Muhammad Umar Ijaz, Sana Imtiaz, Muhammad Faisal Hayat, Moazama Batool, Khalid A Al-Ghanim, Mian Nadeem Riaz
Paraquat (PQ) is a noxious herbicide which adversely affects the vital organs including male reproductive system. Sudachitin (SCN) is a naturally occurring flavonoid that demonstrates a wide range of biological potentials. The current study was designed to investigate the alleviative potential of SCN to avert PQ-induced testicular toxicity in rats. Forty-eight male rats (Rattus norvegicus) were apportioned into four groups including control, PQ (5 mg/kg), PQ + SCN (5 mg/kg + 30 mg/kg), and SCN (30 mg/kg) only treated group. Our findings elucidated that PQ treatment reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and its antioxidant genes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR) and glutathione peroxidase (GPx), while elevating the levels of reactive oxygen species (ROS), and malondialdehyde (MDA). Furthermore, PQ intoxication upregulated the expressions of Keap-1 while downregulating the expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD), 17-beta hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (StAR). Moreover, sperm anomalies were increased following the exposure to PQ. Besides, PQ exposure decreased the levels of plasma testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) while increasing the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), interleukin-1beta (IL-1β), and cyclooxygenase-2 (COX-2). Additionally, PQ treatment escalated the expressions of cysteinyl aspartate-specific proteases-3 (Caspase-3) and Bcl-2-associated X-protein (Bax) while downregulating the expressions of B-cell lymphoma-2 (Bcl-2). Furthermore, PQ exposure disrupted the normal architecture of testicular tissues. However, SCN treatment remarkably protected the testicular tissues via regulating the aforementioned disruptions owing to its antioxidant, anti-inflammatory, and androgenic potential.
{"title":"Sudachitin Alleviates Paraquat Instigated Testicular Toxicity in Albino Rats via Regulating Nrf-2/Keap-1, Inflammatory, Steroidogenic, and Histological Profile.","authors":"Muhammad Umar Ijaz, Sana Imtiaz, Muhammad Faisal Hayat, Moazama Batool, Khalid A Al-Ghanim, Mian Nadeem Riaz","doi":"10.1002/tox.24408","DOIUrl":"https://doi.org/10.1002/tox.24408","url":null,"abstract":"<p><p>Paraquat (PQ) is a noxious herbicide which adversely affects the vital organs including male reproductive system. Sudachitin (SCN) is a naturally occurring flavonoid that demonstrates a wide range of biological potentials. The current study was designed to investigate the alleviative potential of SCN to avert PQ-induced testicular toxicity in rats. Forty-eight male rats (Rattus norvegicus) were apportioned into four groups including control, PQ (5 mg/kg), PQ + SCN (5 mg/kg + 30 mg/kg), and SCN (30 mg/kg) only treated group. Our findings elucidated that PQ treatment reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and its antioxidant genes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR) and glutathione peroxidase (GPx), while elevating the levels of reactive oxygen species (ROS), and malondialdehyde (MDA). Furthermore, PQ intoxication upregulated the expressions of Keap-1 while downregulating the expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD), 17-beta hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (StAR). Moreover, sperm anomalies were increased following the exposure to PQ. Besides, PQ exposure decreased the levels of plasma testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) while increasing the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), interleukin-1beta (IL-1β), and cyclooxygenase-2 (COX-2). Additionally, PQ treatment escalated the expressions of cysteinyl aspartate-specific proteases-3 (Caspase-3) and Bcl-2-associated X-protein (Bax) while downregulating the expressions of B-cell lymphoma-2 (Bcl-2). Furthermore, PQ exposure disrupted the normal architecture of testicular tissues. However, SCN treatment remarkably protected the testicular tissues via regulating the aforementioned disruptions owing to its antioxidant, anti-inflammatory, and androgenic potential.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phenethyl isothiocyanate (PEITC), a natural product, exists in biological activities, including anticancer activity in many human cancer cells. No information shows that PEITC affects DNA damage in human retinoblastoma (RB) cells in vitro. In this study, the aim of experiments was to determine whether PEITC decreased total viable cell number or not by inducing protein expressions involved in DNA damage and repair in Y79 RB cells in vitro. Total cell viability was measured by PI exclusion assay, and PEITC reduced the total Y79 viable cell numbers in a dose-dependent manner. DNA condensation and DNA impairment were conducted by DAPI staining and comet assays, respectively, in Y79 cells. The findings show that PEITC induced DNA condensation dose-dependently based on the brighter fluorescence of cell nuclei stained by DAPI staining. PEITC-induced DNA damage showed a more extended DNA migration smears than that of the control, which was performed by a comet assay. Western blotting was performed to measure the protein expressions involved in DNA damage and repair, which showed that PEITC at 2.5-10 μM increased NRF2, HO-1, SOD (Mn), and catalase; however, it decreased SOD (Cu/Zn) except 10 μM PEITC treatment, and decreased glutathione, which were associated with oxidative stress. Furthermore, PEITC increased DNA-PK, MDC1, H2A.XpSer139, ATMpSer1981, p53, p53pSer15, PARP, HSP70, and HSP90, but decreased TOPIIα, TOPIIβ, and MDM2pSer166 that were associated with DNA damage and repair mechanism in Y79 cells. The examination from confocal laser microscopy shows that PEITC increased H2A.XpSer139 and p53pSer15, and decreased glutathione and TOPIIα in Y79 cells. In conclusion, the cytotoxic effects of PEITC on reducing the number of viable cells may be due to the induction of DNA damage and the alteration of DNA repair proteins in Y79 cells in vitro.
异硫氰酸苯乙酯(PEITC)是一种天然产品,具有多种生物活性,包括对许多人类癌细胞的抗癌活性。目前还没有资料显示 PEITC 在体外影响人类视网膜母细胞瘤(RB)细胞的 DNA 损伤。本研究的目的是确定 PEITC 是否会通过诱导 Y79 RB 细胞中参与 DNA 损伤和修复的蛋白质表达来减少细胞的总存活数。实验采用 PI 排除法测定细胞的总存活率,PEITC 以剂量依赖的方式减少了 Y79 存活细胞的总数。通过 DAPI 染色和彗星试验分别检测了 Y79 细胞的 DNA 缩合和 DNA 损伤。研究结果表明,根据 DAPI 染色后细胞核荧光的亮度,PEITC 诱导的 DNA 缩合与剂量有关。彗星试验显示,与对照组相比,PEITC 诱导的 DNA 损伤显示出更长的 DNA 迁移涂片。Western印迹法测定了参与DNA损伤和修复的蛋白质表达,结果表明,2.5-10 μM的PEITC可增加NRF2、HO-1、SOD(锰)和过氧化氢酶;但除10 μM PEITC处理外,SOD(铜/锌)降低,谷胱甘肽降低,这与氧化应激有关。此外,PEITC 增加了 Y79 细胞中与 DNA 损伤和修复机制相关的 DNA-PK、MDC1、H2A.XpSer139、ATMpSer1981、p53、p53pSer15、PARP、HSP70 和 HSP90,但减少了 TOPIIα、TOPIIβ 和 MDM2pSer166。激光共聚焦显微镜检查显示,PEITC 增加了 Y79 细胞中的 H2A.XpSer139 和 p53pSer15,降低了谷胱甘肽和 TOPIIα。总之,PEITC 对减少存活细胞数量的细胞毒性作用可能是由于在体外诱导了 Y79 细胞的 DNA 损伤和 DNA 修复蛋白的改变。
{"title":"PEITC Induces DNA Damage and Inhibits DNA Repair-Associated Proteins in Human Retinoblastoma Cells In Vitro.","authors":"Sheng-Yao Hsu, Yi-Ping Huang, Te-Chun Hsia, Jaw-Chyun Chen, Shu-Fen Peng, Wen-Tsong Hsieh, Fu-Shin Chueh, Chao-Lin Kuo","doi":"10.1002/tox.24393","DOIUrl":"https://doi.org/10.1002/tox.24393","url":null,"abstract":"<p><p>Phenethyl isothiocyanate (PEITC), a natural product, exists in biological activities, including anticancer activity in many human cancer cells. No information shows that PEITC affects DNA damage in human retinoblastoma (RB) cells in vitro. In this study, the aim of experiments was to determine whether PEITC decreased total viable cell number or not by inducing protein expressions involved in DNA damage and repair in Y79 RB cells in vitro. Total cell viability was measured by PI exclusion assay, and PEITC reduced the total Y79 viable cell numbers in a dose-dependent manner. DNA condensation and DNA impairment were conducted by DAPI staining and comet assays, respectively, in Y79 cells. The findings show that PEITC induced DNA condensation dose-dependently based on the brighter fluorescence of cell nuclei stained by DAPI staining. PEITC-induced DNA damage showed a more extended DNA migration smears than that of the control, which was performed by a comet assay. Western blotting was performed to measure the protein expressions involved in DNA damage and repair, which showed that PEITC at 2.5-10 μM increased NRF2, HO-1, SOD (Mn), and catalase; however, it decreased SOD (Cu/Zn) except 10 μM PEITC treatment, and decreased glutathione, which were associated with oxidative stress. Furthermore, PEITC increased DNA-PK, MDC1, H<sub>2</sub>A.X<sup>pSer139</sup>, ATM<sup>pSer1981</sup>, p53, p53<sup>pSer15</sup>, PARP, HSP70, and HSP90, but decreased TOPIIα, TOPIIβ, and MDM2<sup>pSer166</sup> that were associated with DNA damage and repair mechanism in Y79 cells. The examination from confocal laser microscopy shows that PEITC increased H<sub>2</sub>A.X<sup>pSer139</sup> and p53<sup>pSer15</sup>, and decreased glutathione and TOPIIα in Y79 cells. In conclusion, the cytotoxic effects of PEITC on reducing the number of viable cells may be due to the induction of DNA damage and the alteration of DNA repair proteins in Y79 cells in vitro.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxyresveratrol (OxyR) exerts biological and pharmacological effects in a variety of tumor cells, including antioxidant action, antitumor activity, and proapoptotic effects. However, the regulation of targeted signaling pathways by OxyR and the mechanism underlying these effects in human renal cell carcinoma (RCC) have been less studied. We observed that OxyR at noncytotoxic doses did not affect the growth of human RCC cells or normal kidney HK2 cells. OxyR inhibited ACHN and Caki-1 cell migration and invasion through targeting matrix metalloproteinase 1 (MMP1) expression. Analysis of clinical databases showed that high MMP1 expression is associated with lower overall survival (OS) in these cancers (p < 0.01). OxyR significantly inhibited the mRNA and protein expression of Sp1. Furthermore, luciferase assay results showed that OxyR inhibited Sp1 transcriptional activity. Additionally, OxyR preferentially suppressed the activation of ERK and PKCα. Treatment with U0126 (MEK inhibitor) or G06976 (PKCα inhibitor) clearly decreased Sp1 and MMP1 expression and inhibited RCC cell migration and invasion. In conclusion, OxyR may be a potential antitumor therapy for the inhibition of migration and invasion by controlling p-ERK/Sp1 and p-PKCα/Sp1-mediated MMP1 expression in RCC.
{"title":"The Anti-Metastatic Action of Oxyresveratrol via Suppression of Phosphoryl-ERK/-PKCα-Mediated Sp1/MMP1 Signaling in Human Renal Carcinoma Cells.","authors":"Tsai-Kun Wu, Yi-Hsien Hsieh, Tung-Wei Hung, Yi-Chen Lin, Chia-Liang Lin, Yu-Jou Liu, Ying-Ru Pan, Jen-Pi Tsai","doi":"10.1002/tox.24400","DOIUrl":"https://doi.org/10.1002/tox.24400","url":null,"abstract":"<p><p>Oxyresveratrol (OxyR) exerts biological and pharmacological effects in a variety of tumor cells, including antioxidant action, antitumor activity, and proapoptotic effects. However, the regulation of targeted signaling pathways by OxyR and the mechanism underlying these effects in human renal cell carcinoma (RCC) have been less studied. We observed that OxyR at noncytotoxic doses did not affect the growth of human RCC cells or normal kidney HK2 cells. OxyR inhibited ACHN and Caki-1 cell migration and invasion through targeting matrix metalloproteinase 1 (MMP1) expression. Analysis of clinical databases showed that high MMP1 expression is associated with lower overall survival (OS) in these cancers (p < 0.01). OxyR significantly inhibited the mRNA and protein expression of Sp1. Furthermore, luciferase assay results showed that OxyR inhibited Sp1 transcriptional activity. Additionally, OxyR preferentially suppressed the activation of ERK and PKCα. Treatment with U0126 (MEK inhibitor) or G06976 (PKCα inhibitor) clearly decreased Sp1 and MMP1 expression and inhibited RCC cell migration and invasion. In conclusion, OxyR may be a potential antitumor therapy for the inhibition of migration and invasion by controlling p-ERK/Sp1 and p-PKCα/Sp1-mediated MMP1 expression in RCC.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bladder cancer (BC), the predominant urological malignancy in men, exhibits complex molecular underpinnings contributing to its progression. This investigation aims to elucidate the expression dynamics of calcium-binding protein 39 (CAB39) in both healthy and cancerous tissues and to explore its functional role in the epithelial–mesenchymal transition (EMT) within human bladder cancer contexts. Utilizing immunohistochemistry and quantitative reverse transcription analyses, we assessed CAB39 expression across BC specimens and cell lines. Further, we implemented wound healing, cell invasion, and CCK-8 proliferation assays in CAB39-knockdown cell lines, alongside a nude mouse xenograft model, to gauge the impact of diminished CAB39 expression on the invasive, migratory, and proliferative capacities of BC cells. Our gene set enrichment analysis probed into the repertoire of genes augmented by increased CAB39 expression in BC cells, with subsequent validation via western blotting. Our findings reveal a pronounced overexpression of CAB39 in both BC tissues and cellular models, inversely correlated with disease prognosis. Remarkably, the oncogenic trajectory of bladder cancer was mitigated upon the establishment of shRNA-mediated CAB39 knockdown in vitro and in vivo, effectively reversing the cancer's invasive and metastatic behaviors and curbing tumorigenesis in xenograft models. Hence, CAB39 emerges as a critical biomarker for bladder cancer progression, significantly implicated in facilitating EMT via the upregulation of neural cadherin (N-cadherin) and the suppression of epithelial cadherin through NF-κB signaling pathways. CU-T12-9 effectively overturned the downregulation of p65-NF-kB and N-cadherin, key elements involved in EMT and cell motility, induced by CAB39 knockdown. This study underscores CAB39's pivotal role in bladder cancer pathophysiology and its potential as a therapeutic target.
膀胱癌(BC)是男性最主要的泌尿系统恶性肿瘤,其进展的分子基础非常复杂。本研究旨在阐明钙结合蛋白 39(CAB39)在健康组织和癌组织中的表达动态,并探索其在人类膀胱癌上皮-间质转化(EMT)过程中的功能作用。通过免疫组化和定量反转录分析,我们评估了CAB39在膀胱癌标本和细胞系中的表达。此外,我们还在 CAB39 敲除细胞系和裸鼠异种移植模型中进行了伤口愈合、细胞侵袭和 CCK-8 增殖试验,以评估 CAB39 表达减少对 BC 细胞侵袭、迁移和增殖能力的影响。我们的基因组富集分析探究了 BC 细胞中 CAB39 表达增加所增强的基因谱系,并随后通过 Western 印迹进行了验证。我们的研究结果表明,CAB39 在 BC 组织和细胞模型中都有明显的过表达,这与疾病的预后成反比。值得注意的是,在体外和体内建立 shRNA 介导的 CAB39 基因敲除后,膀胱癌的致癌轨迹得到了缓解,有效逆转了癌症的侵袭和转移行为,并抑制了异种移植模型中的肿瘤发生。因此,CAB39成为膀胱癌进展的一个关键生物标志物,它通过上调神经粘连蛋白(N-cadherin)和抑制上皮粘连蛋白(通过NF-κB信号通路)促进EMT。CU-T12-9能有效地逆转CAB39敲除引起的p65-NF-kB和N-cadherin的下调,而p65-NF-kB和N-cadherin是参与EMT和细胞运动的关键因素。这项研究强调了 CAB39 在膀胱癌病理生理学中的关键作用及其作为治疗靶点的潜力。
{"title":"CAB39 modulates epithelial–mesenchymal transition through NF-κB signaling activation, enhancing invasion, and metastasis in bladder cancer","authors":"Jianbiao Huang, Huanhuan Deng, Shuaiyun Xiao, Yuanzhen Lin, Zhaojun Yu, Xiangda Xu, Lifen Peng, Haichao Chao, Tao Zeng","doi":"10.1002/tox.24333","DOIUrl":"10.1002/tox.24333","url":null,"abstract":"<p>Bladder cancer (BC), the predominant urological malignancy in men, exhibits complex molecular underpinnings contributing to its progression. This investigation aims to elucidate the expression dynamics of calcium-binding protein 39 (CAB39) in both healthy and cancerous tissues and to explore its functional role in the epithelial–mesenchymal transition (EMT) within human bladder cancer contexts. Utilizing immunohistochemistry and quantitative reverse transcription analyses, we assessed CAB39 expression across BC specimens and cell lines. Further, we implemented wound healing, cell invasion, and CCK-8 proliferation assays in CAB39-knockdown cell lines, alongside a nude mouse xenograft model, to gauge the impact of diminished CAB39 expression on the invasive, migratory, and proliferative capacities of BC cells. Our gene set enrichment analysis probed into the repertoire of genes augmented by increased CAB39 expression in BC cells, with subsequent validation via western blotting. Our findings reveal a pronounced overexpression of CAB39 in both BC tissues and cellular models, inversely correlated with disease prognosis. Remarkably, the oncogenic trajectory of bladder cancer was mitigated upon the establishment of shRNA-mediated CAB39 knockdown in vitro and in vivo, effectively reversing the cancer's invasive and metastatic behaviors and curbing tumorigenesis in xenograft models. Hence, CAB39 emerges as a critical biomarker for bladder cancer progression, significantly implicated in facilitating EMT via the upregulation of neural cadherin (N-cadherin) and the suppression of epithelial cadherin through NF-κB signaling pathways. CU-T12-9 effectively overturned the downregulation of p65-NF-kB and N-cadherin, key elements involved in EMT and cell motility, induced by CAB39 knockdown. This study underscores CAB39's pivotal role in bladder cancer pathophysiology and its potential as a therapeutic target.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}