Inflammation is an intrinsic protective mechanism against various forms of cellular injuries in humans; however, its undesired activation results in tissue damage and cell death. The onset of chronic inflammation and oxidative stress are the key characteristics of autoimmune inflammatory diseases such as rheumatoid arthritis (RA), for which an effective treatment is yet to be developed. Therefore, in this study, we investigated the protective effects and molecular mechanisms of a novel herbal preparation, Jing-Si herbal tea (JS), against H2O2-induced inflammation and cellular damage in HIG-82 synoviocytes. We found that JS did not show any significant alterations in cell viability at <188 μg/mL; however, a cytotoxic effect was observed at 188-1883 μg/mL concentrations tested. We found that expressions of inflammation associated extracellular matrix (ECM)-degrading proteases MMP-13, ADAMTS-2, -8, and -17 were abnormally enhanced under H2O2-induced pathological oxidative stress (ROS) in HIG-82 cells. Interestingly, JS treatment not only reduced the ROS levels but also significantly repressed the protein expressions of collagen degrading proteases in a dose-dependent manner. Treatment with JS showed enhanced cell viability against H2O2-induced toxic ROS levels. The expressions of cell protective aggrecan, Collagen II, and Bcl-2 were increased, whereas MMP-13, ADAMTS-2, Cytochrome C, and cleaved Caspase 3 were decreased by JS under inflammatory agents H2O2, MIA, LPS, and TNF-α treatment, respectively, in HIG-82 cells. Interestingly, the cytoprotective effect of JS treatment was attributed to a decreased mitochondrial localization of Bax and a reduction of Cytochrome C release into the cytoplasm of H2O2-treated HIG-82 cells. Collectively, our results suggest a novel protective mechanism of JS for RA treatment, which could be potentially applied as a complementary treatment or as an alternative therapeutic approach to mitigate inflammatory diseases.
{"title":"Jing-Si Herbal Tea Suppresses H<sub>2</sub>O<sub>2</sub>-Instigated Inflammation and Apoptosis by Inhibiting Bax and Mitochondrial Cytochrome C Release in HIG-82 Synoviocytes.","authors":"Shih-Wen Kao, Yu-Chun Chang, Feng-Huei Lin, Tai-Lung Huang, Tung-Sheng Chen, Shinn-Zong Lin, Kuan-Ho Lin, Wei-Wen Kuo, Tsung-Jung Ho, Chih-Yang Huang","doi":"10.1002/tox.24406","DOIUrl":"https://doi.org/10.1002/tox.24406","url":null,"abstract":"<p><p>Inflammation is an intrinsic protective mechanism against various forms of cellular injuries in humans; however, its undesired activation results in tissue damage and cell death. The onset of chronic inflammation and oxidative stress are the key characteristics of autoimmune inflammatory diseases such as rheumatoid arthritis (RA), for which an effective treatment is yet to be developed. Therefore, in this study, we investigated the protective effects and molecular mechanisms of a novel herbal preparation, Jing-Si herbal tea (JS), against H<sub>2</sub>O<sub>2</sub>-induced inflammation and cellular damage in HIG-82 synoviocytes. We found that JS did not show any significant alterations in cell viability at <188 μg/mL; however, a cytotoxic effect was observed at 188-1883 μg/mL concentrations tested. We found that expressions of inflammation associated extracellular matrix (ECM)-degrading proteases MMP-13, ADAMTS-2, -8, and -17 were abnormally enhanced under H<sub>2</sub>O<sub>2</sub>-induced pathological oxidative stress (ROS) in HIG-82 cells. Interestingly, JS treatment not only reduced the ROS levels but also significantly repressed the protein expressions of collagen degrading proteases in a dose-dependent manner. Treatment with JS showed enhanced cell viability against H<sub>2</sub>O<sub>2</sub>-induced toxic ROS levels. The expressions of cell protective aggrecan, Collagen II, and Bcl-2 were increased, whereas MMP-13, ADAMTS-2, Cytochrome C, and cleaved Caspase 3 were decreased by JS under inflammatory agents H<sub>2</sub>O<sub>2</sub>, MIA, LPS, and TNF-α treatment, respectively, in HIG-82 cells. Interestingly, the cytoprotective effect of JS treatment was attributed to a decreased mitochondrial localization of Bax and a reduction of Cytochrome C release into the cytoplasm of H<sub>2</sub>O<sub>2</sub>-treated HIG-82 cells. Collectively, our results suggest a novel protective mechanism of JS for RA treatment, which could be potentially applied as a complementary treatment or as an alternative therapeutic approach to mitigate inflammatory diseases.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive behavior and complex molecular heterogeneity, posing significant challenges for treatment and prognostication. This study offers a comprehensive analysis of ccRCC by leveraging both bulk and single-cell RNA sequencing data, with a specific aim to unravel the complexities of sphingolipid metabolism and the intricate dynamics within the tumor microenvironment (TME). By examining ccRCC samples sourced from public databases, our investigation delves deep into the genetic and transcriptomic landscape of this cancer type. Employing advanced analytical techniques, we have identified pivotal patterns in gene expression and cellular heterogeneity, with a special focus on the roles and interactions of various immune cells within the TME. Significantly, our research has unearthed insights into the dynamics of sphingolipid metabolism in ccRCC, shedding light on its potential implications for tumor progression and strategies for immune evasion. A novel aspect of this study is the development of a risk score model designed to enhance prognostic predictions for ccRCC patients, which is currently pending external validation to ascertain its clinical utility. Despite its contributions, the study is mindful of its limitations, including a reliance on observational data from public sources and a primary focus on RNA sequencing data, which may constrain the depth and generalizability of the findings. The study does not encompass critical aspects, such as protein expression, posttranslational modifications, and comprehensive metabolic profiles. Moreover, its retrospective design underscores the necessity for future prospective studies to solidify these preliminary conclusions. Our findings illuminate the intricate interplay between genetic alterations, sphingolipid metabolism, and immune responses in ccRCC. This research not only enhances our understanding of the molecular foundations of ccRCC but also paves the way for the development of targeted therapies and personalized treatment modalities. The study underlines the importance of cautious interpretation of results and champions ongoing research using diverse methodologies to thoroughly comprehend and effectively combat this formidable cancer type.
{"title":"Integrative analysis of bulk and single-cell RNA sequencing reveals sphingolipid metabolism and immune landscape in clear cell renal cell carcinoma.","authors":"Dongdong Xie, Zhitao Han, Yu Wang, Haoyu Shi, Xiang Wu, Jiaqing Wu, Yingbo Dai","doi":"10.1002/tox.24319","DOIUrl":"https://doi.org/10.1002/tox.24319","url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive behavior and complex molecular heterogeneity, posing significant challenges for treatment and prognostication. This study offers a comprehensive analysis of ccRCC by leveraging both bulk and single-cell RNA sequencing data, with a specific aim to unravel the complexities of sphingolipid metabolism and the intricate dynamics within the tumor microenvironment (TME). By examining ccRCC samples sourced from public databases, our investigation delves deep into the genetic and transcriptomic landscape of this cancer type. Employing advanced analytical techniques, we have identified pivotal patterns in gene expression and cellular heterogeneity, with a special focus on the roles and interactions of various immune cells within the TME. Significantly, our research has unearthed insights into the dynamics of sphingolipid metabolism in ccRCC, shedding light on its potential implications for tumor progression and strategies for immune evasion. A novel aspect of this study is the development of a risk score model designed to enhance prognostic predictions for ccRCC patients, which is currently pending external validation to ascertain its clinical utility. Despite its contributions, the study is mindful of its limitations, including a reliance on observational data from public sources and a primary focus on RNA sequencing data, which may constrain the depth and generalizability of the findings. The study does not encompass critical aspects, such as protein expression, posttranslational modifications, and comprehensive metabolic profiles. Moreover, its retrospective design underscores the necessity for future prospective studies to solidify these preliminary conclusions. Our findings illuminate the intricate interplay between genetic alterations, sphingolipid metabolism, and immune responses in ccRCC. This research not only enhances our understanding of the molecular foundations of ccRCC but also paves the way for the development of targeted therapies and personalized treatment modalities. The study underlines the importance of cautious interpretation of results and champions ongoing research using diverse methodologies to thoroughly comprehend and effectively combat this formidable cancer type.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Jin, Jun He, Min Wu, Xiaohan Wang, Li Jia, Li Zhang, Jiabin Guo
T-2 toxin is a trichothecene mycotoxin and is considered as an extremely inevitable pollutant with potent hepatotoxicity. However, the approach to alleviation of T-2 toxin-triggered hepatotoxicity has been recognized as a serious challenge. Resveratrol (Res) is a polyphenol natural product isolated from various plant species, but its protective effect against T-2 toxin hepatotoxicity and detailed mechanism remains obscure. In the present study, the effect of Res against the hepatotoxicity was evaluated, and the underlying mechanisms were further revealed in mice. Functionally, Res inhibited liver injury, oxidative damage, and mitochondrial dysfunction induced by T-2 toxin. Mechanistically, Res modulated Nrf2-mediated antioxidant pathway and glutathione synthesis inhibition. Collectively, our findings first showed beyond doubt that Res ameliorated T-2 toxin-triggered liver injury by regulating Nrf2 pathways in mice.
{"title":"Resveratrol Alleviated T-2 Toxin-Induced Liver Injury via Preservation of Nrf2 Pathway and GSH Synthesis.","authors":"Hong Jin, Jun He, Min Wu, Xiaohan Wang, Li Jia, Li Zhang, Jiabin Guo","doi":"10.1002/tox.24412","DOIUrl":"https://doi.org/10.1002/tox.24412","url":null,"abstract":"<p><p>T-2 toxin is a trichothecene mycotoxin and is considered as an extremely inevitable pollutant with potent hepatotoxicity. However, the approach to alleviation of T-2 toxin-triggered hepatotoxicity has been recognized as a serious challenge. Resveratrol (Res) is a polyphenol natural product isolated from various plant species, but its protective effect against T-2 toxin hepatotoxicity and detailed mechanism remains obscure. In the present study, the effect of Res against the hepatotoxicity was evaluated, and the underlying mechanisms were further revealed in mice. Functionally, Res inhibited liver injury, oxidative damage, and mitochondrial dysfunction induced by T-2 toxin. Mechanistically, Res modulated Nrf2-mediated antioxidant pathway and glutathione synthesis inhibition. Collectively, our findings first showed beyond doubt that Res ameliorated T-2 toxin-triggered liver injury by regulating Nrf2 pathways in mice.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zaishan Wang, Meng Xu, Qiang Li, Sihan Lu, Zhu Liu
Chloroform is a prevalent toxic environmental pollutant in urban settings, posing risks to human health through exposure via various mediums such as air and tap water. The gut microbiota plays a pivotal role in maintaining host health. However, there is a paucity of research elucidating the impact of chloroform exposure on the gut microbiota. In this investigation, 18 SPF Kunming female mice were stratified into three groups (n = 6) and subjected to oral gavage with chloroform doses equivalent to 0, 50, and 150 mg/kg of body weight over 30 days. Our findings demonstrate that subchronic chloroform exposure significantly perturbs hematological parameters in mice and induces histopathological alterations in cecal tissues, consequently engendering marked disparities in the functional composition of cecal microbiota and metabolic equilibrium of cecal contents. Ultimately, our investigation revealed a statistically robust correlation, exhibiting a high degree of significance, between the intestinal microbiome composition and the metabolites that were differentially expressed consequent to chloroform exposure.
{"title":"Subchronic Chloroform Exposure Causes Intestinal Damage and Induces Gut Microbiota Disruption and Metabolic Dysregulation in Mice.","authors":"Zaishan Wang, Meng Xu, Qiang Li, Sihan Lu, Zhu Liu","doi":"10.1002/tox.24417","DOIUrl":"https://doi.org/10.1002/tox.24417","url":null,"abstract":"<p><p>Chloroform is a prevalent toxic environmental pollutant in urban settings, posing risks to human health through exposure via various mediums such as air and tap water. The gut microbiota plays a pivotal role in maintaining host health. However, there is a paucity of research elucidating the impact of chloroform exposure on the gut microbiota. In this investigation, 18 SPF Kunming female mice were stratified into three groups (n = 6) and subjected to oral gavage with chloroform doses equivalent to 0, 50, and 150 mg/kg of body weight over 30 days. Our findings demonstrate that subchronic chloroform exposure significantly perturbs hematological parameters in mice and induces histopathological alterations in cecal tissues, consequently engendering marked disparities in the functional composition of cecal microbiota and metabolic equilibrium of cecal contents. Ultimately, our investigation revealed a statistically robust correlation, exhibiting a high degree of significance, between the intestinal microbiome composition and the metabolites that were differentially expressed consequent to chloroform exposure.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Tian, Shaohua Wang, Chujie Zhang, Y S Prakash, Robert Vassallo
Inflammatory cell infiltration is a characteristic feature of COPD and correlates directly with the severity of the disease. Interleukin-23 (IL-23) is a pro-inflammatory cytokine that regulates Th-17 inflammation, which mediates many pathophysiological events in COPD. The primary goal of this study was to determine the role of IL-23 as a mediator of key pathologic processes in cigarette smoke-induced COPD. In this study, we report an increase in IL23 gene expression in the lung biopsies of COPD patients compared to controls and identified a positive correlation between IL23 gene expression and disease severity. In a cigarette smoke-induced murine emphysema model, the suppression of IL-23 with a monoclonal blocking antibody reduced the severity of cigarette smoke-induced murine emphysema. Mechanistically, the suppression of IL-23 was associated with a reduction in immune cell infiltration, oxidative stress injury, and apoptosis, suggesting a role for IL-23 as an essential immune mediator of the inflammatory processes in the pathogenesis of CS-induced emphysema.
{"title":"Blocking IL-23 Signaling Mitigates Cigarette Smoke-Induced Murine Emphysema.","authors":"Xue Tian, Shaohua Wang, Chujie Zhang, Y S Prakash, Robert Vassallo","doi":"10.1002/tox.24405","DOIUrl":"https://doi.org/10.1002/tox.24405","url":null,"abstract":"<p><p>Inflammatory cell infiltration is a characteristic feature of COPD and correlates directly with the severity of the disease. Interleukin-23 (IL-23) is a pro-inflammatory cytokine that regulates Th-17 inflammation, which mediates many pathophysiological events in COPD. The primary goal of this study was to determine the role of IL-23 as a mediator of key pathologic processes in cigarette smoke-induced COPD. In this study, we report an increase in IL23 gene expression in the lung biopsies of COPD patients compared to controls and identified a positive correlation between IL23 gene expression and disease severity. In a cigarette smoke-induced murine emphysema model, the suppression of IL-23 with a monoclonal blocking antibody reduced the severity of cigarette smoke-induced murine emphysema. Mechanistically, the suppression of IL-23 was associated with a reduction in immune cell infiltration, oxidative stress injury, and apoptosis, suggesting a role for IL-23 as an essential immune mediator of the inflammatory processes in the pathogenesis of CS-induced emphysema.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohan Qu, Tianjian Ding, Haoqi Zhao, Liming Wang
RING finger protein 135 (RNF135) is identified as a regulator in certain cancer types. However, its role and molecular mechanisms in lung adenocarcinoma (LUAD) are still unclear. Herein, we investigated the level of RNF135 in tumor tissues of LUAD patients using the UALCAN database and confirmed the data by real‐time PCR and western blot analysis. The effects of RNF135 on stemness maintenance and migration/invasion capability of LUAD cells were investigated by sphere formation, flow cytometry, wound healing, and transwell assay. Limiting dilution xenograft assay and intracardiac injection of LUAD cells were applied to assess the implications of RNF135 in tumorigenesis and brain metastasis. Our results revealed that RNF135 was upregulated in tumor tissues of LUAD patients and was positively correlated with poor prognosis. Knockdown of RNF135 suppressed cancer stem cells (CSCs)‐like properties, and migration/invasion capability of A549 and NCI‐H1975 cells. Conversely, overexpression of RNF135 augmented CSCs‐like traits and migration/invasion ability of LUAD cells. Limiting dilution xenograft assay demonstrated that RNF135 was required for the self‐renewal of CSCs to initiate LUAD development. Overexpression of RNF135 in A549 cells increased their ability to metastasize to the brain in vivo. Mechanistically, the transcriptional activation of RNF135 by LSD1 involved H3K9me2 demethylation at the promoter region of RNF135. Reexpression of RNF135 in LSD1‐silenced A549 cells was able to reverse LSD1‐mediated stemness maintenance and migration/invasion capability. Overall, our results implied that targeting of LSD1/RNF135 axis might be a feasible method to suppress tumorigenesis and brain metastasis of LUAD patients.
RING 手指蛋白 135(RNF135)被认为是某些癌症类型的调节因子。然而,它在肺腺癌(LUAD)中的作用和分子机制仍不清楚。在此,我们利用 UALCAN 数据库研究了 RNF135 在 LUAD 患者肿瘤组织中的水平,并通过实时 PCR 和 Western 印迹分析证实了这些数据。RNF135对LUAD细胞的干性维持和迁移/侵袭能力的影响通过球形成、流式细胞术、伤口愈合和透孔试验进行了研究。我们还应用极限稀释异种移植试验和心内注射LUAD细胞来评估RNF135在肿瘤发生和脑转移中的影响。结果显示,RNF135在LUAD患者的肿瘤组织中上调,并与预后不良呈正相关。敲除 RNF135 可抑制 A549 和 NCI-H1975 细胞的癌症干细胞(CSCs)样特性和迁移/侵袭能力。相反,RNF135的过表达增强了LUAD细胞的类癌干细胞特性和迁移/侵袭能力。限制性稀释异种移植试验表明,RNF135是CSCs自我更新启动LUAD发展的必要条件。在A549细胞中过表达RNF135可提高其体内向脑部转移的能力。从机制上讲,LSD1对RNF135的转录激活涉及RNF135启动子区的H3K9me2去甲基化。在LSD1沉默的A549细胞中重新表达RNF135能够逆转LSD1介导的干性维持和迁移/侵袭能力。总之,我们的研究结果表明,靶向LSD1/RNF135轴可能是抑制LUAD患者肿瘤发生和脑转移的可行方法。
{"title":"Epigenetic Regulation of RNF135 by LSD1 Promotes Stemness Maintenance and Brain Metastasis in Lung Adenocarcinoma","authors":"Xiaohan Qu, Tianjian Ding, Haoqi Zhao, Liming Wang","doi":"10.1002/tox.24407","DOIUrl":"https://doi.org/10.1002/tox.24407","url":null,"abstract":"RING finger protein 135 (RNF135) is identified as a regulator in certain cancer types. However, its role and molecular mechanisms in lung adenocarcinoma (LUAD) are still unclear. Herein, we investigated the level of RNF135 in tumor tissues of LUAD patients using the UALCAN database and confirmed the data by real‐time PCR and western blot analysis. The effects of RNF135 on stemness maintenance and migration/invasion capability of LUAD cells were investigated by sphere formation, flow cytometry, wound healing, and transwell assay. Limiting dilution xenograft assay and intracardiac injection of LUAD cells were applied to assess the implications of RNF135 in tumorigenesis and brain metastasis. Our results revealed that RNF135 was upregulated in tumor tissues of LUAD patients and was positively correlated with poor prognosis. Knockdown of RNF135 suppressed cancer stem cells (CSCs)‐like properties, and migration/invasion capability of A549 and NCI‐H1975 cells. Conversely, overexpression of RNF135 augmented CSCs‐like traits and migration/invasion ability of LUAD cells. Limiting dilution xenograft assay demonstrated that RNF135 was required for the self‐renewal of CSCs to initiate LUAD development. Overexpression of RNF135 in A549 cells increased their ability to metastasize to the brain in vivo. Mechanistically, the transcriptional activation of RNF135 by LSD1 involved H3K9me2 demethylation at the promoter region of RNF135. Reexpression of RNF135 in LSD1‐silenced A549 cells was able to reverse LSD1‐mediated stemness maintenance and migration/invasion capability. Overall, our results implied that targeting of LSD1/RNF135 axis might be a feasible method to suppress tumorigenesis and brain metastasis of LUAD patients.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}