivores. Here, we investigate how root feeding by larvae of the turnip moth Agrotis segetum (Lepidoptera: Noctuidae) affects development and feeding behavior of an above-ground sap-feeder i.e., the large cotton aphid Acyrthosiphon gossypii (Hemiptera: Aphididae) on cotton. We further draw upon transcriptomics, metabolomics and in-vitro bioassays to elucidate how plant metabolites mediate these interactions. Root feeding reduces A. gossypii adult survival and fecundity by 35.1%. Aphids on A. segetum-infested cotton spend 7% longer probing cells than on un-infested plants. Root and stem herbivory by A. segetum larvae alters gene transcripts and metabolites in leaves, inducing biosynthesis of three flavonoids i.e., dihydromyricetin, phloridzin and dihydroquercetin. In-vitro bioassays show that the latter two compounds markedly decrease A. gossypii adult survival and fecundity. Below-ground herbivory thus elicits biosynthesis and systemic translocation of phloridzin and dihydroquercetin, with antagonistic effects on above-ground sap-feeders. Our study sheds light on the underlying mechanisms of herbivore-triggered plant defenses in cotton and reveals the interplay between herbivore guilds across ecological realms. We discuss the implications of these findings for pest management.
植物与食草动物之间的相互作用主导着陆地环境中的食物网环节,从而影响着生态系统的结构和功能。在特定植物中,初级和次级代谢物都是地上和地下食草动物相互作用的媒介。在这里,我们研究了萝卜蛾(鳞翅目:夜蛾科)幼虫的根部取食如何影响棉花上的地上取食者,即大型棉蚜 Acyrthosiphon gossypii(半翅目:蚜科)的发育和取食行为。我们进一步利用转录组学、代谢组学和体外生物测定来阐明植物代谢物如何介导这些相互作用。根部取食可使棉蚜成虫存活率和繁殖率降低 35.1%。与未受侵染的植物相比,受 A. segetum 侵染的棉花上的蚜虫探查细胞的时间延长了 7%。蚜虫幼虫对根和茎的食草行为改变了叶片中的基因转录本和代谢物,诱导了三种黄酮类化合物的生物合成,即二氢杨梅素、叶绿素和二氢槲皮素。体外生物测定表明,后两种化合物能显著降低棉铃虫成虫的存活率和繁殖力。因此,地表下的食草动物会引起 phloridzin 和二氢槲皮素的生物合成和系统转移,从而对地表上的食液动物产生拮抗作用。我们的研究揭示了棉花中食草动物触发植物防御的基本机制,并揭示了不同生态区域食草动物之间的相互作用。我们将讨论这些发现对害虫管理的影响。
{"title":"Flavonoids mediate systemic defenses induced by root feeding in cotton","authors":"Qian Zhang, Qiongqiong Wang, Kris A. G. Wyckhuys, Shuangxia Jin, Yanhui Lu","doi":"10.1127/entomologia/2024/2482","DOIUrl":"https://doi.org/10.1127/entomologia/2024/2482","url":null,"abstract":"Plant-herbivore interactions dominate food web links in terrestrial settings, thereby shaping ecosystem structure and functioning. Within a given plant, both primary and secondary metabolites mediate the interplay between above- and below-ground herbivores. Here, we investigate how root feeding by larvae of the turnip moth Agrotis segetum (Lepidoptera: Noctuidae) affects development and feeding behavior of an above-ground sap-feeder i.e., the large cotton aphid Acyrthosiphon gossypii (Hemiptera: Aphididae) on cotton. We further draw upon transcriptomics, metabolomics and in-vitro bioassays to elucidate how plant metabolites mediate these interactions. Root feeding reduces A. gossypii adult survival and fecundity by 35.1%. Aphids on A. segetum-infested cotton spend 7% longer probing cells than on un-infested plants. Root and stem herbivory by A. segetum larvae alters gene transcripts and metabolites in leaves, inducing biosynthesis of three flavonoids i.e., dihydromyricetin, phloridzin and dihydroquercetin. In-vitro bioassays show that the latter two compounds markedly decrease A. gossypii adult survival and fecundity. Below-ground herbivory thus elicits biosynthesis and systemic translocation of phloridzin and dihydroquercetin, with antagonistic effects on above-ground sap-feeders. Our study sheds light on the underlying mechanisms of herbivore-triggered plant defenses in cotton and reveals the interplay between herbivore guilds across ecological realms. We discuss the implications of these findings for pest management.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"86 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1127/entomologia/2024/2297
Ping Zhang, Yifan Li, Ting Wang, Xin Zhang, Yanlong Zhang, Hao Xu, Roman Jashenko, Zhaoke Dong, Myron P. Zalucki, Zhaozhi Lu
The invasive apple wood borer Agrilus mali Matsumura (Coleoptera: Buprestidae) threatens the viability of wild apple forests in Xinjiang, China, imperiling the preservation of apple germplasm resources in Central Eurasia. Pruning infested branches can reduce the likelihood of outbreaks of various pests and associated damage, but its efficacy and feasibility for managing A. mali has not been well-studied. Therefore, we examined the efficacy of pruning at three different times of the year in commercial orchards in 2018 and 2019. We evaluated the efficacy of pruning for longer-term sustainable management of A. mali in wild apple forests over a five-year period from 2016–2019. Autumn pruning resulted in mortality of all immature A. mali in pruned branches, increased flowering in individual trees, and a significant reduction in both pest density and tree damage on the landscape. Simulation modeling showed that a single well-timed pruning treatment could maintain low pest density for at least 6–10 years. Recurring pruning schedules may be an effective long-term management tool, suppressing A. mali populations in wild apple forests and facilitating ecosystem recovery. This practical tactic could prove instrumental in managing A. mali and sustaining ecosystem health, particularly in the face of future invasions in wild apple forests in central Eurasia.
{"title":"Pruning can recover the health of wild apple forests attacked by the wood borer Agrilus mali in central Eurasia","authors":"Ping Zhang, Yifan Li, Ting Wang, Xin Zhang, Yanlong Zhang, Hao Xu, Roman Jashenko, Zhaoke Dong, Myron P. Zalucki, Zhaozhi Lu","doi":"10.1127/entomologia/2024/2297","DOIUrl":"https://doi.org/10.1127/entomologia/2024/2297","url":null,"abstract":"The invasive apple wood borer Agrilus mali Matsumura (Coleoptera: Buprestidae) threatens the viability of wild apple forests in Xinjiang, China, imperiling the preservation of apple germplasm resources in Central Eurasia. Pruning infested branches can reduce the likelihood of outbreaks of various pests and associated damage, but its efficacy and feasibility for managing A. mali has not been well-studied. Therefore, we examined the efficacy of pruning at three different times of the year in commercial orchards in 2018 and 2019. We evaluated the efficacy of pruning for longer-term sustainable management of A. mali in wild apple forests over a five-year period from 2016–2019. Autumn pruning resulted in mortality of all immature A. mali in pruned branches, increased flowering in individual trees, and a significant reduction in both pest density and tree damage on the landscape. Simulation modeling showed that a single well-timed pruning treatment could maintain low pest density for at least 6–10 years. Recurring pruning schedules may be an effective long-term management tool, suppressing A. mali populations in wild apple forests and facilitating ecosystem recovery. This practical tactic could prove instrumental in managing A. mali and sustaining ecosystem health, particularly in the face of future invasions in wild apple forests in central Eurasia.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"7 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1127/entomologia/2024/2601
Pengxiang Wu, Megan L. Head, Juan Yang, Yanan Wang, Qiaoling Lin
Numerous studies focus on food-for-protection ant-aphid mutualism while ignoring the potential aphid’s protection for ants. To obtain a comprehensive understanding of bidirectional services in ant-aphid mutualism in goji berry, we manipulated the presence and abundance of ladybugs or mites, analyzing their impact on the ant-aphid mutualism persistence. We found that ants provided aphid protection from ladybugs and aphids provided anti-mite measures for protecting ants. For aphid protection by ants, 1) ant presence eroded the positive aphid-ladybug abundance relationship by reducing ladybug attendance. 2) Aphid-infested plants with more ants were less acceptable to ladybugs (ant-ladybug ratio above 1.75). 3) Ant presence impacted consumption traits of ladybugs, including aphid consumption (43.5% less), handling time (220.3% more), and theoretical maximum consumption (68.8% less). For ant protection by aphids, 4) aphid presence alleviated negative impacts on ants caused by mites by reducing mite abundance. 5) High-abundance mites (mite-ant ratio above 70) significantly reduced ant attendance. 6) The substantial volume of aphid honeydew had remarkable anti-mite effects by trapping mites (above 0.7 ml per leaf). Besides food-for-protection mutualism, our study indicates that anti-mite measures of aphids for protecting ants could promote the persistence of ant-aphid mutualism. Both protections were density-dependent, suggesting in practical applications of ladybugs, inundative biological control based on density advantage could be a promising option for rapid impact on aphids. Effective control strategies should focus on reducing the aphid abundance below the economic threshold rather than attempting eradication, allowing aphids to naturally suppress mite populations. This could effectively reduce the dosage of pesticide products.
{"title":"Anti-mite measures of aphids for protecting ants promote persistence of ant-aphid mutualism","authors":"Pengxiang Wu, Megan L. Head, Juan Yang, Yanan Wang, Qiaoling Lin","doi":"10.1127/entomologia/2024/2601","DOIUrl":"https://doi.org/10.1127/entomologia/2024/2601","url":null,"abstract":"Numerous studies focus on food-for-protection ant-aphid mutualism while ignoring the potential aphid’s protection for ants. To obtain a comprehensive understanding of bidirectional services in ant-aphid mutualism in goji berry, we manipulated the presence and abundance of ladybugs or mites, analyzing their impact on the ant-aphid mutualism persistence. We found that ants provided aphid protection from ladybugs and aphids provided anti-mite measures for protecting ants. For aphid protection by ants, 1) ant presence eroded the positive aphid-ladybug abundance relationship by reducing ladybug attendance. 2) Aphid-infested plants with more ants were less acceptable to ladybugs (ant-ladybug ratio above 1.75). 3) Ant presence impacted consumption traits of ladybugs, including aphid consumption (43.5% less), handling time (220.3% more), and theoretical maximum consumption (68.8% less). For ant protection by aphids, 4) aphid presence alleviated negative impacts on ants caused by mites by reducing mite abundance. 5) High-abundance mites (mite-ant ratio above 70) significantly reduced ant attendance. 6) The substantial volume of aphid honeydew had remarkable anti-mite effects by trapping mites (above 0.7 ml per leaf). Besides food-for-protection mutualism, our study indicates that anti-mite measures of aphids for protecting ants could promote the persistence of ant-aphid mutualism. Both protections were density-dependent, suggesting in practical applications of ladybugs, inundative biological control based on density advantage could be a promising option for rapid impact on aphids. Effective control strategies should focus on reducing the aphid abundance below the economic threshold rather than attempting eradication, allowing aphids to naturally suppress mite populations. This could effectively reduce the dosage of pesticide products.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"35 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract: Trichogramma, a genus of egg parasitoid wasps, are widely used as biological control agents and serve as model organisms in parasitoid research. Despite their significance, the understanding of RNA interference (RNAi) in Trichogramma remains very limited. We identified RNAi-associated genes by bioinformatic approaches and experimentally assessed the feasibility of gene knockdown via RNAi for gene functional studies, as well as the susceptibility of T. dendrolimi to envionmental RNAi (dsRNAs targeting 12 genes ). We found that Trichogramma genomes contain a complete set of genes in the RNAi pathway and exhibit extensive gene expansion of dsRNase, which may influence RNAi efficiency by degrading dsRNA. We demonstrated successful RNAi through pupal microinjection in T. dendrolimi Matsumura, providing a technical approach for future gene functional studies. In addition, we observed no evidence of susceptibility to environmental RNAi in either T. dendrolimi adults or larvae. This low environmental RNAi sensitivity in Trichogramma could suggest a reduced risk of RNAi-based pest management strategies affecting nontarget Trichogramma populations. Overall, this study presents a technical approach for conducting gene functional studies in Trichogramma and provides a foundation for evaluating the nontarget effects of RNAi-based pest control strategies on Trichogramma.
{"title":"Assessing RNAi feasibility and susceptibility to environmental RNAi in Trichogramma dendrolimi","authors":"Zhi-chao Yan, Fang-yi Li, Ao-kai Wang, Cheng-xing Wang, Hai-yan Wang, Ze-qi Yu, Ke-peng Wang, Yi-han Wang, Yuan-yuan Luo, Yuan-xi Li","doi":"10.1127/entomologia/2023/2210","DOIUrl":"https://doi.org/10.1127/entomologia/2023/2210","url":null,"abstract":"Abstract: Trichogramma, a genus of egg parasitoid wasps, are widely used as biological control agents and serve as model organisms in parasitoid research. Despite their significance, the understanding of RNA interference (RNAi) in Trichogramma remains very limited. We identified RNAi-associated genes by bioinformatic approaches and experimentally assessed the feasibility of gene knockdown via RNAi for gene functional studies, as well as the susceptibility of T. dendrolimi to envionmental RNAi (dsRNAs targeting 12 genes ). We found that Trichogramma genomes contain a complete set of genes in the RNAi pathway and exhibit extensive gene expansion of dsRNase, which may influence RNAi efficiency by degrading dsRNA. We demonstrated successful RNAi through pupal microinjection in T. dendrolimi Matsumura, providing a technical approach for future gene functional studies. In addition, we observed no evidence of susceptibility to environmental RNAi in either T. dendrolimi adults or larvae. This low environmental RNAi sensitivity in Trichogramma could suggest a reduced risk of RNAi-based pest management strategies affecting nontarget Trichogramma populations. Overall, this study presents a technical approach for conducting gene functional studies in Trichogramma and provides a foundation for evaluating the nontarget effects of RNAi-based pest control strategies on Trichogramma.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"27 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1127/entomologia/2024/2458
Meng-Ke Zhang, Fei-Feng Wang, Peng Qin, Jie Chen, Yuan-Yuan Huang, Lin Yu, Jian-Yu Meng, Wen Sang
RNA interference (RNAi) is a pivotal strategy in gene functional analysis and pest management. However, the efficacy of RNAi varies significantly across different insect species, particularly exhibiting limited effectiveness in Lepidopteran insects. Therefore, it is imperative to develop innovative delivery strategies of dsRNA to enhance efficient gene silencing in these insects. In this study, we utilized the globally distributed polyphagous Lepidopteran insect pest Helicoverpa armigera as our research model due to its substantial implications for agriculture and limited success with RNAi-based approaches. Through the utilization of RNAi technique, HaLCP17 was identified as a larval cuticle protein gene with the highest lethality among 61 potential lethal target genes of H. armigera. Additionally, silencing HaLCP17 during the larval stage resulted in a maximum decrease of 2.66-fold in expression, accompanied by a mortality rate of 23.33% after 10 days. The larvae in the treatment group exhibited significant reductions in size and epidermal relaxation, leading to maximum decrease of 28.89% and 53.57% in feeding amount and larval weight respectively. Notably, the introduction of Imidazole-Modified Graphene Quantum Dots (IGQDs), a novel type of quantum dot nanoparticles, into the insect RNAi system demonstrated proficient delivery capability for dsRNA and potentiated gene silencing efficiency. Compared with naked dsRNA treatment, the injection of IGQDs-dsHaLCP17 complex reduced the expression of HaLCP17 by 1.66-fold, on the 10th day after treatment the mortality rate increased by 92.88%, and the eclosion rate decreased by 31.42%. These findings hold great potential for future control and analysis of gene function in Lepidopteran insects.
{"title":"Imidazole-modified graphene quantum dots can effectively promote the efficient silencing of the larval cuticle protein gene HaLCP17 in Helicoverpa armigera","authors":"Meng-Ke Zhang, Fei-Feng Wang, Peng Qin, Jie Chen, Yuan-Yuan Huang, Lin Yu, Jian-Yu Meng, Wen Sang","doi":"10.1127/entomologia/2024/2458","DOIUrl":"https://doi.org/10.1127/entomologia/2024/2458","url":null,"abstract":"RNA interference (RNAi) is a pivotal strategy in gene functional analysis and pest management. However, the efficacy of RNAi varies significantly across different insect species, particularly exhibiting limited effectiveness in Lepidopteran insects. Therefore, it is imperative to develop innovative delivery strategies of dsRNA to enhance efficient gene silencing in these insects. In this study, we utilized the globally distributed polyphagous Lepidopteran insect pest Helicoverpa armigera as our research model due to its substantial implications for agriculture and limited success with RNAi-based approaches. Through the utilization of RNAi technique, HaLCP17 was identified as a larval cuticle protein gene with the highest lethality among 61 potential lethal target genes of H. armigera. Additionally, silencing HaLCP17 during the larval stage resulted in a maximum decrease of 2.66-fold in expression, accompanied by a mortality rate of 23.33% after 10 days. The larvae in the treatment group exhibited significant reductions in size and epidermal relaxation, leading to maximum decrease of 28.89% and 53.57% in feeding amount and larval weight respectively. Notably, the introduction of Imidazole-Modified Graphene Quantum Dots (IGQDs), a novel type of quantum dot nanoparticles, into the insect RNAi system demonstrated proficient delivery capability for dsRNA and potentiated gene silencing efficiency. Compared with naked dsRNA treatment, the injection of IGQDs-dsHaLCP17 complex reduced the expression of HaLCP17 by 1.66-fold, on the 10th day after treatment the mortality rate increased by 92.88%, and the eclosion rate decreased by 31.42%. These findings hold great potential for future control and analysis of gene function in Lepidopteran insects.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"17 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The interaction between thermal stress and chemical insecticides in agricultural pests has become more common owing to the global warming and human activities. Although research has shown the interaction of constant temperature or single thermal stress with insecticides, the ecological effects of sublethal thermal stress and low-dose insecticide interaction, which are more applicate to field conditions, are limited. Therefore, this study investigates the interaction of sublethal thermal stress (TS) (34 °C/180 min, 36 °C/30 min, and 38 °C/10 min) and low-dose imidacloprid (IM) applications in the maternal and offspring phenotype of the important grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). In the F0 generation, single TS significantly reduced the longevity, fecundity, survivorship, and population parameters of S. avenae, and the interaction between TS and IM (TS-IM) had a significant negative effect on the intrinsic rate of increase in the order 34 °C/180 min + IM > 36 °C/30 min + IM > 38 °C/10 min + IM. In the F1 generation, the development duration of nymph was increased and the intrinsic rate of increase was reduced after F0 underwent TS. However, the intrinsic rate of increase of F1 generation showed the greatest decrease under 38 °C/10 min + IM, and the lowest decrease under 34 °C/180 min + IM. The results of this study reveal the significance of evaluating together different abiotic factors, such as the interaction between thermal stress and insecticides, in the risk assessment of climate change, emphasizing the importance of the combination of different stresses in pest control.
由于全球变暖和人类活动,农业害虫的热胁迫与化学杀虫剂之间的相互作用变得越来越普遍。虽然研究表明恒温或单一热胁迫与杀虫剂之间存在相互作用,但更适用于田间条件的亚致死热胁迫和低剂量杀虫剂相互作用的生态效应却很有限。因此,本研究探讨了亚致死热胁迫(TS)(34 °C/180分钟、36 °C/30分钟和38 °C/10分钟)和低剂量吡虫啉(IM)对重要谷粒蚜虫Sitobion avenae (Fabricius) (半翅目:蚜科)母本和子代表型的交互作用。在F0代中,单一TS显著降低了S. avenae的寿命、繁殖力、存活率和种群参数,TS与IM的交互作用(TS-IM)对其内在增长率有显著的负面影响,依次为34 °C/180 min + IM > 36 °C/30 min + IM > 38 °C/10 min + IM。在 F1 代中,F0 经过 TS 后,若虫的发育时间延长,内在增长率降低。然而,F1 代的内在增长率在 38 °C/10 min + IM 条件下下降幅度最大,在 34 °C/180 min + IM 条件下下降幅度最小。该研究结果揭示了在气候变化风险评估中综合评估不同非生物因素(如热胁迫与杀虫剂之间的相互作用)的意义,强调了在害虫控制中综合使用不同胁迫的重要性。
{"title":"Multigenerational responses of wheat aphids to multiple stresses: interactions between sublethal thermal stress types and a low insecticide dose","authors":"Kun Xing, Ze-Fang Mo, Zhi-Ping Xu, Jia-jia Wei, Hui Cheng, Fei Zhao","doi":"10.1127/entomologia/2023/2300","DOIUrl":"https://doi.org/10.1127/entomologia/2023/2300","url":null,"abstract":"The interaction between thermal stress and chemical insecticides in agricultural pests has become more common owing to the global warming and human activities. Although research has shown the interaction of constant temperature or single thermal stress with insecticides, the ecological effects of sublethal thermal stress and low-dose insecticide interaction, which are more applicate to field conditions, are limited. Therefore, this study investigates the interaction of sublethal thermal stress (TS) (34 °C/180 min, 36 °C/30 min, and 38 °C/10 min) and low-dose imidacloprid (IM) applications in the maternal and offspring phenotype of the important grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). In the F0 generation, single TS significantly reduced the longevity, fecundity, survivorship, and population parameters of S. avenae, and the interaction between TS and IM (TS-IM) had a significant negative effect on the intrinsic rate of increase in the order 34 °C/180 min + IM > 36 °C/30 min + IM > 38 °C/10 min + IM. In the F1 generation, the development duration of nymph was increased and the intrinsic rate of increase was reduced after F0 underwent TS. However, the intrinsic rate of increase of F1 generation showed the greatest decrease under 38 °C/10 min + IM, and the lowest decrease under 34 °C/180 min + IM. The results of this study reveal the significance of evaluating together different abiotic factors, such as the interaction between thermal stress and insecticides, in the risk assessment of climate change, emphasizing the importance of the combination of different stresses in pest control.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"75 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1127/entomologia/2024/2365
Linhong Li, Dandan Shi, Juncheng Yan, Bin Zhu, Pei Liang
Lepidopteran pests cause enormous economic losses to agriculture globally. The control of these pests relies heavily on chemical insecticides, resulting in severe insecticide resistance and food safety concerns. Therefore, there is an urgent need to develop alternative green strategies. Our previous research revealed that the miRNA of the diamondback moth Plutella xylostella, pxy-miR-34-5p, may be a novel molecular target for multiple lepidopteran pests. However, the application strategy for pxy-miR-34-5p is not yet clear. In this study, pxy-mir-34 was successfully expressed in Escherichia coli to produce artificial miR-34 (amiR-34) on a large scale. Treatment with amiR-34 significantly repressed the expression of the ecdysone receptor (EcR) and 12 other key genes involved in the growth and development of P. xylostella. Feeding bioassays showed that amiR-34 was highly toxic to multiple lepidopteran pests, and pot experiments demonstrated that spraying with amiR-34 led to larval mortalities of 81.7%, 89.3%, and 90.8% for P. xylostella, Spodoptera frugiperda, and Spodoptera exigua, respectively, with a persistence of up to five d. These results indicate that amiR-34 has great potential for controlling multiple lepidopterous pests and they lay an important foundation for developing miRNA-based green pest control strategies.
{"title":"In-vitro-expressed pxy-mir-34 shows high toxicity to multiple lepidopteran pests","authors":"Linhong Li, Dandan Shi, Juncheng Yan, Bin Zhu, Pei Liang","doi":"10.1127/entomologia/2024/2365","DOIUrl":"https://doi.org/10.1127/entomologia/2024/2365","url":null,"abstract":"Lepidopteran pests cause enormous economic losses to agriculture globally. The control of these pests relies heavily on chemical insecticides, resulting in severe insecticide resistance and food safety concerns. Therefore, there is an urgent need to develop alternative green strategies. Our previous research revealed that the miRNA of the diamondback moth Plutella xylostella, pxy-miR-34-5p, may be a novel molecular target for multiple lepidopteran pests. However, the application strategy for pxy-miR-34-5p is not yet clear. In this study, pxy-mir-34 was successfully expressed in Escherichia coli to produce artificial miR-34 (amiR-34) on a large scale. Treatment with amiR-34 significantly repressed the expression of the ecdysone receptor (EcR) and 12 other key genes involved in the growth and development of P. xylostella. Feeding bioassays showed that amiR-34 was highly toxic to multiple lepidopteran pests, and pot experiments demonstrated that spraying with amiR-34 led to larval mortalities of 81.7%, 89.3%, and 90.8% for P. xylostella, Spodoptera frugiperda, and Spodoptera exigua, respectively, with a persistence of up to five d. These results indicate that amiR-34 has great potential for controlling multiple lepidopterous pests and they lay an important foundation for developing miRNA-based green pest control strategies.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"184 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing use of reduced-risk insecticides in orchard management has raised concerns regarding their potential risk to beneficial arthropods. Depending solely on acute short-term effects tends to underestimate the risks posed by spinetoram to natural enemies. Limited information is available on the long-term consequences of low exposure to spinetoram on natural enemies. The survival and predation of Orius strigicollis gradually decreased with the increase in spinetoram exposure rate, and the preoviposition periods were prolonged above 0.208 g a.i. ha-1. However, the adult lifespan, reproductive rate, population parameters, intrinsic rate of increase, finite rate of increase, and net reproductive rate were reduced, while the transformation rate was increased with the increase in spinetoram exposure rate. The population size and predation potential of O. strigicollis at 0.104 g a.i. ha-1 were higher than other treatments but did not differ from those of the control. Field residue monitoring showed that the peak residue levels of spinetoram on Eriobotrya japonica and Bidens alba flowers were 0.525–0.589 g ha-1 and 0.139–0.148 g ha-1, respectively, and it required at least 28 and 9 days, respectively, for the residue levels to dissipate to a level with no toxic effect on O. strigicollis. Therefore, the sublethal effects resulting from trace residues is the primary factor responsible for O. strigicollis population collapse. We provide insights for mitigating the negative impacts of spinetoram on O. strigicollis and for integrated pest management development.
果园管理中越来越多地使用低风险杀虫剂,这引起了人们对其对有益节肢动物潜在风险的关注。仅仅依靠急性短期影响往往会低估斯派诺林对天敌造成的风险。有关天敌长期接触斯派诺林的有限信息。随着斯皮内酯暴露量的增加,褐飞虱的存活率和捕食率逐渐下降,在 0.208 g a.i. ha-1 以上的暴露量下,褐飞虱的预伏期延长。然而,成虫寿命、繁殖率、种群参数、内在增长率、有限增长率和净生殖率均有所下降,而转化率则随着斯皮内酯暴露率的增加而上升。在 0.104 g a.i. ha-1 的条件下,O. strigicollis 的种群数量和捕食潜力高于其他处理,但与对照没有差异。田间残留监测表明,辛硫磷在枇杷和白花蛇舌草上的残留峰值分别为 0.525-0.589 g ha-1 和 0.139-0.148 g ha-1,分别至少需要 28 天和 9 天才能消散到对蛇舌草无毒性影响的水平。因此,痕量残留物造成的亚致死效应是导致稻飞虱种群崩溃的主要因素。我们的研究为减轻辛硫磷对稻田蛙的负面影响以及虫害综合防治的发展提供了启示。
{"title":"Spinetoram exposure disrupts survival of flower bugs and leads to population collapse in orchards","authors":"Tao Lin, Yong Chen, Yixin Chen, Jinfeng Hu, Shuo Lin, Jianwei Zhao, Guang Yang, Fenghua Yang, Hui Wei","doi":"10.1127/entomologia/2023/2350","DOIUrl":"https://doi.org/10.1127/entomologia/2023/2350","url":null,"abstract":"The increasing use of reduced-risk insecticides in orchard management has raised concerns regarding their potential risk to beneficial arthropods. Depending solely on acute short-term effects tends to underestimate the risks posed by spinetoram to natural enemies. Limited information is available on the long-term consequences of low exposure to spinetoram on natural enemies. The survival and predation of Orius strigicollis gradually decreased with the increase in spinetoram exposure rate, and the preoviposition periods were prolonged above 0.208 g a.i. ha-1. However, the adult lifespan, reproductive rate, population parameters, intrinsic rate of increase, finite rate of increase, and net reproductive rate were reduced, while the transformation rate was increased with the increase in spinetoram exposure rate. The population size and predation potential of O. strigicollis at 0.104 g a.i. ha-1 were higher than other treatments but did not differ from those of the control. Field residue monitoring showed that the peak residue levels of spinetoram on Eriobotrya japonica and Bidens alba flowers were 0.525–0.589 g ha-1 and 0.139–0.148 g ha-1, respectively, and it required at least 28 and 9 days, respectively, for the residue levels to dissipate to a level with no toxic effect on O. strigicollis. Therefore, the sublethal effects resulting from trace residues is the primary factor responsible for O. strigicollis population collapse. We provide insights for mitigating the negative impacts of spinetoram on O. strigicollis and for integrated pest management development.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"31 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1127/entomologia/2024/2282
Radek Michalko, Klaus Birkhofer, Michael Traugott, Mattias Jonsson
The niche variation hypothesis states that the population niche width expands with increasing interindividual differences in prey utilization (i.e., individual dietary specialization). The main ecological drivers forming this relationship include a) ecological opportunity, b) food limitation and exploitative competition, and c) intraguild interference. Only a limited number of empirical studies have tested the impact of these drivers on the niche variation–width relationship and focused only on vertebrates. Using molecular gut content analysis, we investigated how prey diversity (proxy for ecological opportunity), prey abundance (proxy for exploitative competition / food-limitation), and activity density of guild members (proxy for intraguild interference) affect the short-term individual dietary specialization and consequently the population niche width in local communities of 13 species of predatory beetles and spiders. The study took place in 10 spring barley fields in Sweden in 2011. We found that the niche variation and consequently the average population niche width of the species in the predator community decreased with prey abundance but increased with activity density of guild members. The results indicate that intraguild interference and exploitative competition / food limitation increased dietary variation. The increased diet variation led to the observed population diet expansion. Our results support the niche variation hypothesis and, in contrast to the traditional view, show that negative intraguild interactions may act as a diversifying force.
{"title":"Negative intraguild interactions drive niche variation in arthropod predators","authors":"Radek Michalko, Klaus Birkhofer, Michael Traugott, Mattias Jonsson","doi":"10.1127/entomologia/2024/2282","DOIUrl":"https://doi.org/10.1127/entomologia/2024/2282","url":null,"abstract":"The niche variation hypothesis states that the population niche width expands with increasing interindividual differences in prey utilization (i.e., individual dietary specialization). The main ecological drivers forming this relationship include a) ecological opportunity, b) food limitation and exploitative competition, and c) intraguild interference. Only a limited number of empirical studies have tested the impact of these drivers on the niche variation–width relationship and focused only on vertebrates. Using molecular gut content analysis, we investigated how prey diversity (proxy for ecological opportunity), prey abundance (proxy for exploitative competition / food-limitation), and activity density of guild members (proxy for intraguild interference) affect the short-term individual dietary specialization and consequently the population niche width in local communities of 13 species of predatory beetles and spiders. The study took place in 10 spring barley fields in Sweden in 2011. We found that the niche variation and consequently the average population niche width of the species in the predator community decreased with prey abundance but increased with activity density of guild members. The results indicate that intraguild interference and exploitative competition / food limitation increased dietary variation. The increased diet variation led to the observed population diet expansion. Our results support the niche variation hypothesis and, in contrast to the traditional view, show that negative intraguild interactions may act as a diversifying force.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":"36 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}