Cadmium (Cd) is a ubiquitous environmental pollutant associated with a wide range of health outcomes including cancer. However, obscure exposure sources often hinder prevention efforts. Further, although epigenetic mechanisms are suspected to link these associations, gene sequence regions targeted by Cd are unclear. Aberrant methylation of a differentially methylated region (DMR) on the MEG3 gene that regulates the expression of a cluster of genes including MEG3, DLK1, MEG8, MEG9 and DIO3 has been associated with multiple cancers. In 287 infant-mother pairs, we used a combination of linear regression and the Getis-Ord Gi* statistic to determine if maternal blood Cd concentrations were associated with offspring CpG methylation of the sequence region regulating a cluster of imprinted genes including MEG3. Correlations were used to examine potential sources and routes. We observed a significant geographic co-clustering of elevated prenatal Cd levels and MEG3 DMR hypermethylation in cord blood (P = 0.01), and these findings were substantiated in our statistical models (β = 1.70, se = 0.80, P = 0.03). These associations were strongest in those born to African American women (β = 3.52, se = 1.32, P = 0.01) compared with those born to White women (β = 1.24, se = 2.11, P = 0.56) or Hispanic women (β = 1.18, se = 1.24, P = 0.34). Consistent with Cd bioaccumulation during the life course, blood Cd levels increased with age (β = 0.015 µg/dl/year, P = 0.003), and Cd concentrations were significantly correlated between blood and urine (ρ > 0.47, P < 0.01), but not hand wipe, soil or house dust concentrations (P > 0.05). Together, these data support that prenatal Cd exposure is associated with aberrant methylation of the imprint regulatory element for the MEG3 gene cluster at birth. However, neither house-dust nor water are likely exposure sources, and ingestion via contaminated hands is also unlikely to be a significant exposure route in this population. Larger studies are required to identify routes and sources of exposure.
Male reproductive health has been in decline for decades with dropping sperm counts and increasing infertility, which has created a significant societal and economic burden. Between the 1970s and now, a general decline of over 50% in sperm concentration has been observed in the population. Environmental toxicant-induced epigenetic transgenerational inheritance has been shown to affect testis pathology and sperm count. Sertoli cells have an essential role in spermatogenesis by providing physical and nutritional support for developing germ cells. The current study was designed to further investigate the transgenerational epigenetic changes in the rat Sertoli cell epigenome and transcriptome that are associated with the onset of testis disease. Gestating female F0 generation rats were transiently exposed during the period of fetal gonadal sex determination to the environmental toxicants, such as dichlorodiphenyltrichloroethane (DDT) or vinclozolin. The F1 generation offspring were bred (i.e. intercross within the lineage) to produce the F2 generation grand-offspring that were then bred to produce the transgenerational F3 generation (i.e. great-grand-offspring) with no sibling or cousin breeding used. The focus of the current study was to investigate the transgenerational testis disease etiology, so F3 generation rats were utilized. The DNA and RNA were obtained from purified Sertoli cells isolated from postnatal 20-day-old male testis of F3 generation rats. Transgenerational alterations in DNA methylation, noncoding RNA, and gene expression were observed in the Sertoli cells from vinclozolin and DDT lineages when compared to the control (vehicle exposed) lineage. Genes associated with abnormal Sertoli cell function and testis pathology were identified, and the transgenerational impacts of vinclozolin and DDT were determined. Alterations in critical gene pathways, such as the pyruvate metabolism pathway, were identified. Observations suggest that ancestral exposures to environmental toxicants promote the epigenetic transgenerational inheritance of Sertoli cell epigenetic and transcriptome alterations that associate with testis abnormalities. These epigenetic alterations appear to be critical factors in the developmental and generational origins of testis pathologies and male infertility.
Mammalian embryos initially develop progenitor tissues for both male and female reproductive tract organs, known as the Wolffian ducts and the Müllerian ducts, respectively. Ultimately, each individual develops a single set of male or female reproductive tract organs. Therefore, an essential step for sex differentiation is the regression of one duct and growth and differentiation of the other duct. In males, this requires Müllerian duct regression and Wolffian duct growth and differentiation. Müllerian duct regression is induced by the expression of Amh, encoding anti-Müllerian hormone, from the fetal testes. Subsequently, receptor-mediated signal transduction in mesenchymal cells surrounding the Müllerian duct epithelium leads to duct elimination. The genes that induce Amh transcription and the downstream signaling that results from Amh activity form a pathway. However, the molecular details of this pathway are currently unknown. A set of essential genes for AMH pathway function has been identified. More recently, transcriptome analysis of male and female Müllerian duct mesenchyme at an initial stage of regression has identified new genes that may mediate elimination of the Müllerian system. The evidence taken together can be used to generate an initial gene regulatory network describing the Amh pathway for Müllerian duct regression. An Amh gene regulatory network will be a useful tool to study Müllerian duct regression, sex differentiation, and its relationship to environmental influences.