首页 > 最新文献

Environmental Epigenetics最新文献

英文 中文
Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity. 多代不同的毒物暴露会诱发病理和肥胖症增强的表观遗传学跨代遗传。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-12-07 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad006
Eric E Nilsson, Margaux McBirney, Sarah De Santos, Stephanie E King, Daniel Beck, Colin Greeley, Lawrence B Holder, Michael K Skinner

Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.

连续三代大鼠暴露于不同的毒物,然后繁殖到跨代的 F5 代,以评估多代不同暴露的影响。目前的研究考察了农用杀真菌剂 vinclozolin 对 F0 代大鼠的影响,随后是 F1 代大鼠接触喷气燃料碳氢化合物混合物,然后是农药二氯二苯基三氯乙烷对 F2 代妊娠雌鼠的影响。随后获得 F3 代、F4 代和 F5 代转基因雌鼠,并对 F1-F5 代雌雄雌鼠的雄性精子表观遗传学改变和病理学进行检测。结果表明,雄性精子差异 DNA 甲基化区域受到显著影响。F3-F5代的DNA甲基化区域有50%是相似的。对每一代的睾丸、卵巢、肾脏和前列腺的病理学以及肥胖和肿瘤的存在进行了评估。病理分析使用了新开发的基于深度学习的人工智能组织病理学分析。观察结果表明,肥胖和代谢参数会对疾病产生复合影响,但其他病理变化在 F5 代转基因时趋于平稳,增幅较小。观察结果表明,人类群体中出现的多代暴露似乎会增加表观遗传影响和疾病易感性。
{"title":"Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity.","authors":"Eric E Nilsson, Margaux McBirney, Sarah De Santos, Stephanie E King, Daniel Beck, Colin Greeley, Lawrence B Holder, Michael K Skinner","doi":"10.1093/eep/dvad006","DOIUrl":"10.1093/eep/dvad006","url":null,"abstract":"<p><p>Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad006"},"PeriodicalIF":3.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying unique exposure-specific transgenerational differentially DNA methylated region epimutations in the genome using hybrid deep learning prediction models. 利用混合深度学习预测模型识别基因组中独特的暴露特异性跨代DNA甲基化区域表突变。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-11-30 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad007
Pegah Mavaie, Lawrence Holder, Michael Skinner

Exposure to environmental toxicants can lead to epimutations in the genome and an increase in differential DNA methylated regions (DMRs) that have been linked to increased susceptibility to various diseases. However, the unique effect of particular toxicants on the genome in terms of leading to unique DMRs for the toxicants has been less studied. One hurdle to such studies is the low number of observed DMRs per toxicants. To address this hurdle, a previously validated hybrid deep-learning cross-exposure prediction model is trained per exposure and used to predict exposure-specific DMRs in the genome. Given these predicted exposure-specific DMRs, a set of unique DMRs per exposure can be identified. Analysis of these unique DMRs through visualization, DNA sequence motif matching, and gene association reveals known and unknown links between individual exposures and their unique effects on the genome. The results indicate the potential ability to define exposure-specific epigenetic markers in the genome and the potential relative impact of different exposures. Therefore, a computational approach to predict exposure-specific transgenerational epimutations was developed, which supported the exposure specificity of ancestral toxicant actions and provided epigenome information on the DMR sites predicted.

暴露于环境毒物会导致基因组中的表突变和差异 DNA 甲基化区域(DMR)的增加,而差异 DNA 甲基化区域与各种疾病的易感性增加有关。然而,关于特定毒物对基因组的独特影响,即导致毒物的独特 DMRs 的研究较少。此类研究面临的一个障碍是每种毒物的 DMRs 数量较少。为了解决这个问题,我们对之前验证过的混合深度学习交叉暴露预测模型进行了训练,用于预测基因组中特定暴露的 DMRs。有了这些预测的暴露特异性 DMR,就可以确定每种暴露的一组独特 DMR。通过可视化、DNA 序列主题匹配和基因关联分析这些独特的 DMR,可以揭示个体暴露及其对基因组的独特影响之间已知和未知的联系。这些结果表明,我们有能力确定基因组中特定暴露的表观遗传标记,以及不同暴露的潜在相对影响。因此,我们开发了一种预测暴露特异性跨代表观突变的计算方法,它支持祖先毒物作用的暴露特异性,并提供了所预测的 DMR 位点的表观遗传组信息。
{"title":"Identifying unique exposure-specific transgenerational differentially DNA methylated region epimutations in the genome using hybrid deep learning prediction models.","authors":"Pegah Mavaie, Lawrence Holder, Michael Skinner","doi":"10.1093/eep/dvad007","DOIUrl":"10.1093/eep/dvad007","url":null,"abstract":"<p><p>Exposure to environmental toxicants can lead to epimutations in the genome and an increase in differential DNA methylated regions (DMRs) that have been linked to increased susceptibility to various diseases. However, the unique effect of particular toxicants on the genome in terms of leading to unique DMRs for the toxicants has been less studied. One hurdle to such studies is the low number of observed DMRs per toxicants. To address this hurdle, a previously validated hybrid deep-learning cross-exposure prediction model is trained per exposure and used to predict exposure-specific DMRs in the genome. Given these predicted exposure-specific DMRs, a set of unique DMRs per exposure can be identified. Analysis of these unique DMRs through visualization, DNA sequence motif matching, and gene association reveals known and unknown links between individual exposures and their unique effects on the genome. The results indicate the potential ability to define exposure-specific epigenetic markers in the genome and the potential relative impact of different exposures. Therefore, a computational approach to predict exposure-specific transgenerational epimutations was developed, which supported the exposure specificity of ancestral toxicant actions and provided epigenome information on the DMR sites predicted.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad007"},"PeriodicalIF":3.8,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. 通过表观遗传机制遗传环境诱导的表型变化。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-11-22 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad008
Yukiko Tando, Yasuhisa Matsui

Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.

越来越多的证据表明,表观遗传变化通过各种亲代环境因素改变了各种生物后代的表型。环境因素,包括暴露于化学物质、压力和异常营养,通过不同的表观遗传机制影响亲代生殖细胞的表观基因组,如DNA甲基化、组蛋白修饰以及通过代谢物产生的小RNA。目前尚存在的一些问题是环境诱导的生殖细胞表观遗传变化与后代表型改变之间的因果关系,以及异常表观遗传变化如何逃脱生殖细胞重编程的分子基础。在这篇综述中,我们将以动物物种为重点,介绍表型变化通过亲代环境因素以及伴随的表观遗传和代谢变化而产生的代际遗传和跨代遗传的代表性实例。我们还讨论了表观遗传的分子机制及其可能的生物学意义。
{"title":"Inheritance of environment-induced phenotypic changes through epigenetic mechanisms.","authors":"Yukiko Tando, Yasuhisa Matsui","doi":"10.1093/eep/dvad008","DOIUrl":"10.1093/eep/dvad008","url":null,"abstract":"<p><p>Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad008"},"PeriodicalIF":3.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic clocks and research implications of the lack of data on whom they have been developed: a review of reported and missing sociodemographic characteristics. 表观遗传学时钟以及缺乏关于其开发对象的数据所产生的研究影响:对已报告和缺失的社会人口特征的审查。
IF 4.8 Q1 GENETICS & HEREDITY Pub Date : 2023-07-15 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad005
Sarah Holmes Watkins, Christian Testa, Jarvis T Chen, Immaculata De Vivo, Andrew J Simpkin, Kate Tilling, Ana V Diez Roux, George Davey Smith, Pamela D Waterman, Matthew Suderman, Caroline Relton, Nancy Krieger

Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic characteristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples - prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that other researchers can make informed judgements about the appropriateness of the model for their study population.

表观遗传时钟越来越多地被用作评估各种表型和暴露对健康老龄化影响的工具,最近的重点是健康的社会决定因素。然而,人们很少关注这些时钟所依据的参与者的社会人口特征。参与者特征非常重要,因为已知社会人口和社会经济因素与 DNA 甲基化变异和健康老龄化有关。同样众所周知的是,机器学习算法有可能通过使用不具代表性的样本而加剧健康不平等--预测模型在用于构建模型的训练数据中代表性较差的社会群体中可能表现不佳。为了弥补文献中的这一空白,我们对参与者的社会人口特征进行了回顾,这些参与者的数据被用来构建 13 个常用的表观遗传时钟。我们发现,尽管一些表观遗传时钟是利用不同年龄、性别和种族群体的个人提供的数据创建的,但社会人口学特征的报告普遍较少。由于对性别和种族不平等的社会层面和暴露影响概念化不足,报告的信息受到限制,社会经济数据也很少报告。在今后的工作中,必须确保清楚地报告研究中所有参与者的社会人口和社会经济特征的具体数据,以确保其他研究人员能够对该模型是否适合其研究人群做出明智的判断。
{"title":"Epigenetic clocks and research implications of the lack of data on whom they have been developed: a review of reported and missing sociodemographic characteristics.","authors":"Sarah Holmes Watkins, Christian Testa, Jarvis T Chen, Immaculata De Vivo, Andrew J Simpkin, Kate Tilling, Ana V Diez Roux, George Davey Smith, Pamela D Waterman, Matthew Suderman, Caroline Relton, Nancy Krieger","doi":"10.1093/eep/dvad005","DOIUrl":"10.1093/eep/dvad005","url":null,"abstract":"<p><p>Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic characteristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples - prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that other researchers can make informed judgements about the appropriateness of the model for their study population.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad005"},"PeriodicalIF":4.8,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10547124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transgenerational sperm DMRs escape DNA methylation erasure during embryonic development and epigenetic inheritance. 在胚胎发育和表观遗传过程中,跨代精子 DMRs 可逃避 DNA 甲基化清除。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-06-03 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad003
Millissia Ben Maamar, Yue Wang, Eric E Nilsson, Daniel Beck, Wei Yan, Michael K Skinner

Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure. Transgenerational differential DNA methylation regions (DMRs) have been speculated to be imprinted-like and escape this erasure. The current study was designed to assess if morula embryos escape the erasure of dichlorodiphenyltrichloroethane-induced transgenerational sperm DMR methylation. Observations demonstrate that the majority (98%) of transgenerational sperm DMR sites retain DNA methylation and are not erased, so appearing similar to imprinted-like sites. Interestingly, observations also demonstrate that the majority of low-density CpG genomic sites had a significant increase in DNA methylation in the morula embryo compared to sperm. This is in contrast to the previously observed DNA methylation erasure of higher-density CpG sites. The general erasure of DNA methylation during embryogenesis appears applicable to high-density DNA methylation sites (e.g. CpG islands) but neither to transgenerational DMR methylation sites nor to low-density CpG deserts, which constitute the vast majority of the genome's DNA methylation sites. The role of epigenetics during embryogenesis appears more dynamic than the simple erasure of DNA methylation.

表观遗传信息的种系传递是表观遗传的重要组成部分。以前的研究表明,在畸形胚胎中发育干细胞需要DNA甲基化的清除。但印记基因是个例外,它们逃脱了DNA甲基化的清除。据推测,跨代差异DNA甲基化区域(DMR)类似于印记基因,可以逃避这种清除。目前的研究旨在评估畸形胚胎是否能逃脱二氯二苯三氯乙烷诱导的跨代精子 DMR 甲基化的侵蚀。观察结果表明,大多数(98%)转基因精子 DMR 位点保留了 DNA 甲基化,不会被清除,因此看起来与印迹样位点类似。有趣的是,观察结果还表明,与精子相比,大多数低密度 CpG 基因组位点在 Morula 胚胎中的 DNA 甲基化程度显著增加。这与之前观察到的高密度 CpG 位点的 DNA 甲基化消除形成鲜明对比。胚胎发生过程中 DNA 甲基化的普遍消除似乎适用于高密度的 DNA 甲基化位点(如 CpG 岛),但既不适用于跨代 DMR 甲基化位点,也不适用于低密度的 CpG 荒漠,而后者构成了基因组 DNA 甲基化位点的绝大部分。表观遗传学在胚胎发生过程中的作用似乎比 DNA 甲基化的简单清除更具动态性。
{"title":"Transgenerational sperm DMRs escape DNA methylation erasure during embryonic development and epigenetic inheritance.","authors":"Millissia Ben Maamar, Yue Wang, Eric E Nilsson, Daniel Beck, Wei Yan, Michael K Skinner","doi":"10.1093/eep/dvad003","DOIUrl":"10.1093/eep/dvad003","url":null,"abstract":"<p><p>Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure. Transgenerational differential DNA methylation regions (DMRs) have been speculated to be imprinted-like and escape this erasure. The current study was designed to assess if morula embryos escape the erasure of dichlorodiphenyltrichloroethane-induced transgenerational sperm DMR methylation. Observations demonstrate that the majority (98%) of transgenerational sperm DMR sites retain DNA methylation and are not erased, so appearing similar to imprinted-like sites. Interestingly, observations also demonstrate that the majority of low-density CpG genomic sites had a significant increase in DNA methylation in the morula embryo compared to sperm. This is in contrast to the previously observed DNA methylation erasure of higher-density CpG sites. The general erasure of DNA methylation during embryogenesis appears applicable to high-density DNA methylation sites (e.g. CpG islands) but neither to transgenerational DMR methylation sites nor to low-density CpG deserts, which constitute the vast majority of the genome's DNA methylation sites. The role of epigenetics during embryogenesis appears more dynamic than the simple erasure of DNA methylation.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad003"},"PeriodicalIF":3.8,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/78/1a/dvad003.PMC10281242.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-dependent DNA methylation signatures in animal livestock. 动物牲畜中与上下文相关的 DNA 甲基化特征。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-01-23 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad001
Geetha Venkatesh, Sina Tönges, Katharina Hanna, Yi Long Ng, Rose Whelan, Ranja Andriantsoa, Annika Lingenberg, Suki Roy, Sanjanaa Nagarajan, Steven Fong, Günter Raddatz, Florian Böhl, Frank Lyko

DNA methylation is an important epigenetic modification that is widely conserved across animal genomes. It is widely accepted that DNA methylation patterns can change in a context-dependent manner, including in response to changing environmental parameters. However, this phenomenon has not been analyzed in animal livestock yet, where it holds major potential for biomarker development. Building on the previous identification of population-specific DNA methylation in clonal marbled crayfish, we have now generated numerous base-resolution methylomes to analyze location-specific DNA methylation patterns. We also describe the time-dependent conversion of epigenetic signatures upon transfer from one environment to another. We further demonstrate production system-specific methylation signatures in shrimp, river-specific signatures in salmon and farm-specific signatures in chicken. Together, our findings provide a detailed resource for epigenetic variation in animal livestock and suggest the possibility for origin tracing of animal products by epigenetic fingerprinting.

DNA 甲基化是一种重要的表观遗传修饰,在动物基因组中广泛保守。人们普遍认为,DNA 甲基化模式会随着环境参数的变化而发生改变。然而,这种现象尚未在动物家畜中得到分析,而它在生物标志物开发方面具有重大潜力。基于之前在克隆大理石纹小龙虾中发现的种群特异性DNA甲基化,我们现在生成了大量碱基分辨率的甲基组,以分析特定位置的DNA甲基化模式。我们还描述了从一个环境转移到另一个环境时,表观遗传特征随时间发生的转换。我们进一步展示了虾的生产系统特异性甲基化特征、鲑鱼的河流特异性特征和鸡的农场特异性特征。总之,我们的研究结果为畜牧业中的表观遗传变异提供了一个详细的资源,并提出了通过表观遗传指纹追踪动物产品来源的可能性。
{"title":"Context-dependent DNA methylation signatures in animal livestock.","authors":"Geetha Venkatesh, Sina Tönges, Katharina Hanna, Yi Long Ng, Rose Whelan, Ranja Andriantsoa, Annika Lingenberg, Suki Roy, Sanjanaa Nagarajan, Steven Fong, Günter Raddatz, Florian Böhl, Frank Lyko","doi":"10.1093/eep/dvad001","DOIUrl":"10.1093/eep/dvad001","url":null,"abstract":"<p><p>DNA methylation is an important epigenetic modification that is widely conserved across animal genomes. It is widely accepted that DNA methylation patterns can change in a context-dependent manner, including in response to changing environmental parameters. However, this phenomenon has not been analyzed in animal livestock yet, where it holds major potential for biomarker development. Building on the previous identification of population-specific DNA methylation in clonal marbled crayfish, we have now generated numerous base-resolution methylomes to analyze location-specific DNA methylation patterns. We also describe the time-dependent conversion of epigenetic signatures upon transfer from one environment to another. We further demonstrate production system-specific methylation signatures in shrimp, river-specific signatures in salmon and farm-specific signatures in chicken. Together, our findings provide a detailed resource for epigenetic variation in animal livestock and suggest the possibility for origin tracing of animal products by epigenetic fingerprinting.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad001"},"PeriodicalIF":3.8,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/1f/dvad001.PMC10019019.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9145699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transgenerational epigenetic inheritance of axonal regeneration after spinal cord injury. 脊髓损伤后轴突再生的跨代表观遗传。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-01-17 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvad002
Andy Madrid, Reid S Alisch, Elias Rizk, Ligia A Papale, Kirk J Hogan, Bermans J Iskandar

Human epidemiological studies reveal that dietary and environmental alterations influence the health of the offspring and that the effect is not limited to the F1 or F2 generations. Non-Mendelian transgenerational inheritance of traits in response to environmental stimuli has been confirmed in non-mammalian organisms including plants and worms and are shown to be epigenetically mediated. However, transgenerational inheritance beyond the F2 generation remains controversial in mammals. Our lab previously discovered that the treatment of rodents (rats and mice) with folic acid significantly enhances the regeneration of injured axons following spinal cord injury in vivo and in vitro, and the effect is mediated by DNA methylation. The potential heritability of DNA methylation prompted us to investigate the following question: Is the enhanced axonal regeneration phenotype inherited transgenerationally without exposure to folic acid supplementation in the intervening generations? In the present review, we condense our findings showing that a beneficial trait (i.e., enhanced axonal regeneration after spinal cord injury) and accompanying molecular alterations (i.e., DNA methylation), triggered by an environmental exposure (i.e., folic acid supplementation) to F0 animals only, are inherited transgenerationally and beyond the F3 generation.

人类流行病学研究表明,饮食和环境的改变会影响后代的健康,而且这种影响不仅限于 F1 或 F2 代。在非哺乳动物(包括植物和蠕虫)中,对环境刺激做出反应的非孟德尔性状转代遗传已得到证实,并被证明是由表观遗传介导的。然而,在哺乳动物中,F2 代以外的转基因遗传仍然存在争议。我们的实验室之前发现,用叶酸处理啮齿类动物(大鼠和小鼠)可显著增强体内和体外脊髓损伤后损伤轴突的再生能力,而这种效应是由DNA甲基化介导的。DNA 甲基化的潜在遗传性促使我们研究以下问题:在没有补充叶酸的情况下,增强的轴突再生表型是否会代代相传?在本综述中,我们总结了我们的研究结果,这些结果表明,环境暴露(即叶酸补充剂)引发的有益性状(即脊髓损伤后轴突再生增强)和伴随的分子改变(即DNA甲基化),仅对F0动物有效,但在F3代以后会发生跨代遗传。
{"title":"Transgenerational epigenetic inheritance of axonal regeneration after spinal cord injury.","authors":"Andy Madrid, Reid S Alisch, Elias Rizk, Ligia A Papale, Kirk J Hogan, Bermans J Iskandar","doi":"10.1093/eep/dvad002","DOIUrl":"10.1093/eep/dvad002","url":null,"abstract":"<p><p>Human epidemiological studies reveal that dietary and environmental alterations influence the health of the offspring and that the effect is not limited to the F1 or F2 generations. Non-Mendelian transgenerational inheritance of traits in response to environmental stimuli has been confirmed in non-mammalian organisms including plants and worms and are shown to be epigenetically mediated. However, transgenerational inheritance beyond the F2 generation remains controversial in mammals. Our lab previously discovered that the treatment of rodents (rats and mice) with folic acid significantly enhances the regeneration of injured axons following spinal cord injury <i>in vivo</i> and <i>in vitro</i>, and the effect is mediated by DNA methylation. The potential heritability of DNA methylation prompted us to investigate the following question: Is the enhanced axonal regeneration phenotype inherited transgenerationally without exposure to folic acid supplementation in the intervening generations? In the present review, we condense our findings showing that a beneficial trait (i.e., enhanced axonal regeneration after spinal cord injury) and accompanying molecular alterations (i.e., DNA methylation), triggered by an environmental exposure (i.e., folic acid supplementation) to F0 animals only, are inherited transgenerationally and beyond the F3 generation.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad002"},"PeriodicalIF":3.8,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9464541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Epigenetics 2023 update. 环境表观遗传学2023更新。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2023-01-01 DOI: 10.1093/eep/dvad004
Michael K Skinner
© The Author(s) 2023. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com An Oxford University Press publication, Environmental Epigenetics, just initiated its ninth year of operations with this Volume 9 Issue 1. We are a 100% Open Access journal listed in PubMed Central (PMC), along with numerous other access sites. Environmental Epigenetics publishes scientific and medical research related to the field of epigenetics with particular interest on the impact of the environment. Special Issues have occurred each year and we encourage requests for Special Issues in Environmental Epigenetics. Our Special Issues in 2021–2022 were on Epigenetic Transgenerational Inheritance, Generational Toxicology, and Environmental Epigenetics and Evolution (https://academic.oup.com/eep/pages/ special_issues). The Special Issues for 2023 are Environmental Epigenetics and Climate Change, and Epigenetic Transgenerational Inheritance. The amount and diversity of our published studies is increasing as the field of environmental epigenetics grows and expands. We are looking forward to another productive year and encourage you to consider submissions to Environmental Epigenetics.
{"title":"Environmental Epigenetics 2023 update.","authors":"Michael K Skinner","doi":"10.1093/eep/dvad004","DOIUrl":"https://doi.org/10.1093/eep/dvad004","url":null,"abstract":"© The Author(s) 2023. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com An Oxford University Press publication, Environmental Epigenetics, just initiated its ninth year of operations with this Volume 9 Issue 1. We are a 100% Open Access journal listed in PubMed Central (PMC), along with numerous other access sites. Environmental Epigenetics publishes scientific and medical research related to the field of epigenetics with particular interest on the impact of the environment. Special Issues have occurred each year and we encourage requests for Special Issues in Environmental Epigenetics. Our Special Issues in 2021–2022 were on Epigenetic Transgenerational Inheritance, Generational Toxicology, and Environmental Epigenetics and Evolution (https://academic.oup.com/eep/pages/ special_issues). The Special Issues for 2023 are Environmental Epigenetics and Climate Change, and Epigenetic Transgenerational Inheritance. The amount and diversity of our published studies is increasing as the field of environmental epigenetics grows and expands. We are looking forward to another productive year and encourage you to consider submissions to Environmental Epigenetics.","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvad004"},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/76/a3/dvad004.PMC10478800.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10172984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hexavalent chromium-induced epigenetic instability and transposon activation lead to phenotypic variations and tumors in Drosophila. 六价铬诱导的表观遗传不稳定性和转座子激活导致果蝇的表型变异和肿瘤。
IF 4.8 Q1 GENETICS & HEREDITY Pub Date : 2022-12-28 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvac030
Rasesh Y Parikh, Vamsi K Gangaraju

Developmental robustness represents the ability of an organism to resist phenotypic variations despite environmental insults and inherent genetic variations. Derailment of developmental robustness leads to phenotypic variations that can get fixed in a population for many generations. Environmental pollution is a significant worldwide problem with detrimental consequences of human development. Understanding the genetic basis for how pollutants affect human development is critical for developing interventional therapies. Here, we report that environmental stress induced by hexavalent chromium, Cr(VI), a potent industrial pollutant, compromises developmental robustness, leading to phenotypic variations in the progeny. These phenotypic variations arise due to epigenetic instability and transposon activation in the somatic tissues of the progeny rather than novel genetic mutations and can be reduced by increasing the dosage of Piwi - a Piwi-interacting RNA-binding protein, in the ovary of the exposed mother. Significantly, the derailment of developmental robustness by Cr(VI) exposure leads to tumors in the progeny, and the predisposition to develop tumors is fixed in the population for at least three generations. Thus, we show for the first time that environmental pollution can derail developmental robustness and predispose the progeny of the exposed population to develop phenotypic variations and tumors.

发育稳健性代表生物体抵抗表型变异的能力,尽管环境的损害和固有的遗传变异。发育健壮性的脱轨导致表型变异,这种变异可以在一个种群中固定许多代。环境污染是一个严重的世界性问题,对人类发展产生有害影响。了解污染物如何影响人类发育的遗传基础对于开发介入治疗至关重要。在这里,我们报道了六价铬(Cr(VI),一种强效的工业污染物)诱导的环境胁迫会损害发育稳健性,导致后代的表型变异。这些表型变异是由于后代体细胞组织中的表观遗传不稳定和转座子激活而不是新的基因突变引起的,并且可以通过增加暴露母亲卵巢中Piwi(一种Piwi相互作用的rna结合蛋白)的剂量来减少。值得注意的是,Cr(VI)暴露导致发育稳健性的脱脱会导致后代患肿瘤,并且在至少三代的人群中,患肿瘤的易感性是固定的。因此,我们首次表明,环境污染可以破坏发育稳健性,并使暴露人群的后代容易发生表型变异和肿瘤。
{"title":"Hexavalent chromium-induced epigenetic instability and transposon activation lead to phenotypic variations and tumors in <i>Drosophila</i>.","authors":"Rasesh Y Parikh, Vamsi K Gangaraju","doi":"10.1093/eep/dvac030","DOIUrl":"10.1093/eep/dvac030","url":null,"abstract":"<p><p>Developmental robustness represents the ability of an organism to resist phenotypic variations despite environmental insults and inherent genetic variations. Derailment of developmental robustness leads to phenotypic variations that can get fixed in a population for many generations. Environmental pollution is a significant worldwide problem with detrimental consequences of human development. Understanding the genetic basis for how pollutants affect human development is critical for developing interventional therapies. Here, we report that environmental stress induced by hexavalent chromium, Cr(VI), a potent industrial pollutant, compromises developmental robustness, leading to phenotypic variations in the progeny. These phenotypic variations arise due to epigenetic instability and transposon activation in the somatic tissues of the progeny rather than novel genetic mutations and can be reduced by increasing the dosage of Piwi - a Piwi-interacting RNA-binding protein, in the ovary of the exposed mother. Significantly, the derailment of developmental robustness by Cr(VI) exposure leads to tumors in the progeny, and the predisposition to develop tumors is fixed in the population for at least three generations. Thus, we show for the first time that environmental pollution can derail developmental robustness and predispose the progeny of the exposed population to develop phenotypic variations and tumors.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvac030"},"PeriodicalIF":4.8,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9281336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. 父系蛋氨酸补充对绵羊精子DNA甲基化和胚胎转录组的影响。
IF 3.8 Q1 GENETICS & HEREDITY Pub Date : 2022-12-23 eCollection Date: 2023-01-01 DOI: 10.1093/eep/dvac029
Jessica Townsend, Camila U Braz, Todd Taylor, Hasan Khatib

Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.

环境对基因表达和后代发育的影响可以通过表观遗传学修饰介导。众所周知,母体饮食会影响后代的DNA甲基化模式和表型;然而,父亲饮食对后代发育的表观遗传学影响值得进一步研究。在这里,我们研究了青春期前富含蛋氨酸的父亲饮食如何影响精子DNA甲基化及其对胚胎基因表达的后续影响。将三只处理公羊和三只对照公羊培育成七只母羊,并冲洗胚泡进行RNA提取。从所有公羊中收集精液,并提交进行亚硫酸氢盐还原代表性测序分析。在处理公羊和对照公羊的精子中总共鉴定出166个不同甲基化的胞嘧啶。研究发现,与对照公羊相比,处理公羊产生的胚胎中有9个基因差异表达,精子中有7个差异甲基化胞嘧啶与胚胎中的基因表达高度相关。我们的研究结果表明,饮食诱导的精子甲基化差异可能会影响胎儿编程。
{"title":"Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep.","authors":"Jessica Townsend,&nbsp;Camila U Braz,&nbsp;Todd Taylor,&nbsp;Hasan Khatib","doi":"10.1093/eep/dvac029","DOIUrl":"10.1093/eep/dvac029","url":null,"abstract":"<p><p>Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"9 1","pages":"dvac029"},"PeriodicalIF":3.8,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10642166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Epigenetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1