Decabrominated diphenyl ether (BDE-209) is a typical persistent organic pollutant that can cross the placental barrier, increasing the exposure risk for offspring. Norepinephrine (NE) from nerve terminals and acetylcholine (Ach) can bind to specific receptors on immune cells, inhibit the immune function of the body then cause immunotoxicity. However, whether maternal exposure to BDE-209 could lead to immunotoxicity in the offspring by acting on the sympathetic and parasympathetic nervous systems remains unclear. In view of this, the pregnancy and lactation rat BDE-209 exposure model was established and the results demonstrated that pregnancy and lactation BDE-209 exposure could induce immunotoxicity to female offspring via affecting immunopathology (hematological and biochemical parameters, organ indices, and spleen histopathological), decreasing humoral immunity (serum hemolysin, immunoglobulins, and cytokine productions), damaging cellular immunity (splenic lymphocytes and spleen cytokine productions), and restraining nonspecific immunity. Moreover, a dramatically significant correlation was observed between spleen nerve indices and immunity indices. Additionally, the mechanism revealed that maternal BDE-209 exposure caused offspring immunotoxicity through (1) activating MHC/PKCθ/NF-κB pathway; (2) promoting sympathetic nervous pathway, by upregulating the expression of β2AR protein, which in turn elevating cAMP, following activate PKA and phosphorylate CREB, ultimately leading to immunotoxicity;(3) activating parasympathetic nerve pathway by reducing the binding with Ach and α7nAchR, upregulating the expression of JAK2 and phosphorylating STAT3, induced immunotoxicity of female offspring.
{"title":"Role of autonomic nervous system in BDE-209 maternal exposure induced immunotoxicity in female offspring","authors":"Guanghua Mao, Junjie Tang, Muge Xu, Emmanuel Sunday Okeke, Fangyuan Dong, Yao Chen, Jinlin Gao, Weiwei Feng, Ting Zhao, Xiangyang Wu, Liuqing Yang","doi":"10.1002/tox.24353","DOIUrl":"10.1002/tox.24353","url":null,"abstract":"<p>Decabrominated diphenyl ether (BDE-209) is a typical persistent organic pollutant that can cross the placental barrier, increasing the exposure risk for offspring. Norepinephrine (NE) from nerve terminals and acetylcholine (Ach) can bind to specific receptors on immune cells, inhibit the immune function of the body then cause immunotoxicity. However, whether maternal exposure to BDE-209 could lead to immunotoxicity in the offspring by acting on the sympathetic and parasympathetic nervous systems remains unclear. In view of this, the pregnancy and lactation rat BDE-209 exposure model was established and the results demonstrated that pregnancy and lactation BDE-209 exposure could induce immunotoxicity to female offspring via affecting immunopathology (hematological and biochemical parameters, organ indices, and spleen histopathological), decreasing humoral immunity (serum hemolysin, immunoglobulins, and cytokine productions), damaging cellular immunity (splenic lymphocytes and spleen cytokine productions), and restraining nonspecific immunity. Moreover, a dramatically significant correlation was observed between spleen nerve indices and immunity indices. Additionally, the mechanism revealed that maternal BDE-209 exposure caused offspring immunotoxicity through (1) activating MHC/PKCθ/NF-κB pathway; (2) promoting sympathetic nervous pathway, by upregulating the expression of β2AR protein, which in turn elevating cAMP, following activate PKA and phosphorylate CREB, ultimately leading to immunotoxicity;(3) activating parasympathetic nerve pathway by reducing the binding with Ach and α7nAchR, upregulating the expression of JAK2 and phosphorylating STAT3, induced immunotoxicity of female offspring.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 9","pages":"4397-4416"},"PeriodicalIF":4.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangli Li, Kaina Shen, Dunxuan Yuan, Xi Li, Jinrou Quan, Fangzhou Tian, Yan Yang, Li Zhang, Junling Wang
Zinc finger MYND-type containing 15 (ZMYND15) has been documented to play important roles in spermatogenesis, and mutants contribute to recessive azoospermia, severe oligozoospermia, non-obstructive azoospermia, teratozoospermia, even male infertility. ZMYND10 is involved in sperm motility. Whether environmental pollutants impair male fertility via regulating the expression of ZMYND15 and ZMYND10 has not been studied. Arsenic exposure results in poor sperm quality and male infertility. In order to investigate whether arsenic-induced male reproductive toxicity is related to the expression of ZMYND15, ZMYND10 and their target genes, we established a male rat model of sodium arsenite exposure-induced reproductive injury, measured sperm quality, serum hormone levels, mRNA and protein expressions of intratesticular ZMYND15 and ZMYND10 as well as their target genes. The results showed that, in addition to the increased mRNA expression of Tnp1, sodium arsenite exposure reduced sperm quality, serum hormone levels, and mRNA and protein expression of intratesticular ZMYND15 and ZMYND10 and their target genes in male rats compared with the control group (p < .05). Therefore, our study first showed that the environmental pollutant arsenic impairs sperm quality in male rats by reducing the expression of ZMYND10 and ZMYND15 and their regulatory genes, which provides a possible diagnostic marker for environmental pollutants-induced male infertility.
{"title":"Sodium arsenite impairs sperm quality via downregulating the ZMYND15 and ZMYND10","authors":"Xiangli Li, Kaina Shen, Dunxuan Yuan, Xi Li, Jinrou Quan, Fangzhou Tian, Yan Yang, Li Zhang, Junling Wang","doi":"10.1002/tox.24327","DOIUrl":"10.1002/tox.24327","url":null,"abstract":"<p>Zinc finger MYND-type containing 15 (ZMYND15) has been documented to play important roles in spermatogenesis, and mutants contribute to recessive azoospermia, severe oligozoospermia, non-obstructive azoospermia, teratozoospermia, even male infertility. ZMYND10 is involved in sperm motility. Whether environmental pollutants impair male fertility via regulating the expression of ZMYND15 and ZMYND10 has not been studied. Arsenic exposure results in poor sperm quality and male infertility. In order to investigate whether arsenic-induced male reproductive toxicity is related to the expression of ZMYND15, ZMYND10 and their target genes, we established a male rat model of sodium arsenite exposure-induced reproductive injury, measured sperm quality, serum hormone levels, mRNA and protein expressions of intratesticular ZMYND15 and ZMYND10 as well as their target genes. The results showed that, in addition to the increased mRNA expression of Tnp1, sodium arsenite exposure reduced sperm quality, serum hormone levels, and mRNA and protein expression of intratesticular ZMYND15 and ZMYND10 and their target genes in male rats compared with the control group (<i>p</i> < .05). Therefore, our study first showed that the environmental pollutant arsenic impairs sperm quality in male rats by reducing the expression of ZMYND10 and ZMYND15 and their regulatory genes, which provides a possible diagnostic marker for environmental pollutants-induced male infertility.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 9","pages":"4385-4396"},"PeriodicalIF":4.4,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}