Pub Date : 2021-12-29DOI: 10.3390/engproc2021012046
Syed Umar Rasheed, Wasif Muhammad, Irfan Qaiser, M. J. Irshad
Invertebrates are abundant in horticulture and farming environments, and can be detrimental. Early pest detection for an integrated pest-management system with an integration of physical, biological, and prophylactic methods has huge potential for the better yield of crops. Computer vision techniques with multispectral images are used to detect and classify pests in dynamic environmental conditions, such as sunlight variations, partial occlusions, low contrast, etc. Various state-of-art, deep learning approaches have been proposed, but there are some major limitations to these methods. For example, labelled images are required to supervise the training of deep networks, which is tiresome work. Secondly, a huge in-situ database with variant environmental conditions is not available for deep learning, or is difficult to build for fretful bioaggressors. In this paper, we propose a machine-vision-based multispectral pest-detection algorithm, which does not require any kind of supervised network training. Multispectral images are used as input for the proposed pest-detection algorithm, and each image provides comprehensive information about different textural and morphological features, and visible information, i.e., size, shape, orientation, color, and wing patterns for each insect. Feature identification is performed by a SURF algorithm, and feature extraction is accomplished by least median of square regression (LMEDS). Feature fusion of RGB and NIR images onto the coordinates of Ultraviolet (UV) is performed after affine transformation. The mean identification errors of type I, II, and total mean error surpass the mean errors of the state-of-art methods. The type I, II, and total mean errors, with 6.672% UV weights, were emanated to 1.62, 40.27, and 3.26, respectively.
{"title":"A Multispectral Pest-Detection Algorithm for Precision Agriculture","authors":"Syed Umar Rasheed, Wasif Muhammad, Irfan Qaiser, M. J. Irshad","doi":"10.3390/engproc2021012046","DOIUrl":"https://doi.org/10.3390/engproc2021012046","url":null,"abstract":"Invertebrates are abundant in horticulture and farming environments, and can be detrimental. Early pest detection for an integrated pest-management system with an integration of physical, biological, and prophylactic methods has huge potential for the better yield of crops. Computer vision techniques with multispectral images are used to detect and classify pests in dynamic environmental conditions, such as sunlight variations, partial occlusions, low contrast, etc. Various state-of-art, deep learning approaches have been proposed, but there are some major limitations to these methods. For example, labelled images are required to supervise the training of deep networks, which is tiresome work. Secondly, a huge in-situ database with variant environmental conditions is not available for deep learning, or is difficult to build for fretful bioaggressors. In this paper, we propose a machine-vision-based multispectral pest-detection algorithm, which does not require any kind of supervised network training. Multispectral images are used as input for the proposed pest-detection algorithm, and each image provides comprehensive information about different textural and morphological features, and visible information, i.e., size, shape, orientation, color, and wing patterns for each insect. Feature identification is performed by a SURF algorithm, and feature extraction is accomplished by least median of square regression (LMEDS). Feature fusion of RGB and NIR images onto the coordinates of Ultraviolet (UV) is performed after affine transformation. The mean identification errors of type I, II, and total mean error surpass the mean errors of the state-of-art methods. The type I, II, and total mean errors, with 6.672% UV weights, were emanated to 1.62, 40.27, and 3.26, respectively.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74083276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.3390/engproc2021012059
Khwaja Humble Hassan, S. Butt
An ever increasing use of digital video applications such as video telephony, broadcast and the storage of high and ultra-high definition videos has steered the development of video coding standards. The state of the art video coding standard is High Efficiency Video Coding (HEVC) or otherwise known as H.265. It promises to be 50 percent more efficient than the previous video coding standard H.264. Ultimately, H.265 provides significant improvement in compression at the expense of computational complexity. HEVC encoder is very complex and 50 percent of the encoding consists of Motion Estimation (ME). It uses a Test Zone (TZ) fast search algorithm for its motion estimation, which compares a block of pixels with a few selected blocks in the search region of a referenced frame. However, the encoding time is not suitable to meet the needs of real time video applications. So, there is a requirement to improve the search algorithm and to provide comparable results to TZ search to save a substantial amount of time. In our paper, we aim to study the effects of a meta-heuristic algorithm on motion estimation. One such suitable algorithm for this task is the Firefly Algorithm (FA). FA is inspired by the social behavior of fireflies and is generally used to solve optimization problems. Our results show that implementing FA for ME saves a considerable amount of time with a comparable encoding efficiency.
{"title":"Motion Estimation in HEVC/H.265: Metaheuristic Approach to Improve the Efficiency","authors":"Khwaja Humble Hassan, S. Butt","doi":"10.3390/engproc2021012059","DOIUrl":"https://doi.org/10.3390/engproc2021012059","url":null,"abstract":"An ever increasing use of digital video applications such as video telephony, broadcast and the storage of high and ultra-high definition videos has steered the development of video coding standards. The state of the art video coding standard is High Efficiency Video Coding (HEVC) or otherwise known as H.265. It promises to be 50 percent more efficient than the previous video coding standard H.264. Ultimately, H.265 provides significant improvement in compression at the expense of computational complexity. HEVC encoder is very complex and 50 percent of the encoding consists of Motion Estimation (ME). It uses a Test Zone (TZ) fast search algorithm for its motion estimation, which compares a block of pixels with a few selected blocks in the search region of a referenced frame. However, the encoding time is not suitable to meet the needs of real time video applications. So, there is a requirement to improve the search algorithm and to provide comparable results to TZ search to save a substantial amount of time. In our paper, we aim to study the effects of a meta-heuristic algorithm on motion estimation. One such suitable algorithm for this task is the Firefly Algorithm (FA). FA is inspired by the social behavior of fireflies and is generally used to solve optimization problems. Our results show that implementing FA for ME saves a considerable amount of time with a comparable encoding efficiency.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73743958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.3390/engproc2021012049
Abira Kanwal, Zunaira Anjum, Wasif Muhammad
A simultaneous localization and mapping (SLAM) algorithm allows a mobile robot or a driverless car to determine its location in an unknown and dynamic environment where it is placed, and simultaneously allows it to build a consistent map of that environment. Driverless cars are becoming an emerging reality from science fiction, but there is still too much required for the development of technological breakthroughs for their control, guidance, safety, and health related issues. One existing problem which is required to be addressed is SLAM of driverless car in GPS denied-areas, i.e., congested urban areas with large buildings where GPS signals are weak as a result of congested infrastructure. Due to poor reception of GPS signals in these areas, there is an immense need to localize and route driverless car using onboard sensory modalities, e.g., LIDAR, RADAR, etc., without being dependent on GPS information for its navigation and control. The driverless car SLAM using LIDAR and RADAR involves costly sensors, which appears to be a limitation of this approach. To overcome these limitations, in this article we propose a visual information-based SLAM (vSLAM) algorithm for GPS-denied areas using a cheap video camera. As a front-end process, features-based monocular visual odometry (VO) on grayscale input image frames is performed. Random Sample Consensus (RANSAC) refinement and global pose estimation is performed as a back-end process. The results obtained from the proposed approach demonstrate 95% accuracy with a maximum mean error of 4.98.
{"title":"Visual Simultaneous Localization and Mapping (vSLAM) of Driverless Car in GPS-Denied Areas","authors":"Abira Kanwal, Zunaira Anjum, Wasif Muhammad","doi":"10.3390/engproc2021012049","DOIUrl":"https://doi.org/10.3390/engproc2021012049","url":null,"abstract":"A simultaneous localization and mapping (SLAM) algorithm allows a mobile robot or a driverless car to determine its location in an unknown and dynamic environment where it is placed, and simultaneously allows it to build a consistent map of that environment. Driverless cars are becoming an emerging reality from science fiction, but there is still too much required for the development of technological breakthroughs for their control, guidance, safety, and health related issues. One existing problem which is required to be addressed is SLAM of driverless car in GPS denied-areas, i.e., congested urban areas with large buildings where GPS signals are weak as a result of congested infrastructure. Due to poor reception of GPS signals in these areas, there is an immense need to localize and route driverless car using onboard sensory modalities, e.g., LIDAR, RADAR, etc., without being dependent on GPS information for its navigation and control. The driverless car SLAM using LIDAR and RADAR involves costly sensors, which appears to be a limitation of this approach. To overcome these limitations, in this article we propose a visual information-based SLAM (vSLAM) algorithm for GPS-denied areas using a cheap video camera. As a front-end process, features-based monocular visual odometry (VO) on grayscale input image frames is performed. Random Sample Consensus (RANSAC) refinement and global pose estimation is performed as a back-end process. The results obtained from the proposed approach demonstrate 95% accuracy with a maximum mean error of 4.98.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83787986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.3390/engproc2021013006
Donald C. Jackson, T. Rindfleisch, J. Alonso
The Metroplex Overflight Noise Analysis (MONA) project seeks to measure, analyze, and archive the ground noise generated by aircraft overflights and to provide accurate and actionable data for a variety of different purposes. On the one hand, experimental datasets collected and processed by the MONA system can serve as an openly-available database for validation and verification (V&V) of improved noise prediction methods. On the other, study conclusions derived from both the experimental and computational data can serve to inform technical discussions and options involving aircraft noise, aircraft routes, and the potential impacts of the FAA’s NextGen procedure changes on overflown communities at varying distances from the airport. Given the complex interdependencies between the noise levels perceived on the ground and the air-traffic patterns that generate the aircraft noise, a secondary goal of the MONA project is to share, through compelling visualizations, key results with broad communities of stakeholders to help generate a common understanding and reach better decisions more quickly. In this paper, we focus on the description of the MONA system architecture, its design, and its current set of capabilities. Subsequent publications will focus on the results we are obtaining though the use of the MONA system.
{"title":"A System for Measurement and Analysis of Aircraft Noise Impacts","authors":"Donald C. Jackson, T. Rindfleisch, J. Alonso","doi":"10.3390/engproc2021013006","DOIUrl":"https://doi.org/10.3390/engproc2021013006","url":null,"abstract":"The Metroplex Overflight Noise Analysis (MONA) project seeks to measure, analyze, and archive the ground noise generated by aircraft overflights and to provide accurate and actionable data for a variety of different purposes. On the one hand, experimental datasets collected and processed by the MONA system can serve as an openly-available database for validation and verification (V&V) of improved noise prediction methods. On the other, study conclusions derived from both the experimental and computational data can serve to inform technical discussions and options involving aircraft noise, aircraft routes, and the potential impacts of the FAA’s NextGen procedure changes on overflown communities at varying distances from the airport. Given the complex interdependencies between the noise levels perceived on the ground and the air-traffic patterns that generate the aircraft noise, a secondary goal of the MONA project is to share, through compelling visualizations, key results with broad communities of stakeholders to help generate a common understanding and reach better decisions more quickly. In this paper, we focus on the description of the MONA system architecture, its design, and its current set of capabilities. Subsequent publications will focus on the results we are obtaining though the use of the MONA system.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89962142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.3390/engproc2021012051
S. Rasool, K. Muttaqi, D. Sutanto
Ocean wave energy is an abundant and clean source of energy; however, its potential is largely untapped. Although the concept of energy harvesting from ocean waves is antiquated, the advances in wave energy conversion technologies are embryonic. In many major studies related to wave-to-wire technologies, ocean waves are considered to be regular waves with a fixed amplitude and frequency. However, the actual ocean waves are the sum of multiple frequencies that exhibit a particular sea state with a significant wave height and peak period. Therefore, in this paper, detailed modelling of the ocean waves is presented and different wave spectra are analyzed. The wave spectra will eventually be used for the generation of wave elevation time series. Those time series can be used for the wave-to-wire model-based studies for improved investigations into wave energy conversion mechanisms, mimicking the real ocean conditions.
{"title":"Modelling Ocean Waves and an Investigation of Ocean Wave Spectra for the Wave-to-Wire Model of Energy Harvesting","authors":"S. Rasool, K. Muttaqi, D. Sutanto","doi":"10.3390/engproc2021012051","DOIUrl":"https://doi.org/10.3390/engproc2021012051","url":null,"abstract":"Ocean wave energy is an abundant and clean source of energy; however, its potential is largely untapped. Although the concept of energy harvesting from ocean waves is antiquated, the advances in wave energy conversion technologies are embryonic. In many major studies related to wave-to-wire technologies, ocean waves are considered to be regular waves with a fixed amplitude and frequency. However, the actual ocean waves are the sum of multiple frequencies that exhibit a particular sea state with a significant wave height and peak period. Therefore, in this paper, detailed modelling of the ocean waves is presented and different wave spectra are analyzed. The wave spectra will eventually be used for the generation of wave elevation time series. Those time series can be used for the wave-to-wire model-based studies for improved investigations into wave energy conversion mechanisms, mimicking the real ocean conditions.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87415208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.3390/engproc2021012050
M. Tariq, Asif Siddiq, Hafsa Irshad, Muhammad Aman, Muhammad Shahbaz Khan
The unavailability of safe drinking water leads to poor conditions related to mental and physical health. To quantify the quality of water, laboratories testing the water are present in major cities which assess the basic quality parameters of drinking water, e.g., total dissolved salts (TDS), ion concentration (conductivity), turbidity, and pH value as recommended by the World Health Organization (WHO). The unavailability of such testing laboratories at remote locations makes the testing of the drinking water difficult. Establishing such laboratories is a tedious job as it requires a lot of costly equipment and specially trained personnel to operate them, making them difficult to handle. To address these issues, a water quality monitoring system for remote areas was designed which is capable of measuring basic measurable qualities of salt concentration, ion concentration, turbidity, and pH value. With the utilization of such a system, the user can qualify the water present in the vicinity as safe or unsafe for drinking purposes. The results from the proposed system are evaluated based on standard testing results and it is found that our water quality monitoring system is in agreement with the standard lab results with an average error of 2.9%, 1.4%, 1.2%, and 1.2% for pH, turbidity, conductivity, and TDS, respectively.
{"title":"An Open Source Water Quality Measurement System for Remote Areas","authors":"M. Tariq, Asif Siddiq, Hafsa Irshad, Muhammad Aman, Muhammad Shahbaz Khan","doi":"10.3390/engproc2021012050","DOIUrl":"https://doi.org/10.3390/engproc2021012050","url":null,"abstract":"The unavailability of safe drinking water leads to poor conditions related to mental and physical health. To quantify the quality of water, laboratories testing the water are present in major cities which assess the basic quality parameters of drinking water, e.g., total dissolved salts (TDS), ion concentration (conductivity), turbidity, and pH value as recommended by the World Health Organization (WHO). The unavailability of such testing laboratories at remote locations makes the testing of the drinking water difficult. Establishing such laboratories is a tedious job as it requires a lot of costly equipment and specially trained personnel to operate them, making them difficult to handle. To address these issues, a water quality monitoring system for remote areas was designed which is capable of measuring basic measurable qualities of salt concentration, ion concentration, turbidity, and pH value. With the utilization of such a system, the user can qualify the water present in the vicinity as safe or unsafe for drinking purposes. The results from the proposed system are evaluated based on standard testing results and it is found that our water quality monitoring system is in agreement with the standard lab results with an average error of 2.9%, 1.4%, 1.2%, and 1.2% for pH, turbidity, conductivity, and TDS, respectively.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80082019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-28DOI: 10.3390/engproc2021012044
M. Tariq, H. Zaheer, T. Mahmood
Power Quality (PQ) improvement in grid-integrated photovoltaic (PV) and wind energy hybrid systems for effective power transfer is presented in this paper. Due to interlinked hybrid renewable energy resources and nonlinear loads, various issues arise which affect the power quality, i.e., voltage sag, harmonic distortion increases, and also reactive power demand. In order to mitigate these issues, flexible alternating current transmission system (FACTS) devices are utilized. In this paper, hysteresis band current controller (HBCC)-based static synchronous compensator (STATCOM) is modeled to reduce PQ problems. HBCC is a robust and simple technique to improve voltage profile, reduce total harmonic distortion (THD) and fulfill the reactive power demand. Two case scenarios of the hybrid system, i.e., (I) grid integrated hybrid system without HBCC (II) grid integrated hybrid system with HBCC, are tested. Results demonstrate that under scenario II, load bus voltage is regulated at 1.0 p.u., THD of system voltage and current is reduced 0.25% and 0.35%, respectively, and reactive power demand of 30 kVAR is fulfilled. The HBCC was designed for reducing THD of the system with the limits specified by standards IEEE 519-1992 STATCOM using hysteresis band current controller to improve power quality in the distribution system which is simulated using MATLAB/SIMULINK. After that, the performance of the system is better in terms of power quality.
{"title":"Modeling and Analysis of STATCOM for Renewable Energy Farm to Improve Power Quality and Reactive Power Compensation","authors":"M. Tariq, H. Zaheer, T. Mahmood","doi":"10.3390/engproc2021012044","DOIUrl":"https://doi.org/10.3390/engproc2021012044","url":null,"abstract":"Power Quality (PQ) improvement in grid-integrated photovoltaic (PV) and wind energy hybrid systems for effective power transfer is presented in this paper. Due to interlinked hybrid renewable energy resources and nonlinear loads, various issues arise which affect the power quality, i.e., voltage sag, harmonic distortion increases, and also reactive power demand. In order to mitigate these issues, flexible alternating current transmission system (FACTS) devices are utilized. In this paper, hysteresis band current controller (HBCC)-based static synchronous compensator (STATCOM) is modeled to reduce PQ problems. HBCC is a robust and simple technique to improve voltage profile, reduce total harmonic distortion (THD) and fulfill the reactive power demand. Two case scenarios of the hybrid system, i.e., (I) grid integrated hybrid system without HBCC (II) grid integrated hybrid system with HBCC, are tested. Results demonstrate that under scenario II, load bus voltage is regulated at 1.0 p.u., THD of system voltage and current is reduced 0.25% and 0.35%, respectively, and reactive power demand of 30 kVAR is fulfilled. The HBCC was designed for reducing THD of the system with the limits specified by standards IEEE 519-1992 STATCOM using hysteresis band current controller to improve power quality in the distribution system which is simulated using MATLAB/SIMULINK. After that, the performance of the system is better in terms of power quality.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80090304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-28DOI: 10.3390/engproc2021012043
Hasaan Farooq, H. Khalid, W. Ali, Ismail Shahid
With the expansion of renewable energy sources worldwide, the need for developing more economical and more efficient converters that can operate on a high frequency with minimal switching and conduction losses has been increased. In power electronic converters, achieving high efficiency is one of the most challenging targets to achieve. The utilization of wideband switches can achieve this goal but add additional cost to the system. LLC resonant converters are widely used in different applications of renewable energy systems, i.e., PV, wind, hydro and geothermal, etc. This type of converter has more benefits than the other converters such as high electrical isolation, high power density, low EMI, and high efficiency. In this paper, a comparison between silicon carbide (SiC) MOSFET and silicon (Si) MOSFET switches was made, by considering a 3KW half-bridge LLC converter with a wide range of input voltage. The switching losses and conduction losses were analyzed through mathematical calculations, and their authenticity was validated with the help of software simulations in PSIM. The results show that silicon carbide (SiC) MOSFETs can work more efficiently, as compared with silicon (Si) MOSFETs in high-frequency power applications. However, in low-voltage and low-power applications, Si MOSFETs are still preferable due to their low-cost advantage.
{"title":"A Comparative Analysis of Half-Bridge LLC Resonant Converters Using Si and SiC MOSFETs","authors":"Hasaan Farooq, H. Khalid, W. Ali, Ismail Shahid","doi":"10.3390/engproc2021012043","DOIUrl":"https://doi.org/10.3390/engproc2021012043","url":null,"abstract":"With the expansion of renewable energy sources worldwide, the need for developing more economical and more efficient converters that can operate on a high frequency with minimal switching and conduction losses has been increased. In power electronic converters, achieving high efficiency is one of the most challenging targets to achieve. The utilization of wideband switches can achieve this goal but add additional cost to the system. LLC resonant converters are widely used in different applications of renewable energy systems, i.e., PV, wind, hydro and geothermal, etc. This type of converter has more benefits than the other converters such as high electrical isolation, high power density, low EMI, and high efficiency. In this paper, a comparison between silicon carbide (SiC) MOSFET and silicon (Si) MOSFET switches was made, by considering a 3KW half-bridge LLC converter with a wide range of input voltage. The switching losses and conduction losses were analyzed through mathematical calculations, and their authenticity was validated with the help of software simulations in PSIM. The results show that silicon carbide (SiC) MOSFETs can work more efficiently, as compared with silicon (Si) MOSFETs in high-frequency power applications. However, in low-voltage and low-power applications, Si MOSFETs are still preferable due to their low-cost advantage.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90949465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-28DOI: 10.3390/engproc2021013004
Wouter Huygen, Junzi Sun, J. Hoekstra
Automatic Dependent Surveillance-Broadcast (ADS-B) enables aircraft to periodically broadcast their flight states such as position and velocity. Compared to classical radar surveillance, it increases update rate and accuracy. Currently, Mode S Extended Squitter is the most common implementation for ADS-B. Due to the simplicity of Mode S design, ADS-B signals are prone to injections. This study proposes a cost-effective solution that verifies the integrity of ADS-B signals using coherent receivers. We design the verification approach by combining the signal’s direction of arrival, estimated from the multi-channel data, with the target bearing calculated from ADS-B messages. By using another high-performance software-defined radio transceiver, we also conduct real signal injection experiments to validate our approaches.
自动相关监视广播(ADS-B)使飞机能够定期广播其飞行状态,如位置和速度。与传统雷达监视相比,它提高了更新速度和精度。目前,Mode S Extended Squitter是ADS-B最常见的实现方式。由于S模式设计简单,ADS-B信号容易被注入。本研究提出了一种具有成本效益的解决方案,使用相干接收器验证ADS-B信号的完整性。我们将多通道数据估计的信号到达方向与ADS-B消息计算的目标方位相结合,设计了验证方法。通过使用另一种高性能软件定义无线电收发器,我们还进行了真实的信号注入实验来验证我们的方法。
{"title":"ADS-B Signal Verification Using a Coherent Receiver","authors":"Wouter Huygen, Junzi Sun, J. Hoekstra","doi":"10.3390/engproc2021013004","DOIUrl":"https://doi.org/10.3390/engproc2021013004","url":null,"abstract":"Automatic Dependent Surveillance-Broadcast (ADS-B) enables aircraft to periodically broadcast their flight states such as position and velocity. Compared to classical radar surveillance, it increases update rate and accuracy. Currently, Mode S Extended Squitter is the most common implementation for ADS-B. Due to the simplicity of Mode S design, ADS-B signals are prone to injections. This study proposes a cost-effective solution that verifies the integrity of ADS-B signals using coherent receivers. We design the verification approach by combining the signal’s direction of arrival, estimated from the multi-channel data, with the target bearing calculated from ADS-B messages. By using another high-performance software-defined radio transceiver, we also conduct real signal injection experiments to validate our approaches.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82754372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-28DOI: 10.3390/engproc2021012045
M. Tamoor, A. R. Bhatti, Muhammad Farhan, S. Miran, Faakhar Raza, M. Zaka
With the depletion of traditional fossil fuels, their disastrous impact on the environment and rising costs, renewable energy sources such as photovoltaic (PV) energy are rapidly emerging as sustainable and clean sources of power generation. The performance of photovoltaic systems is based on different factors such as the type of photovoltaic modules, irradiation potential and geographic location. In this research, PVsyst simulation software is used to design and simulate a hybrid photovoltaic system used to operate energy-efficient street lightning system. The simulation is performed to analyze the monthly/annual energy generated (kWh) by the hybrid system and specific power production (kWh/KWp). Additionally, various PV system losses are also investigated. The hybrid PV system has 4 parallel strings, and each string has 13 series-connected (mono crystalline 400 W Canadian Solar) PV modules. The energy storage system consists of 16 Narada (AcmeG 12 V 200) batteries with a nominal capacity of 1600 Ah. The simulation results show that the total annual energy production and specific energy production, were calculated to be 26.68 MWh/year and 1283 kWh/kWp/year, respectively. Simulation results also show the maximum energy injected into the utility grid in the month of June (1.814 MWh) and the minimum energy injected into the utility grid in the month of January (0.848 MWh). The battery cycle state of wear is 84.8%, and the static state of wear is 91.7%. Performance ratio (PR) analysis shows that the highest performance ratio of the hybrid system was 68.2% in December, the lowest performance ratio was 62.7% in May and the annual average performance ratio of a hybrid PV system is 65.57%. After identifying the major source of energy losses, the detailed losses for the whole year were computed and shown by the loss diagrams. To evaluate the cost effectiveness of the proposed system, a simple payback period calculation was performed.
随着传统化石燃料的枯竭、对环境的灾难性影响以及成本的不断上升,光伏等可再生能源作为可持续的清洁发电方式迅速崛起。光伏系统的性能取决于不同的因素,如光伏组件的类型、辐射电位和地理位置。本研究利用PVsyst仿真软件设计并仿真了一种用于运行节能路灯系统的混合光伏系统。仿真分析了混合动力系统的月/年发电量(kWh)和比发电量(kWh/KWp)。此外,还研究了各种光伏系统损耗。混合光伏系统有4串并联,每串有13串串联(单晶400w加拿大太阳能)光伏组件。储能系统由16节南都(AcmeG 12 V 200)电池组成,标称容量为1600 Ah。仿真结果表明,计算出的年总发电量为26.68 MWh/年,比发电量为1283 kWh/kWp/年。模拟结果还表明,6月份向电网注入的能量最大,为1.814 MWh; 1月份向电网注入的能量最小,为0.848 MWh。电池循环状态磨损率为84.8%,静态状态磨损率为91.7%。性能比(PR)分析表明,12月混合动力光伏系统的最高性能比为68.2%,5月混合动力光伏系统的最低性能比为62.7%,混合动力光伏系统的年平均性能比为65.57%。在确定了能源损失的主要来源后,计算了全年的详细损失,并用损失图表示出来。为了评估拟议系统的成本效益,进行了简单的投资回收期计算。
{"title":"Designing of a Hybrid Photovoltaic Structure for an Energy-Efficient Street Lightning System Using PVsyst Software","authors":"M. Tamoor, A. R. Bhatti, Muhammad Farhan, S. Miran, Faakhar Raza, M. Zaka","doi":"10.3390/engproc2021012045","DOIUrl":"https://doi.org/10.3390/engproc2021012045","url":null,"abstract":"With the depletion of traditional fossil fuels, their disastrous impact on the environment and rising costs, renewable energy sources such as photovoltaic (PV) energy are rapidly emerging as sustainable and clean sources of power generation. The performance of photovoltaic systems is based on different factors such as the type of photovoltaic modules, irradiation potential and geographic location. In this research, PVsyst simulation software is used to design and simulate a hybrid photovoltaic system used to operate energy-efficient street lightning system. The simulation is performed to analyze the monthly/annual energy generated (kWh) by the hybrid system and specific power production (kWh/KWp). Additionally, various PV system losses are also investigated. The hybrid PV system has 4 parallel strings, and each string has 13 series-connected (mono crystalline 400 W Canadian Solar) PV modules. The energy storage system consists of 16 Narada (AcmeG 12 V 200) batteries with a nominal capacity of 1600 Ah. The simulation results show that the total annual energy production and specific energy production, were calculated to be 26.68 MWh/year and 1283 kWh/kWp/year, respectively. Simulation results also show the maximum energy injected into the utility grid in the month of June (1.814 MWh) and the minimum energy injected into the utility grid in the month of January (0.848 MWh). The battery cycle state of wear is 84.8%, and the static state of wear is 91.7%. Performance ratio (PR) analysis shows that the highest performance ratio of the hybrid system was 68.2% in December, the lowest performance ratio was 62.7% in May and the annual average performance ratio of a hybrid PV system is 65.57%. After identifying the major source of energy losses, the detailed losses for the whole year were computed and shown by the loss diagrams. To evaluate the cost effectiveness of the proposed system, a simple payback period calculation was performed.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91548548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}