首页 > 最新文献

Environmental Toxicology最新文献

英文 中文
Integrin αV Inhibition by GMI, a Ganoderma Microsporum Immunomodulatory Protein, Abolish Stemness and Migration in EGFR‐Mutated Lung Cancer Cells Resistant to Osimertinib 灵芝微孢子菌免疫调节蛋白 GMI 抑制整合素 αV 可消除对奥希替尼耐药的表皮生长因子受体突变肺癌细胞的干性和迁移性
IF 4.5 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-17 DOI: 10.1002/tox.24399
Yu‐Ting Kang, Hui‐Yi Chang, Ya‐Chu Hsieh, Chia‐Hsuan Chou, I‐Lun Hsin, Jiunn‐Liang Ko
Integrins, the receptors of the extracellular matrix, are critical in the proliferation and metastasis of cancer cells. GMI, a Ganoderma microsporum immunomodulatory protein, possesses anticancer and antivirus abilities. The object of this study is to investigate the role of GMI in the integrins signaling pathway in lung cancer cells that harbor the EGFR L858R/T790M double mutation and osimertinib‐resistance. Liquid chromatography‐mass spectrometry and western blot assay were used to investigate the effect of GMI on inhibiting the protein expressions of integrins in H1975 cells. The migration ability and xenograft tumor growth of H1975 were suppressed by GMI. To elucidate the role of the integrin family in lung cancer resistant to osimertinib (AZD‐9291, Tagrisso), H1975 cells were used to establish the osimertinib‐resistant cells, named H1975/TR cells. The expressions of Integrin αV and stemness markers were much higher in H1975/TR cells than in H1975 cells. GMI suppressed cell viability, tumor spheroid growth, and the expressions of integrin αV and β1 in H1975/TR cells. Furthermore, GMI suppressed the expressions of stemness markers and formation of tumor spheres via blocking integrin αV signaling cascade. This is the first study to reveal the novel function of GMI in constraining cancer stem cells and migration by abolishing the integrin αV‐related signaling pathway in EGFR‐mutated and osimertinib‐resistant lung cancer cells.
细胞外基质的受体--整合素对癌细胞的增殖和转移至关重要。GMI 是一种灵芝微孢子菌免疫调节蛋白,具有抗癌和抗病毒能力。本研究旨在探讨 GMI 在肺癌细胞整合素信号通路中的作用,这些细胞携带表皮生长因子受体 L858R/T790M 双突变和奥希替尼耐药性。采用液相色谱-质谱法和Western印迹法研究了GMI对H1975细胞整合素蛋白表达的抑制作用。GMI抑制了H1975细胞的迁移能力和异种移植肿瘤的生长。为了阐明整合素家族在肺癌抗奥司替尼(AZD-9291,Tagrisso)中的作用,研究人员用H1975细胞建立了抗奥司替尼的细胞,命名为H1975/TR细胞。H1975/TR 细胞中 Integrin αV 和干性标志物的表达量远高于 H1975 细胞。GMI 抑制了 H1975/TR 细胞的细胞活力、肿瘤小球的生长以及整合素 αV 和 β1 的表达。此外,GMI 还能通过阻断整合素 αV 信号级联抑制干性标志物的表达和肿瘤球的形成。这是首次研究揭示了GMI在表皮生长因子受体(EGFR)突变和奥希替尼耐药的肺癌细胞中通过废除整合素αV相关信号通路来限制癌症干细胞和迁移的新功能。
{"title":"Integrin αV Inhibition by GMI, a Ganoderma Microsporum Immunomodulatory Protein, Abolish Stemness and Migration in EGFR‐Mutated Lung Cancer Cells Resistant to Osimertinib","authors":"Yu‐Ting Kang, Hui‐Yi Chang, Ya‐Chu Hsieh, Chia‐Hsuan Chou, I‐Lun Hsin, Jiunn‐Liang Ko","doi":"10.1002/tox.24399","DOIUrl":"https://doi.org/10.1002/tox.24399","url":null,"abstract":"Integrins, the receptors of the extracellular matrix, are critical in the proliferation and metastasis of cancer cells. GMI, a Ganoderma microsporum immunomodulatory protein, possesses anticancer and antivirus abilities. The object of this study is to investigate the role of GMI in the integrins signaling pathway in lung cancer cells that harbor the EGFR L858R/T790M double mutation and osimertinib‐resistance. Liquid chromatography‐mass spectrometry and western blot assay were used to investigate the effect of GMI on inhibiting the protein expressions of integrins in H1975 cells. The migration ability and xenograft tumor growth of H1975 were suppressed by GMI. To elucidate the role of the integrin family in lung cancer resistant to osimertinib (AZD‐9291, Tagrisso), H1975 cells were used to establish the osimertinib‐resistant cells, named H1975/TR cells. The expressions of Integrin αV and stemness markers were much higher in H1975/TR cells than in H1975 cells. GMI suppressed cell viability, tumor spheroid growth, and the expressions of integrin αV and β1 in H1975/TR cells. Furthermore, GMI suppressed the expressions of stemness markers and formation of tumor spheres via blocking integrin αV signaling cascade. This is the first study to reveal the novel function of GMI in constraining cancer stem cells and migration by abolishing the integrin αV‐related signaling pathway in EGFR‐mutated and osimertinib‐resistant lung cancer cells.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective Effect of Hibifolin on Lipopolysaccharide-Induced Acute Lung Injury Through Akt Phosphorylation and NFκB Pathway. 希匹福林通过Akt磷酸化和NFκB通路对脂多糖诱导的急性肺损伤有保护作用
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-09 DOI: 10.1002/tox.24383
Yan-Yan Ng, Yung-Chuan Ho, Chi-Hua Yen, Shiuan-Shinn Lee, Ching-Chi Tseng, Sheng-Wen Wu, Yu-Hsiang Kuan

Acute lung injury (ALI) is a difficult condition to manage, especially when it is complicated by bacterial sepsis. Hibifolin, a flavonoid glycoside, has anti-inflammatory properties that make it a potential treatment for ALI. However, more research is needed to determine its effectiveness in LPS-induced ALI. In this study, male ICR mice were treated with hibifolin before LPS-induced ALI. Protein content and neutrophil count in bronchoalveolar lavage (BAL) fluid were measured by BCA assay and Giemsa staining method, respectively. The levels of proinflammatory cytokines and adhesive molecules were detected by ELISA assay. The expression of NFκB p65 phosphorylation, IκB degradation, and Akt phosphorylation was assessed by western blot assay. Hibifolin pre-treatment significantly reduced pulmonary vascular barrier dysfunction and neutrophil infiltration into the BAL fluid in LPS-induced ALI mice. In addition, LPS-induced expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and adhesive molecules (ICAM-1, VCAM-1) within the BAL fluid were markedly reduced by hibifolin in LPS-induced ALI mice. More, hibifolin inhibited LPS-induced phosphorylation of NFκB p65, degradation of IκB, and phosphorylation of Akt in lungs with ALI mice. In conclusion, hibifolin shows promise in improving the pathophysiological features and proinflammatory responses of LPS-induced ALI in mice through the NFκB pathway and its upstream factor, Akt phosphorylation.

急性肺损伤(ALI)是一种难以控制的疾病,尤其是在并发细菌性败血症的情况下。Hibifolin是一种黄酮苷,具有抗炎特性,是治疗ALI的潜在药物。然而,要确定它对 LPS 诱导的 ALI 是否有效,还需要更多的研究。在这项研究中,雄性 ICR 小鼠在 LPS 诱导 ALI 前接受了希匹福林治疗。采用 BCA 法和 Giemsa 染色法分别测定了支气管肺泡灌洗液(BAL)中的蛋白质含量和中性粒细胞计数。酶联免疫吸附试验检测了促炎细胞因子和粘附分子的水平。免疫印迹法评估了 NFκB p65 磷酸化、IκB 降解和 Akt 磷酸化的表达。在LPS诱导的ALI小鼠中,Hibifolin预处理可明显减少肺血管屏障功能障碍和中性粒细胞向BAL液的浸润。此外,在 LPS 诱导的 ALI 小鼠中,希匹福林能明显降低 LPS 诱导的促炎细胞因子(IL-1β、IL-6、TNF-α)和粘附分子(ICAM-1、VCAM-1)在 BAL 液中的表达。此外,西比灵还能抑制 LPS 诱导的 ALI 小鼠肺内 NFκB p65 的磷酸化、IκB 的降解和 Akt 的磷酸化。总之,希匹福林有望通过NFκB通路及其上游因子Akt磷酸化改善LPS诱导的小鼠ALI的病理生理特征和促炎反应。
{"title":"Protective Effect of Hibifolin on Lipopolysaccharide-Induced Acute Lung Injury Through Akt Phosphorylation and NFκB Pathway.","authors":"Yan-Yan Ng, Yung-Chuan Ho, Chi-Hua Yen, Shiuan-Shinn Lee, Ching-Chi Tseng, Sheng-Wen Wu, Yu-Hsiang Kuan","doi":"10.1002/tox.24383","DOIUrl":"https://doi.org/10.1002/tox.24383","url":null,"abstract":"<p><p>Acute lung injury (ALI) is a difficult condition to manage, especially when it is complicated by bacterial sepsis. Hibifolin, a flavonoid glycoside, has anti-inflammatory properties that make it a potential treatment for ALI. However, more research is needed to determine its effectiveness in LPS-induced ALI. In this study, male ICR mice were treated with hibifolin before LPS-induced ALI. Protein content and neutrophil count in bronchoalveolar lavage (BAL) fluid were measured by BCA assay and Giemsa staining method, respectively. The levels of proinflammatory cytokines and adhesive molecules were detected by ELISA assay. The expression of NFκB p65 phosphorylation, IκB degradation, and Akt phosphorylation was assessed by western blot assay. Hibifolin pre-treatment significantly reduced pulmonary vascular barrier dysfunction and neutrophil infiltration into the BAL fluid in LPS-induced ALI mice. In addition, LPS-induced expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and adhesive molecules (ICAM-1, VCAM-1) within the BAL fluid were markedly reduced by hibifolin in LPS-induced ALI mice. More, hibifolin inhibited LPS-induced phosphorylation of NFκB p65, degradation of IκB, and phosphorylation of Akt in lungs with ALI mice. In conclusion, hibifolin shows promise in improving the pathophysiological features and proinflammatory responses of LPS-induced ALI in mice through the NFκB pathway and its upstream factor, Akt phosphorylation.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cadmium Exposure in Male Rats Results in Ovarian Granulosa Cell Apoptosis in Female Offspring and Paternal Genetic Effects 雄性大鼠暴露于镉会导致雌性后代卵巢颗粒细胞凋亡和父系遗传效应。
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-09 DOI: 10.1002/tox.24375
Qingyu Li, Yuchen Li, Jianlin Zhu, Zhangpin Liu, Yi Sun, Yake Lv, Jingwen Li, Lingfeng Luo, Chenyun Zhang, Wenchang Zhang

The aim of this study was to investigate whether the damage to male offspring induced by cadmium (Cd) exposure during embryonic period leads to the apoptosis of ovarian granulosa cells (OGCs) in the next generation of female offspring, and whether this apoptosis in the offspring was due to paternal genetic effects. Pregnant Sprague–Dawley (SD) rats were exposed to CdCl2 (0, 0.5, 2.0, or 8.0 mg/kg) by gavage daily for 20 days to produce the filial 1 (F1) generation. F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was generated in the same way. No apoptotic bodies were observed in the OGCs of either the F2 or F3 generation as shown by electron microscopy, and a reduced OGC apoptosis rate (detected by flow cytometry) was observed in F2 OGCs from the Cd-exposed group. Moreover, the mRNA (qRT-PCR) levels of Bax and Bcl-2 and the protein (western blotting) level of pro-caspase-8 increased in the F2 generation (p < 0.05). The expression of apoptosis-related miRNAs (qRT-PCR) and methylation of apoptosis-related genes (determined via bisulfite-sequencing PCR) in OGCs were further determined. Compared with those of the controls, the expression patterns of microRNAs (miRNAs) in the F2 offspring were different in the Cd-exposed group. The miR-92a-2-5p expression levels were decreased in both the F2 and F3 generations (p < 0.05), while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, this study showed that the paternal genetic intergenerational effect of male Cd exposure during embryonic period induced apoptosis of OGCs in the offspring was weakened, and the transgenerational effect disappeared; nevertheless, intergenerational and transgenerational changes in apoptosis-related genes, epigenetic modifications, DNA methylation, and miRNAs were observed, and may be important for understanding the homeostatic mechanisms of the body to alleviate the intergenerational transmission of Cd-induced damage.

本研究旨在探讨胚胎期镉(Cd)暴露对雄性后代的损伤是否会导致下一代雌性后代卵巢颗粒细胞(OGCs)的凋亡,以及这种凋亡是否是由于父系遗传效应所致。怀孕的Sprague-Dawley(SD)大鼠每天灌胃接触氯化镉(0、0.5、2.0或8.0毫克/千克)20天,以产生孝子1代(F1)。F1 雄性与新购买的雌性交配产生 F2 代,F3 代以同样的方法产生。电子显微镜显示,F2 代或 F3 代的 OGC 中均未观察到凋亡体,而在 Cd 暴露组的 F2 OGC 中,观察到 OGC 的凋亡率降低(通过流式细胞仪检测)。此外,在 F2 代中,Bax 和 Bcl-2 的 mRNA(qRT-PCR)水平以及 pro-caspase-8 的蛋白质(Western 印迹)水平都有所提高(p<0.05)。
{"title":"Cadmium Exposure in Male Rats Results in Ovarian Granulosa Cell Apoptosis in Female Offspring and Paternal Genetic Effects","authors":"Qingyu Li,&nbsp;Yuchen Li,&nbsp;Jianlin Zhu,&nbsp;Zhangpin Liu,&nbsp;Yi Sun,&nbsp;Yake Lv,&nbsp;Jingwen Li,&nbsp;Lingfeng Luo,&nbsp;Chenyun Zhang,&nbsp;Wenchang Zhang","doi":"10.1002/tox.24375","DOIUrl":"10.1002/tox.24375","url":null,"abstract":"<div>\u0000 \u0000 <p>The aim of this study was to investigate whether the damage to male offspring induced by cadmium (Cd) exposure during embryonic period leads to the apoptosis of ovarian granulosa cells (OGCs) in the next generation of female offspring, and whether this apoptosis in the offspring was due to paternal genetic effects. Pregnant Sprague–Dawley (SD) rats were exposed to CdCl<sub>2</sub> (0, 0.5, 2.0, or 8.0 mg/kg) by gavage daily for 20 days to produce the filial 1 (F1) generation. F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was generated in the same way. No apoptotic bodies were observed in the OGCs of either the F2 or F3 generation as shown by electron microscopy, and a reduced OGC apoptosis rate (detected by flow cytometry) was observed in F2 OGCs from the Cd-exposed group. Moreover, the mRNA (qRT-PCR) levels of Bax and Bcl-2 and the protein (western blotting) level of pro-caspase-8 increased in the F2 generation (<i>p</i> &lt; 0.05). The expression of apoptosis-related miRNAs (qRT-PCR) and methylation of apoptosis-related genes (determined via bisulfite-sequencing PCR) in OGCs were further determined. Compared with those of the controls, the expression patterns of microRNAs (miRNAs) in the F2 offspring were different in the Cd-exposed group. The miR-92a-2-5p expression levels were decreased in both the F2 and F3 generations (<i>p</i> &lt; 0.05), while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, this study showed that the paternal genetic intergenerational effect of male Cd exposure during embryonic period induced apoptosis of OGCs in the offspring was weakened, and the transgenerational effect disappeared; nevertheless, intergenerational and transgenerational changes in apoptosis-related genes, epigenetic modifications, DNA methylation, and miRNAs were observed, and may be important for understanding the homeostatic mechanisms of the body to alleviate the intergenerational transmission of Cd-induced damage.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ERα Coregulator TRIM28 Promotes Breast Cancer Progression by Activating the AKT/GSK3β Pathway ERα核心调节因子TRIM28通过激活AKT/GSK3β通路促进乳腺癌进展
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-07 DOI: 10.1002/tox.24373
Linlin Fu, Baodong Ma, Lan Zhang, Huikang Xu, Wei Chen, Di Wu, Feng Gao, Yanping Huo

Estrogen receptor α (ERα) promotes the growth and survival of ER-positive breast cancer (BC) cells. ER regulates ER expression target genes by directly binding to specific estrogen response elements, upon activation by estrogens. In this study, 106 proteins interacting with endogenous chromatin-bound ER in a BC cell line MCF7 were identified using the RIME method. The interactome data showed that the tripartite motif containing 28 (TRIM28) is the most significantly enriched ER-associated protein. This study provides evidence that TRIM28 expression improves ER transcriptional activity and promotes the BC cells proliferation, migration, and invasion of BC cells. The high expression of TRIM28 is associated with poor clinical outcomes in patients with ER-positive BC. Mechanistic experiments indicate that TRIM28 expression activates the AKT/GSK3β pathway. To conclude, TRIM28 acts as a regulatory protein of ER and AKT signaling; therefore, it can be a target for the therapeutic interventions of BC.

雌激素受体α(ERα)能促进ER阳性乳腺癌(BC)细胞的生长和存活。在雌激素的激活下,ER通过直接与特定的雌激素反应元件结合来调节ER表达的靶基因。本研究采用 RIME 方法鉴定了 BC 细胞系 MCF7 中与内源性染色质结合的 ER 相互作用的 106 个蛋白。相互作用组数据显示,含三方基序 28(TRIM28)是ER相关蛋白中富集最显著的蛋白。这项研究提供的证据表明,TRIM28的表达提高了ER转录活性,促进了BC细胞的增殖、迁移和侵袭。TRIM28的高表达与ER阳性BC患者的不良临床预后有关。机理实验表明,TRIM28的表达激活了AKT/GSK3β通路。总之,TRIM28是ER和AKT信号转导的调控蛋白,因此可以作为治疗BC的靶点。
{"title":"ERα Coregulator TRIM28 Promotes Breast Cancer Progression by Activating the AKT/GSK3β Pathway","authors":"Linlin Fu,&nbsp;Baodong Ma,&nbsp;Lan Zhang,&nbsp;Huikang Xu,&nbsp;Wei Chen,&nbsp;Di Wu,&nbsp;Feng Gao,&nbsp;Yanping Huo","doi":"10.1002/tox.24373","DOIUrl":"10.1002/tox.24373","url":null,"abstract":"<div>\u0000 \u0000 <p>Estrogen receptor α (ERα) promotes the growth and survival of ER-positive breast cancer (BC) cells. ER regulates ER expression target genes by directly binding to specific estrogen response elements, upon activation by estrogens. In this study, 106 proteins interacting with endogenous chromatin-bound ER in a BC cell line MCF7 were identified using the RIME method. The interactome data showed that the tripartite motif containing 28 (TRIM28) is the most significantly enriched ER-associated protein. This study provides evidence that TRIM28 expression improves ER transcriptional activity and promotes the BC cells proliferation, migration, and invasion of BC cells. The high expression of TRIM28 is associated with poor clinical outcomes in patients with ER-positive BC. Mechanistic experiments indicate that TRIM28 expression activates the AKT/GSK3β pathway. To conclude, TRIM28 acts as a regulatory protein of ER and AKT signaling; therefore, it can be a target for the therapeutic interventions of BC.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation IGF-IIRα 表达的增强会通过钙神经蛋白的激活加剧脂多糖诱导的心脏炎症、肥大和凋亡。
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-07 DOI: 10.1002/tox.24385
Khwanchit Boonha, Wei-Wen Kuo, Bruce Chi-Kang Tsai, Dennis Jine-Yuan Hsieh, Kuan-Ho Lin, Shang-Yeh Lu, Chia-Hua Kuo, Liang-Yo Yang, Chih-Yang Huang

Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.

心血管疾病是全球主要死因之一,发病率很高。胰岛素样生长因子-Ⅱ受体α(IGF-ⅡRα)是一种应激诱导的负调控因子。本研究的重点是 IGF-IIRα 在心肌母细胞中的高表达所产生的实质性影响及其与心功能不全恶化的关联。我们使用脂多糖(LPS)诱导的 H9c2 心肌细胞作为败血症模型,旨在阐明 IGF-IIRα 和 LPS 在加重心脏损伤方面的分子相互作用。我们的研究结果表明,LPS 刺激和 IGF-IIRα 过表达能协同诱导心脏炎症和肥大,导致细胞存活率下降。在这种综合条件下引发的过度钙神经蛋白活性被认为是加剧细胞存活率负面影响的关键因素。细胞的变化,如细胞增大、肌动蛋白丝中断以及肥大相关蛋白和炎症相关蛋白的上调,都是导致整体肥大和炎症反应的原因。IGF-IIRα 的过表达也加剧了 LPS 在 H9c2 心肌细胞中诱导的细胞凋亡。用 IGF-IIRα 过表达抑制 LPS 处理的 H9c2 心肌细胞中的钙神经蛋白,可有效逆转其有害影响,减少细胞损伤并减轻与细胞凋亡相关的心脏机制。我们的研究表明,在IGF-IIRα过表达的类似败血症的心脏条件下,钙神经蛋白的过度激活会加重心脏损伤。抑制 IGF-IIRα 和钙调磷酸酶的表达可能是减轻疾病影响和改善心脏功能的潜在干预措施。
{"title":"Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation","authors":"Khwanchit Boonha,&nbsp;Wei-Wen Kuo,&nbsp;Bruce Chi-Kang Tsai,&nbsp;Dennis Jine-Yuan Hsieh,&nbsp;Kuan-Ho Lin,&nbsp;Shang-Yeh Lu,&nbsp;Chia-Hua Kuo,&nbsp;Liang-Yo Yang,&nbsp;Chih-Yang Huang","doi":"10.1002/tox.24385","DOIUrl":"10.1002/tox.24385","url":null,"abstract":"<div>\u0000 \u0000 <p>Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhodiola and Salidroside Attenuate Oxidative Stress-Triggered H9c2 Cardiomyoblast Apoptosis Through IGF1R-Induced ERK1/2 Activation 红景天和水杨甙通过IGF1R诱导的ERK1/2活化减轻氧化应激引发的H9c2心肌母细胞凋亡
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-07 DOI: 10.1002/tox.24372
I-Ju Ju, Bruce Chi-Kang Tsai, Wei-Wen Kuo, Chia-Hua Kuo, Yueh-Min Lin, Dennis Jine-Yuan Hsieh, Pei-Ying Pai, Shang-En Huang, Shang-Yeh Lu, Shin-Da Lee, Chih-Yang Huang

Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. Rhodiola, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from Rhodiola rosea, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of Rhodiola and salidroside against H2O2-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H2O2 for 4 h, and subsequently treated with Rhodiola or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H2O2 (100 μM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with Rhodiola (12.5, 25, and 50 μg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H2O2-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of Rhodiola and salidroside in H9c2 cells against oxidative damage. Our findings suggest that Rhodiola and salidroside possess antioxidative properties that mitigate H2O2-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose Rhodiola and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.

氧化应激是导致各种心血管疾病的关键因素。红景天是一种传统中药,其强大的抗氧化特性已得到公认。从红景天中提取的一种苯基丙酮苷(Salidroside)具有显著的抗氧化能力。本研究旨在阐明红景天和水杨甙对 H9c2 心肌细胞中 H2O2 诱导的心脏凋亡的潜在保护机制。将 H9c2 细胞暴露于 H2O2 4 小时,然后用红景天或丹皮甙处理 24 小时。研究了胰岛素样生长因子 1 受体(IGF1R)的参与和细胞外调节蛋白激酶 1/2(ERK1/2)的激活。暴露于 H2O2(100 μM)可明显诱导 H9c2 细胞的心脏凋亡。然而,红景天(12.5、25 和 50 μg/mL)和水杨甙(0.1、1 和 10 nM)能有效减轻 H2O2 诱导的细胞毒性和细胞凋亡。这种保护作用与 IGF1R 激活 ERK1/2 磷酸化有关,从而抑制了 H9c2 细胞中 Fas 依赖性蛋白、HIF-1α、Bax 和 Bak 的表达。苏木精和伊红染色以及免疫荧光检测的图像也显示了红景天和水杨甙对 H9c2 细胞氧化损伤的保护作用。我们的研究结果表明,红景天和丹皮甙具有抗氧化特性,可减轻 H2O2 诱导的 H9c2 细胞凋亡。其保护机制涉及 IGF1R 的激活和随后 ERK1/2 的磷酸化。这些结果表明,红景天和水杨甙是治疗心脏疾病中氧化应激诱导的心肌细胞毒性和凋亡的潜在药物。未来的研究可能会探索它们在心脏健康方面的临床应用。
{"title":"Rhodiola and Salidroside Attenuate Oxidative Stress-Triggered H9c2 Cardiomyoblast Apoptosis Through IGF1R-Induced ERK1/2 Activation","authors":"I-Ju Ju,&nbsp;Bruce Chi-Kang Tsai,&nbsp;Wei-Wen Kuo,&nbsp;Chia-Hua Kuo,&nbsp;Yueh-Min Lin,&nbsp;Dennis Jine-Yuan Hsieh,&nbsp;Pei-Ying Pai,&nbsp;Shang-En Huang,&nbsp;Shang-Yeh Lu,&nbsp;Shin-Da Lee,&nbsp;Chih-Yang Huang","doi":"10.1002/tox.24372","DOIUrl":"10.1002/tox.24372","url":null,"abstract":"<div>\u0000 \u0000 <p>Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. <i>Rhodiola</i>, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from <i>Rhodiola rosea</i>, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of <i>Rhodiola</i> and salidroside against H<sub>2</sub>O<sub>2</sub>-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H<sub>2</sub>O<sub>2</sub> for 4 h, and subsequently treated with <i>Rhodiola</i> or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H<sub>2</sub>O<sub>2</sub> (100 μM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with <i>Rhodiola</i> (12.5, 25, and 50 μg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H<sub>2</sub>O<sub>2</sub>-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of <i>Rhodiola</i> and salidroside in H9c2 cells against oxidative damage. Our findings suggest that <i>Rhodiola</i> and salidroside possess antioxidative properties that mitigate H<sub>2</sub>O<sub>2</sub>-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose <i>Rhodiola</i> and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective Effects of Carvacrol on Mercuric Chloride-Induced Lung Toxicity Through Modulating Oxidative Stress, Apoptosis, Inflammation, and Autophagy. 香芹酚通过调节氧化应激、细胞凋亡、炎症和自噬对氯化汞诱发的肺毒性的保护作用
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-06 DOI: 10.1002/tox.24397
Berna Eriten, Sefa Kucukler, Cihan Gur, Adnan Ayna, Halit Diril, Cuneyt Caglayan

Mercuric chloride (HgCl2) is extremely toxic to both humans and animals. It could be absorbed via ingestion, inhalation, and skin contact. Exposure to HgCl2 can cause severe health effects, including damages to the gastrointestinal, respiratory, and central nervous systems. The purpose of this work was to explore if carvacrol (CRV) could protect rats lungs from damage caused by HgCl2. Intraperitoneal injections of HgCl2 at a dose of 1.23 mg/kg body weight were given either alone or in conjunction with oral CRV administration at doses of 25 and 50 mg/kg body weight for 7 days. The study included biochemical and histological techniques to examine the lung tissue's oxidative stress, apoptosis, inflammation, and autophagy processes. HgCl2-induced reductions in GSH levels and antioxidant enzymes (SOD, CAT, and GPx) activity were enhanced by CRV co-administration. Furthermore, MDA levels were lowered by CRV. The inflammatory mediators NF-κB, IκB, NLRP3, TNF-α, IL-1β, IL6, COX-2, and iNOS were all reduced by CRV. When exposed to HgCl2, the levels of apoptotic Bax, caspase-3, Apaf1, p53, caspase-6, and caspase-9 increased, but the levels of antiapoptotic Bcl-2 reduced after CRV treatment. CRV decreased levels of Beclin-1, LC3A, and LC3B, which in turn decreased HgCl2-induced autophagy damage. After HgCl2 treatment, higher pathological damage was observed in terms of alveolar septal thickening, congestion, edema, and inflammatory cell infiltration compared to the control group while CRV ameliorated these effects. Consequently, by preventing HgCl2-induced increases in oxidative stress and the corresponding inflammation, autophagy, apoptosis, and disturbance of tissue integrity in lung tissues, CRV might be seen as a useful therapeutic alternative.

氯化汞(HgCl2)对人类和动物都有剧毒。可通过摄入、吸入和皮肤接触吸收。接触氯化汞会对健康造成严重影响,包括损害肠胃、呼吸和中枢神经系统。这项研究的目的是探讨香芹酚(CRV)能否保护大鼠的肺部免受 HgCl2 的损害。大鼠腹腔注射 1.23 毫克/千克体重的氯化汞,同时口服 25 毫克和 50 毫克/千克体重的香芹酚,连续 7 天。研究采用生化和组织学技术检测肺组织的氧化应激、细胞凋亡、炎症和自噬过程。氯化汞诱导的 GSH 水平和抗氧化酶(SOD、CAT 和 GPx)活性的降低在联合施用 CRV 后得到增强。此外,CRV 还能降低 MDA 水平。CRV 可降低炎症介质 NF-κB、IκB、NLRP3、TNF-α、IL-1β、IL6、COX-2 和 iNOS 的水平。当暴露于 HgCl2 时,凋亡因子 Bax、caspase-3、Apaf1、p53、caspase-6 和 caspase-9 的水平在 CRV 处理后升高,但抗凋亡因子 Bcl-2 的水平在 CRV 处理后降低。CRV降低了Beclin-1、LC3A和LC3B的水平,从而减少了HgCl2诱导的自噬损伤。与对照组相比,HgCl2 处理后观察到肺泡间隔增厚、充血、水肿和炎症细胞浸润等更高的病理损伤,而 CRV 可改善这些影响。因此,通过防止氯化汞诱导的氧化应激增加以及相应的炎症、自噬、细胞凋亡和肺组织完整性的破坏,CRV 可被视为一种有用的替代疗法。
{"title":"Protective Effects of Carvacrol on Mercuric Chloride-Induced Lung Toxicity Through Modulating Oxidative Stress, Apoptosis, Inflammation, and Autophagy.","authors":"Berna Eriten, Sefa Kucukler, Cihan Gur, Adnan Ayna, Halit Diril, Cuneyt Caglayan","doi":"10.1002/tox.24397","DOIUrl":"https://doi.org/10.1002/tox.24397","url":null,"abstract":"<p><p>Mercuric chloride (HgCl<sub>2</sub>) is extremely toxic to both humans and animals. It could be absorbed via ingestion, inhalation, and skin contact. Exposure to HgCl<sub>2</sub> can cause severe health effects, including damages to the gastrointestinal, respiratory, and central nervous systems. The purpose of this work was to explore if carvacrol (CRV) could protect rats lungs from damage caused by HgCl<sub>2</sub>. Intraperitoneal injections of HgCl<sub>2</sub> at a dose of 1.23 mg/kg body weight were given either alone or in conjunction with oral CRV administration at doses of 25 and 50 mg/kg body weight for 7 days. The study included biochemical and histological techniques to examine the lung tissue's oxidative stress, apoptosis, inflammation, and autophagy processes. HgCl<sub>2</sub>-induced reductions in GSH levels and antioxidant enzymes (SOD, CAT, and GPx) activity were enhanced by CRV co-administration. Furthermore, MDA levels were lowered by CRV. The inflammatory mediators NF-κB, IκB, NLRP3, TNF-α, IL-1β, IL6, COX-2, and iNOS were all reduced by CRV. When exposed to HgCl<sub>2</sub>, the levels of apoptotic Bax, caspase-3, Apaf1, p53, caspase-6, and caspase-9 increased, but the levels of antiapoptotic Bcl-2 reduced after CRV treatment. CRV decreased levels of Beclin-1, LC3A, and LC3B, which in turn decreased HgCl<sub>2</sub>-induced autophagy damage. After HgCl<sub>2</sub> treatment, higher pathological damage was observed in terms of alveolar septal thickening, congestion, edema, and inflammatory cell infiltration compared to the control group while CRV ameliorated these effects. Consequently, by preventing HgCl<sub>2</sub>-induced increases in oxidative stress and the corresponding inflammation, autophagy, apoptosis, and disturbance of tissue integrity in lung tissues, CRV might be seen as a useful therapeutic alternative.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luteolin Inhibits Indoxyl Sulfate-Induced ICAM-1 and MCP-1 Expression by Inducing HO-1 Expression in EA.hy926 Human Endothelial Cells 木犀草素通过诱导 EA.hy926 人内皮细胞中 HO-1 的表达抑制硫酸吲哚啉诱导的 ICAM-1 和 MCP-1 表达
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-06 DOI: 10.1002/tox.24380
Li-Chien Chang, En-Ling Yeh, Ya-Chi Chuang, Chia-Hsuan Wu, Chia-Wen Kuo, Chong-Kuei Lii, Ya-Chen Yang, Haw-Wen Chen, Chien-Chun Li

In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.

在慢性肾病患者中,尿毒症毒素硫酸吲哚乙酯(IS)会加速肾脏损伤和心血管疾病的恶化。硫酸吲哚乙酯可能会诱发内皮细胞炎症,从而导致血管疾病。叶黄素具有抗氧化和抗炎特性。本研究旨在探讨叶黄素对 IS 介导的活性氧(ROS)产生、EA.hy926 细胞中细胞间粘附分子(ICAM-1)和单核细胞趋化蛋白(MCP-1)表达的影响及其可能的机制。IS 能明显诱导 ROS 的产生(6.03 倍,p
{"title":"Luteolin Inhibits Indoxyl Sulfate-Induced ICAM-1 and MCP-1 Expression by Inducing HO-1 Expression in EA.hy926 Human Endothelial Cells","authors":"Li-Chien Chang,&nbsp;En-Ling Yeh,&nbsp;Ya-Chi Chuang,&nbsp;Chia-Hsuan Wu,&nbsp;Chia-Wen Kuo,&nbsp;Chong-Kuei Lii,&nbsp;Ya-Chen Yang,&nbsp;Haw-Wen Chen,&nbsp;Chien-Chun Li","doi":"10.1002/tox.24380","DOIUrl":"10.1002/tox.24380","url":null,"abstract":"<div>\u0000 \u0000 <p>In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, <i>p</i> &lt; 0.05), ICAM-1 (by 2.19-fold, <i>p</i> &lt; 0.05) and MCP-1 protein expression (by 2.18-fold, <i>p</i> &lt; 0.05), and HL-60 cell adhesion (by 31%, <i>p</i> &lt; 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (<i>p</i> &lt; 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ameliorating and Therapeutic Impact of Curcumin Nanoparticles Against Aluminum Oxide Nanoparticles Induced Kidney Toxicity, DNA Damage, Oxidative Stress, PCNA and TNFα Alteration in Male Rats 姜黄素纳米颗粒对氧化铝纳米颗粒诱导的雄性大鼠肾脏毒性、DNA损伤、氧化应激、PCNA和TNFα变化的改善和治疗作用
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-06 DOI: 10.1002/tox.24392
Ehab Tousson, Ibrahim E. T. El-Sayed, Hebatalla Nashaat Elsharkawy, Amira S. Ahmed

Aluminum oxide nanoparticles (Al2O3 NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform (Cur NPs) against Al2O3 NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al2O3 NPs; G4, (Cur NPs + Al2O3 NPs) received Cur NPs and Al2O3 NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al2O3 NPs + Cur NPs) received Al2O3 NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al2O3 NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al2O3 NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al2O3 NPs + Cur NPs than Cur NPs + Al2O3 NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al2O3 NPs in male albino rats.

氧化铝纳米粒子(Al2O3 NPs)是纳米技术中应用最广泛的纳米粒子之一,对环境有负面影响。因此,本研究旨在探讨姜黄素纳米形态(Cur NPs)对 Al2O3 NPs 诱导的雄性大鼠肾脏毒性、氧化应激、DNA 损伤、坏死因子α(TNFα)和增殖细胞核抗原(PCNA)表达变化的保护和治疗作用。将 50 只健康成年雄性大鼠分为 5 组[G1,对照组;G2,口服 Cur NPs 4 周,每天 50 毫克/千克;G3,口服 Al2O3 NPs 4 周,每天 6 毫克/千克体重;G4,(Cur NPs + Al2O3 NPs)分别口服 Cur NPs 和 Al2O3 NPs,剂量与 G2 和 G3 相似,共 4 周;G5,(Al2O3 NPs + Cur NPs)口服 Al2O3 NPs,剂量与 G3 相似,共 4 周,然后再口服 Cur NPs,剂量与 G2 相似,共 4 周]。目前的研究结果表明,与对照组相比,Al2O3 NPs 会导致血清尿素、肌酐、氯化物、钙、肾丙二醛 (MDA)、DNA 损伤、损伤、TNFα 和 PCNA 表达的显著升高,以及血清钾、肾超氧化物歧化酶 (SOD) 和谷胱甘肽 (GSH) 的显著降低。另一方面,将 Al2O3 NPs 与 Cur NPs 结合使用可调节所有改变的参数,并改善肾脏功能和结构,其中 Al2O3 NPs + Cur NPs 比 Cur NPs + Al2O3 NPs 效果更好。总之,Cur NPs 有能力减轻 Al2O3 NPs 对雄性白化大鼠肾脏的毒性。
{"title":"Ameliorating and Therapeutic Impact of Curcumin Nanoparticles Against Aluminum Oxide Nanoparticles Induced Kidney Toxicity, DNA Damage, Oxidative Stress, PCNA and TNFα Alteration in Male Rats","authors":"Ehab Tousson,&nbsp;Ibrahim E. T. El-Sayed,&nbsp;Hebatalla Nashaat Elsharkawy,&nbsp;Amira S. Ahmed","doi":"10.1002/tox.24392","DOIUrl":"10.1002/tox.24392","url":null,"abstract":"<div>\u0000 \u0000 <p>Aluminum oxide nanoparticles (Al<sub>2</sub>O<sub>3</sub> NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform <b>(</b>Cur NPs) against Al<sub>2</sub>O<sub>3</sub> NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al<sub>2</sub>O<sub>3</sub> NPs; G4, (Cur NPs + Al<sub>2</sub>O<sub>3</sub> NPs) received Cur NPs and Al<sub>2</sub>O<sub>3</sub> NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al<sub>2</sub>O<sub>3</sub> NPs + Cur NPs) received Al<sub>2</sub>O<sub>3</sub> NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al<sub>2</sub>O<sub>3</sub> NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al<sub>2</sub>O<sub>3</sub> NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al<sub>2</sub>O<sub>3</sub> NPs + Cur NPs than Cur NPs + Al<sub>2</sub>O<sub>3</sub> NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al<sub>2</sub>O<sub>3</sub> NPs in male albino rats.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naringenin Against Cadmium Toxicity in Fibroblast Cells: An Integrated Network Pharmacology and In Vitro Metabolomics Approach 柚皮苷对抗成纤维细胞的镉毒性:综合网络药理学和体外代谢组学方法。
IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-06 DOI: 10.1002/tox.24388
Komal Priya, Ashim Chandra Roy, Abhinav Prasad, Prabhat Kumar, Ilora Ghosh

Cadmium, a heavy metal, disrupts cellular homeostasis and is highly toxic, with no effective treatments currently available against its toxicity. According to studies, phytochemicals provide a promising strategy for mitigating cadmium toxicity. Naringenin (NG), a potent antioxidant found primarily in citrus fruits, showed protective properties against cadmium toxicity in rats. Nonetheless, the precise mechanism of cadmium cytotoxicity in fibroblasts remains unknown. This study evaluated NG against cadmium (CdCl2) toxicity utilizing network pharmacology and in silico molecular docking, and was further validated experimentally in rat fibroblast F111 cells. Using network pharmacology, 25 possible targets, including the top 10 targets of NG against cadmium, were identified. Molecular docking of interleukin 6 (IL6), the top potential target with NG, showed robust binding with an inhibition constant (Ki) of 58.76 μM, supporting its potential therapeutic potential. Pathway enrichment analysis suggested that “response to reactive oxygen species” and “negative regulation of small molecules metabolic process” were the topmost pathways targeted by NG against cadmium. In vitro analysis showed that NG (10 μM) attenuated CdCl2-induced oxidative stress by reducing altered intracellular ROS, mitochondrial mass, and membrane potential. Also, NG reversed CdCl2-mediated nuclear damage, G2/M phase arrest, and apoptosis. GC/MS-based metabolomics of F111 cells revealed CdCl2 reduced cholesterol levels, which led to alterations in primary bile acid, steroid and steroid hormone biosynthesis pathways, whereas, NG restored these alterations. In summary, combined in silico and in vitro analysis suggested that NG protected cells from CdCl2 toxicity by mitigating oxidative stress and metabolic pathway alterations, providing a comprehensive understanding of its protective mechanisms against cadmium-induced toxicity.

镉是一种重金属,会破坏细胞的稳态,具有很强的毒性,目前还没有针对其毒性的有效治疗方法。研究表明,植物化学物质为减轻镉毒性提供了一种有前景的策略。柚皮苷(NG)是一种主要存在于柑橘类水果中的强效抗氧化剂,对大鼠的镉毒性具有保护作用。然而,镉对成纤维细胞细胞毒性的确切机制仍不清楚。本研究利用网络药理学和硅学分子对接评估了 NG 对镉(CdCl2)毒性的作用,并在大鼠成纤维细胞 F111 中进行了进一步的实验验证。通过网络药理学,确定了 25 个可能的靶点,包括 NG 抗镉的前 10 个靶点。白细胞介素6(IL6)是NG的头号潜在靶点,其与NG的分子对接显示出强大的结合力,抑制常数(Ki)为58.76 μM,支持其潜在的治疗潜力。通路富集分析表明,"对活性氧的反应 "和 "对小分子代谢过程的负调控 "是 NG 针对镉的最主要通路。体外分析表明,NG(10 μM)通过减少细胞内 ROS、线粒体质量和膜电位的改变,减轻了 CdCl2 诱导的氧化应激。此外,NG 还能逆转 CdCl2-介导的核损伤、G2/M 期停滞和细胞凋亡。基于 GC/MS 的 F111 细胞代谢组学显示,氯化镉降低了胆固醇水平,导致初级胆汁酸、类固醇和类固醇激素生物合成途径发生改变,而 NG 则恢复了这些改变。总之,结合硅学和体外分析表明,NG 可通过减轻氧化应激和代谢途径的改变来保护细胞免受氯化镉毒性的伤害,从而提供了对镉诱导毒性的保护机制的全面了解。
{"title":"Naringenin Against Cadmium Toxicity in Fibroblast Cells: An Integrated Network Pharmacology and In Vitro Metabolomics Approach","authors":"Komal Priya,&nbsp;Ashim Chandra Roy,&nbsp;Abhinav Prasad,&nbsp;Prabhat Kumar,&nbsp;Ilora Ghosh","doi":"10.1002/tox.24388","DOIUrl":"10.1002/tox.24388","url":null,"abstract":"<div>\u0000 \u0000 <p>Cadmium, a heavy metal, disrupts cellular homeostasis and is highly toxic, with no effective treatments currently available against its toxicity. According to studies, phytochemicals provide a promising strategy for mitigating cadmium toxicity. Naringenin (NG), a potent antioxidant found primarily in citrus fruits, showed protective properties against cadmium toxicity in rats. Nonetheless, the precise mechanism of cadmium cytotoxicity in fibroblasts remains unknown. This study evaluated NG against cadmium (CdCl<sub>2</sub>) toxicity utilizing network pharmacology and in silico molecular docking, and was further validated experimentally in rat fibroblast F111 cells. Using network pharmacology, 25 possible targets, including the top 10 targets of NG against cadmium, were identified. Molecular docking of interleukin 6 (IL6), the top potential target with NG, showed robust binding with an inhibition constant (Ki) of 58.76 μM, supporting its potential therapeutic potential. Pathway enrichment analysis suggested that “response to reactive oxygen species” and “negative regulation of small molecules metabolic process” were the topmost pathways targeted by NG against cadmium. In vitro analysis showed that NG (10 μM) attenuated CdCl<sub>2</sub>-induced oxidative stress by reducing altered intracellular ROS, mitochondrial mass, and membrane potential. Also, NG reversed CdCl<sub>2</sub>-mediated nuclear damage, G2/M phase arrest, and apoptosis. GC/MS-based metabolomics of F111 cells revealed CdCl<sub>2</sub> reduced cholesterol levels, which led to alterations in primary bile acid, steroid and steroid hormone biosynthesis pathways, whereas, NG restored these alterations. In summary, combined in silico and in vitro analysis suggested that NG protected cells from CdCl<sub>2</sub> toxicity by mitigating oxidative stress and metabolic pathway alterations, providing a comprehensive understanding of its protective mechanisms against cadmium-induced toxicity.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1