Pub Date : 2024-08-16DOI: 10.3390/environments11080174
Júlia Scarpa de Souza, Júlia Vianna de Pinho, Paloma de Almeida Rodrigues, Anita Corrêa de Melo, Ludmila Rosa Bergsten-Torralba, Carlos Adam Conte-Junior
The increasing production of plastic products has raised concerns about environmental impacts related to microplastic formation, which harms ecosystems and human health. This systematic review aims to present the concentration of microplastics in commercially important bony fish and discuss the impacts on animal health and the possibility of these contaminants reaching the end consumer. The PICO methodology was used, and 517 articles were retrieved from four databases (PubMed, Embase, Web of Science, and Scopus); after selecting articles that complement the research objective, 70 articles were used to compose this review. According to the results, line-shaped microplastics, polypropylene, and polystyrene polymers were the most frequently identified in the articles. Additionally, the effects of microplastics on animal health, including false satiety and physical injuries, as well as risks to human health, such as epithelial inflammation, oxidative stress, and cell contamination, were discussed. Understanding the concentration of microplastics in commercially important bony fish is necessary for protecting human health and maintaining the health of marine ecosystems. It is necessary to adopt legislative measures for proper plastic disposal.
{"title":"A Systematic Review of Microplastic Contamination in Commercially Important Bony Fish and Its Implications for Health","authors":"Júlia Scarpa de Souza, Júlia Vianna de Pinho, Paloma de Almeida Rodrigues, Anita Corrêa de Melo, Ludmila Rosa Bergsten-Torralba, Carlos Adam Conte-Junior","doi":"10.3390/environments11080174","DOIUrl":"https://doi.org/10.3390/environments11080174","url":null,"abstract":"The increasing production of plastic products has raised concerns about environmental impacts related to microplastic formation, which harms ecosystems and human health. This systematic review aims to present the concentration of microplastics in commercially important bony fish and discuss the impacts on animal health and the possibility of these contaminants reaching the end consumer. The PICO methodology was used, and 517 articles were retrieved from four databases (PubMed, Embase, Web of Science, and Scopus); after selecting articles that complement the research objective, 70 articles were used to compose this review. According to the results, line-shaped microplastics, polypropylene, and polystyrene polymers were the most frequently identified in the articles. Additionally, the effects of microplastics on animal health, including false satiety and physical injuries, as well as risks to human health, such as epithelial inflammation, oxidative stress, and cell contamination, were discussed. Understanding the concentration of microplastics in commercially important bony fish is necessary for protecting human health and maintaining the health of marine ecosystems. It is necessary to adopt legislative measures for proper plastic disposal.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.3390/environments11080173
Julia Walter, Ulrich Thumm, Carsten M. Buchmann
Land-use intensity drives productivity and ecosystem functions in grassland. The effects of long-term land-use intensification on plant functional community composition and its direct and indirect linkages to processes of nutrient cycling are largely unknown. We manipulated mowing frequency and nitrogen inputs in an experiment in temperate grassland over ten years. We assessed changes in species composition and calculated functional diversity (FDis) and community weighted mean (CWM) traits of specific leaf area (SLA), leaf dry matter content (LDMC) and leaf and root nitrogen of the plant community, using species-specific trait values derived from databases. We assessed above- and belowground decomposition and soil respiration. Plant diversity strongly decreased with increasing land-use intensity. CWM leaf nitrogen and SLA decreased, while CWM LDMC increased with land-use intensification, which could be linked to an increased proportion of graminoid species. Belowground processes were largely unaffected by land-use intensity. Land use affected aboveground litter composition directly and indirectly via community composition. Mowing frequency, and not a land-use index combining mowing frequency and fertilization, explained most of the variation in litter decomposition. Our results show that land-use intensification not only reduces plant diversity, but that these changes also affect nutrient dynamics.
{"title":"Effects of Land-Use Intensity on Functional Community Composition and Nutrient Dynamics in Grassland","authors":"Julia Walter, Ulrich Thumm, Carsten M. Buchmann","doi":"10.3390/environments11080173","DOIUrl":"https://doi.org/10.3390/environments11080173","url":null,"abstract":"Land-use intensity drives productivity and ecosystem functions in grassland. The effects of long-term land-use intensification on plant functional community composition and its direct and indirect linkages to processes of nutrient cycling are largely unknown. We manipulated mowing frequency and nitrogen inputs in an experiment in temperate grassland over ten years. We assessed changes in species composition and calculated functional diversity (FDis) and community weighted mean (CWM) traits of specific leaf area (SLA), leaf dry matter content (LDMC) and leaf and root nitrogen of the plant community, using species-specific trait values derived from databases. We assessed above- and belowground decomposition and soil respiration. Plant diversity strongly decreased with increasing land-use intensity. CWM leaf nitrogen and SLA decreased, while CWM LDMC increased with land-use intensification, which could be linked to an increased proportion of graminoid species. Belowground processes were largely unaffected by land-use intensity. Land use affected aboveground litter composition directly and indirectly via community composition. Mowing frequency, and not a land-use index combining mowing frequency and fertilization, explained most of the variation in litter decomposition. Our results show that land-use intensification not only reduces plant diversity, but that these changes also affect nutrient dynamics.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.3390/environments11080171
Oumaima El bied, Martire Angélica Terrero Turbí, Melisa Gómez Garrido, Ángel Faz Cano, José Alberto Acosta
This study delves into the innovative application of a novel bacterial and enzyme mixture alone or combined with aeration in mitigating emissions from pig slurry storage and explores their impacts on the methane (CH4), carbon dioxide (CO2), and ammonia (NH3) emissions from stored pig slurry. A dynamic chamber was used in this research to assess the efficacy of the treatments. Biological additives (HIPO-PURÍN) of specific microbial strains were tested (a mixture ofof Bacillus subtilis, Bacillus megaterium, Bacillus licheniformis, Bacillus amyloliquefacien, and Bacillus thuringiensis) alone and combined with an aeration system (OXI-FUCH). Controlled experiments simulated storage conditions, where emissions of ammonia, methane, and carbon dioxide were measured. By analyzing the results statistically, the treatment with HIPO-PURÍN demonstrated a significant reduction in CH4 emissions by 67% and CO2 emissions by 60% with the use of biological additives, which was increased to 99% and 87%, respectively, when combined with OXI-FUCH aeration, compared to untreated slurry. Ammonia emissions were substantially reduced by 90% with biological additives alone and by 76% when combined with aeration. The study was driven by the need to develop sustainable solutions for livestock waste management, particularly in reducing emissions from pig slurry. It introduces techniques that significantly lower greenhouse gases, aligning with circular economy goals and setting a new standard for sustainable agriculture. Furthermore, there is a need to validate that farmers can independently manage pig slurry using simple and effective treatments techniques with profound environmental benefits, encouraging broader adoption of climate-conscious practices.
{"title":"Reducing Methane, Carbon Dioxide, and Ammonia Emissions from Stored Pig Slurry Using Bacillus-Biological Additives and Aeration","authors":"Oumaima El bied, Martire Angélica Terrero Turbí, Melisa Gómez Garrido, Ángel Faz Cano, José Alberto Acosta","doi":"10.3390/environments11080171","DOIUrl":"https://doi.org/10.3390/environments11080171","url":null,"abstract":"This study delves into the innovative application of a novel bacterial and enzyme mixture alone or combined with aeration in mitigating emissions from pig slurry storage and explores their impacts on the methane (CH4), carbon dioxide (CO2), and ammonia (NH3) emissions from stored pig slurry. A dynamic chamber was used in this research to assess the efficacy of the treatments. Biological additives (HIPO-PURÍN) of specific microbial strains were tested (a mixture ofof Bacillus subtilis, Bacillus megaterium, Bacillus licheniformis, Bacillus amyloliquefacien, and Bacillus thuringiensis) alone and combined with an aeration system (OXI-FUCH). Controlled experiments simulated storage conditions, where emissions of ammonia, methane, and carbon dioxide were measured. By analyzing the results statistically, the treatment with HIPO-PURÍN demonstrated a significant reduction in CH4 emissions by 67% and CO2 emissions by 60% with the use of biological additives, which was increased to 99% and 87%, respectively, when combined with OXI-FUCH aeration, compared to untreated slurry. Ammonia emissions were substantially reduced by 90% with biological additives alone and by 76% when combined with aeration. The study was driven by the need to develop sustainable solutions for livestock waste management, particularly in reducing emissions from pig slurry. It introduces techniques that significantly lower greenhouse gases, aligning with circular economy goals and setting a new standard for sustainable agriculture. Furthermore, there is a need to validate that farmers can independently manage pig slurry using simple and effective treatments techniques with profound environmental benefits, encouraging broader adoption of climate-conscious practices.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.3390/environments11080172
Cátia A. L. Graça, Olívia Salomé Gonçalves Pinto Soares
Five different biomass wastes—orange peel, coffee grounds, cork, almond shell, and peanut shell—were transformed into biochars (BCs) or activated carbons (ACs) to serve as adsorbents and/or ozone catalysts for the removal of recalcitrant water treatment products. Oxalic acid (OXL) was used as a model pollutant due to its known refractory character towards ozone. The obtained materials were characterized by different techniques, namely thermogravimetric analysis, specific surface area measurement by nitrogen adsorption, and elemental analysis. In adsorption experiments, BCs generally outperformed ACs, except for cork-derived materials. Orange peel BC revealed the highest adsorption capacity (Qe = 40 mg g−1), while almond shell BC showed the best cost–benefit ratio at €0.0096 per mg of OXL adsorbed. In terms of catalytic ozonation, only ACs made from cork and coffee grounds presented significant catalytic activity, achieving pollutant removal rates of 72 and 64%, respectively. Among these materials, ACs made from coffee grounds reveal the best cost/benefit ratio with €0.02 per mg of OXL degraded. Despite the cost analysis showing that these materials are not the cheapest options, other aspects rather than the price alone must be considered in the decision-making process for implementation. This study highlights the promising role of biomass wastes as precursors for efficient and eco-friendly water treatment processes, whether as adsorbents following ozone water treatment or as catalysts in the ozonation reaction itself.
五种不同的生物质废物--橘子皮、咖啡渣、软木塞、杏仁壳和花生壳--被转化成生物炭(BC)或活性炭(AC),用作吸附剂和/或臭氧催化剂,以去除难处理的水处理产品。由于草酸(OXL)对臭氧具有众所周知的难溶性,因此被用作示范污染物。获得的材料通过不同的技术进行了表征,即热重分析、氮吸附比表面积测量和元素分析。在吸附实验中,除软木衍生材料外,BC 的吸附性能普遍优于 AC。橘皮 BC 的吸附能力最高(Qe = 40 毫克 g-1),而杏仁壳 BC 的成本效益比最好,每吸附一毫克 OXL 为 0.0096 欧元。在臭氧催化方面,只有软木和咖啡渣制成的 AC 具有显著的催化活性,污染物去除率分别达到 72% 和 64%。在这些材料中,咖啡渣制成的活性炭的成本/效益比最高,每降解 1 毫克 OXL 的成本为 0.02 欧元。尽管成本分析表明这些材料并不是最便宜的选择,但在实施的决策过程中必须考虑其他方面,而不仅仅是价格。这项研究强调了生物质废物作为高效、环保水处理工艺的前体材料,无论是作为臭氧水处理后的吸附剂,还是作为臭氧反应本身的催化剂,都具有广阔的前景。
{"title":"From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants","authors":"Cátia A. L. Graça, Olívia Salomé Gonçalves Pinto Soares","doi":"10.3390/environments11080172","DOIUrl":"https://doi.org/10.3390/environments11080172","url":null,"abstract":"Five different biomass wastes—orange peel, coffee grounds, cork, almond shell, and peanut shell—were transformed into biochars (BCs) or activated carbons (ACs) to serve as adsorbents and/or ozone catalysts for the removal of recalcitrant water treatment products. Oxalic acid (OXL) was used as a model pollutant due to its known refractory character towards ozone. The obtained materials were characterized by different techniques, namely thermogravimetric analysis, specific surface area measurement by nitrogen adsorption, and elemental analysis. In adsorption experiments, BCs generally outperformed ACs, except for cork-derived materials. Orange peel BC revealed the highest adsorption capacity (Qe = 40 mg g−1), while almond shell BC showed the best cost–benefit ratio at €0.0096 per mg of OXL adsorbed. In terms of catalytic ozonation, only ACs made from cork and coffee grounds presented significant catalytic activity, achieving pollutant removal rates of 72 and 64%, respectively. Among these materials, ACs made from coffee grounds reveal the best cost/benefit ratio with €0.02 per mg of OXL degraded. Despite the cost analysis showing that these materials are not the cheapest options, other aspects rather than the price alone must be considered in the decision-making process for implementation. This study highlights the promising role of biomass wastes as precursors for efficient and eco-friendly water treatment processes, whether as adsorbents following ozone water treatment or as catalysts in the ozonation reaction itself.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.3390/environments11080170
Vongdala Noudeng, Dek Vimean Pheakdey, Tran Thi Ngoc Minh, T.D. Xuan
Municipal solid waste management in developing countries faces limitations, especially concerning technologies for treatment and disposal, which is crucial for achieving environmental and economic sustainability goals. This paper investigates municipal solid waste management in Laos, compared with the ASEAN-Japan regions, focusing on background information, waste characteristics, environmental impact, and treatment technologies for resource utilization. The findings indicate a continuous rise in municipal waste generation in Laos, particularly in the capital Vientiane, from 0.21 million tons in 2012 to 0.37 million tons in 2021. Treatment methods include unsanitary landfilling, basic recycling, and open dumping, as well as burning or discharge into rivers, posing potential risks to the environment and human health. Japan and Singapore have shown decreasing trends, with Japan reducing from 45.23 million tons in 2012 to 40.95 million tons in 2021 and Singapore from 7.27 million tons in 2021 to 6.94 million tons in 2021. Laos encounters challenges in managing municipal waste, especially in waste recovery and waste-to-energy practices, crucial elements of integrated solid waste management aimed at promoting environmental and economic sustainability. Enhancing waste management in Laos involves developing a waste management act with segregation, recycling, and extended producer responsibility policies. Implementing mechanical biological treatment facilities, waste-to-energy plants, and upgraded landfills is crucial. Capacity building and public awareness campaigns on waste management will improve sustainability, reduce environmental impacts, and advance sustainable development goals for sustainable cities and communities.
{"title":"Municipal Solid Waste Management in Laos: Comparative Analysis of Environmental Impact, Practices, and Technologies with ASEAN Regions and Japan","authors":"Vongdala Noudeng, Dek Vimean Pheakdey, Tran Thi Ngoc Minh, T.D. Xuan","doi":"10.3390/environments11080170","DOIUrl":"https://doi.org/10.3390/environments11080170","url":null,"abstract":"Municipal solid waste management in developing countries faces limitations, especially concerning technologies for treatment and disposal, which is crucial for achieving environmental and economic sustainability goals. This paper investigates municipal solid waste management in Laos, compared with the ASEAN-Japan regions, focusing on background information, waste characteristics, environmental impact, and treatment technologies for resource utilization. The findings indicate a continuous rise in municipal waste generation in Laos, particularly in the capital Vientiane, from 0.21 million tons in 2012 to 0.37 million tons in 2021. Treatment methods include unsanitary landfilling, basic recycling, and open dumping, as well as burning or discharge into rivers, posing potential risks to the environment and human health. Japan and Singapore have shown decreasing trends, with Japan reducing from 45.23 million tons in 2012 to 40.95 million tons in 2021 and Singapore from 7.27 million tons in 2021 to 6.94 million tons in 2021. Laos encounters challenges in managing municipal waste, especially in waste recovery and waste-to-energy practices, crucial elements of integrated solid waste management aimed at promoting environmental and economic sustainability. Enhancing waste management in Laos involves developing a waste management act with segregation, recycling, and extended producer responsibility policies. Implementing mechanical biological treatment facilities, waste-to-energy plants, and upgraded landfills is crucial. Capacity building and public awareness campaigns on waste management will improve sustainability, reduce environmental impacts, and advance sustainable development goals for sustainable cities and communities.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.3390/environments11080169
Salar Bavilinezhad, Mohammad Najafi, Vinayak Kaushal, William Elledge, Burak Kaynak
Cured-in-place pipe (CIPP) lining is a widely adopted method for pipeline renewal, offering advantages such as rapid installation and cost-effectiveness. However, concerns regarding the environmental impacts of volatile organic compound (VOC) emissions during the installation process have raised issues regarding the CIPP method. The literature review conducted in this paper indicated the need for stringent monitoring and management practices to mitigate adverse effects, emphasizing the importance of safe installation protocols. This paper presents the initial results of a case study focusing on VOC emissions, specifically investigating non-styrene vinyl ester resins and water curing. To capture emissions from CIPP activities, the methodology involved air sampling using various equipment, including photoionization detectors (PID), summa canisters, passive worker sampler sorbent tubes, and method 13 cartridges. The preliminary findings indicate that non-styrene vinyl ester resins resulted in VOC emissions well below the exposure limits set by OSHA and USEPA, with the highest measured concentration being 2.54 ppm. This demonstrates that non-styrene resins can significantly reduce environmental and health risks. The future phases of this project will explore different resins and curing methods to further validate these findings and develop comprehensive guidelines for safe CIPP installations.
{"title":"Environmental Impact Assessment of Volatile Organic Compound Emissions during Trenchless Cured-in-Place Pipe Installation","authors":"Salar Bavilinezhad, Mohammad Najafi, Vinayak Kaushal, William Elledge, Burak Kaynak","doi":"10.3390/environments11080169","DOIUrl":"https://doi.org/10.3390/environments11080169","url":null,"abstract":"Cured-in-place pipe (CIPP) lining is a widely adopted method for pipeline renewal, offering advantages such as rapid installation and cost-effectiveness. However, concerns regarding the environmental impacts of volatile organic compound (VOC) emissions during the installation process have raised issues regarding the CIPP method. The literature review conducted in this paper indicated the need for stringent monitoring and management practices to mitigate adverse effects, emphasizing the importance of safe installation protocols. This paper presents the initial results of a case study focusing on VOC emissions, specifically investigating non-styrene vinyl ester resins and water curing. To capture emissions from CIPP activities, the methodology involved air sampling using various equipment, including photoionization detectors (PID), summa canisters, passive worker sampler sorbent tubes, and method 13 cartridges. The preliminary findings indicate that non-styrene vinyl ester resins resulted in VOC emissions well below the exposure limits set by OSHA and USEPA, with the highest measured concentration being 2.54 ppm. This demonstrates that non-styrene resins can significantly reduce environmental and health risks. The future phases of this project will explore different resins and curing methods to further validate these findings and develop comprehensive guidelines for safe CIPP installations.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pandemic lockdown of the year 2020 has been generally accompanied by an improvement in the air quality. Here, we report data on the effects of lockdown limitations on the air quality in the metropolitan area of Naples (Italy) by following the evolution of main atmospheric pollutants over a five-year period and comparing their concentrations in the pandemic year 2020 with the previous (2018 and 2019) and following (2021 and 2022) two years. In particular, NO2 and PM10 concentrations registered by representative air quality sampling station network and the columnar features of the aerosol characterized by a sun-photometer are considered. To avoid the possible influence of Saharan dust transport, which generally affects the observational area, the analysis has been limited to the days free from such events. Our findings evidence a tendency towards pre-pandemic conditions, notwithstanding some differences related to partial and temporary restrictions imposed even in the year 2021. For both near-surface NO2 and PM, the observations confirm a significant reduction induced by the lockdown in 2020, besides the seasonal changes, and a gradual tendency towards more typical values in the following years. Also, the columnar aerosol data clearly highlight a gradual recovery of typical conditions in 2021 and 2022, confirming a peculiar effect of the pandemic lockdown of the year 2020 on the atmospheric aerosol characteristics that evidences a striking predominance of the fine component.
{"title":"Air Quality Improvement Following the COVID-19 Pandemic Lockdown in Naples, Italy: A Comparative Analysis (2018–2022)","authors":"Alessia Sannino, Riccardo Damiano, Salvatore Amoruso, Pasquale Castellano, Mariagrazia D’Emilio, Antonella Boselli","doi":"10.3390/environments11080167","DOIUrl":"https://doi.org/10.3390/environments11080167","url":null,"abstract":"The pandemic lockdown of the year 2020 has been generally accompanied by an improvement in the air quality. Here, we report data on the effects of lockdown limitations on the air quality in the metropolitan area of Naples (Italy) by following the evolution of main atmospheric pollutants over a five-year period and comparing their concentrations in the pandemic year 2020 with the previous (2018 and 2019) and following (2021 and 2022) two years. In particular, NO2 and PM10 concentrations registered by representative air quality sampling station network and the columnar features of the aerosol characterized by a sun-photometer are considered. To avoid the possible influence of Saharan dust transport, which generally affects the observational area, the analysis has been limited to the days free from such events. Our findings evidence a tendency towards pre-pandemic conditions, notwithstanding some differences related to partial and temporary restrictions imposed even in the year 2021. For both near-surface NO2 and PM, the observations confirm a significant reduction induced by the lockdown in 2020, besides the seasonal changes, and a gradual tendency towards more typical values in the following years. Also, the columnar aerosol data clearly highlight a gradual recovery of typical conditions in 2021 and 2022, confirming a peculiar effect of the pandemic lockdown of the year 2020 on the atmospheric aerosol characteristics that evidences a striking predominance of the fine component.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.3390/environments11080168
Charles Kansaana, Lordford Tettey-Larbi, Augustine Faanu, Frederick Sam, Emmanuel Akrobortu, Emmanuel Akomaning-Adofo, Adriana Asare Ampene, Rita Kwabea Osei, Ruth Araba Tawiah Annan, Edit Tóth-Bodrogi, Tibor Kovács, Amin Shahrokhi
In this study, a comprehensive investigation was conducted to determine the radioactivity levels of naturally occurring radioactive materials (NORMs) in heap pads/soil and water samples within and around the operational area of Tarkwa Gold Mine in Ghana. Gamma-ray spectrometry was used to determine the activity concentrations of 238U, 232Th, and 40K in heap pads/soil, and 226Ra, 228Th, and 40K in water samples. The average activity concentrations of 226Ra and 228Th in all water samples were below the World Health Organisation (WHO) recommended guidelines for drinking water. Similarly, the average activity concentrations of measured radionuclides in heap pads/soil samples taken from depths of 0–20 cm and 20–50 cm were found to be below the worldwide average reported values. The annual effective dose to the public was estimated to be around 0.16 mSv, which is below the recommended limit. The values of the hazard indices are also below the recommended limits, implying that if heap pads/soils are used for building purposes and construction, they will not pose any significant radiation hazard. The results of this study indicate that radiation levels are within the natural background radiation levels reported in the literature and are consistent with findings from similar studies conducted in Ghana.
{"title":"Environmental Radiological Impact and Risk Assessment of Natural Radioactivity at the Heap Leach Facility of Tarkwa Goldmine, Ghana: Radiotoxicity and Public Exposure","authors":"Charles Kansaana, Lordford Tettey-Larbi, Augustine Faanu, Frederick Sam, Emmanuel Akrobortu, Emmanuel Akomaning-Adofo, Adriana Asare Ampene, Rita Kwabea Osei, Ruth Araba Tawiah Annan, Edit Tóth-Bodrogi, Tibor Kovács, Amin Shahrokhi","doi":"10.3390/environments11080168","DOIUrl":"https://doi.org/10.3390/environments11080168","url":null,"abstract":"In this study, a comprehensive investigation was conducted to determine the radioactivity levels of naturally occurring radioactive materials (NORMs) in heap pads/soil and water samples within and around the operational area of Tarkwa Gold Mine in Ghana. Gamma-ray spectrometry was used to determine the activity concentrations of 238U, 232Th, and 40K in heap pads/soil, and 226Ra, 228Th, and 40K in water samples. The average activity concentrations of 226Ra and 228Th in all water samples were below the World Health Organisation (WHO) recommended guidelines for drinking water. Similarly, the average activity concentrations of measured radionuclides in heap pads/soil samples taken from depths of 0–20 cm and 20–50 cm were found to be below the worldwide average reported values. The annual effective dose to the public was estimated to be around 0.16 mSv, which is below the recommended limit. The values of the hazard indices are also below the recommended limits, implying that if heap pads/soils are used for building purposes and construction, they will not pose any significant radiation hazard. The results of this study indicate that radiation levels are within the natural background radiation levels reported in the literature and are consistent with findings from similar studies conducted in Ghana.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"193 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In urban environments, various pollutants generated by road traffic, human, and industrial activities degrade outdoor and indoor air quality. Among these pollutants, nitrogen oxides (NOx) are subject to air quality regulations designed to protect human health and the environment. It is therefore crucial to keep their concentration as low as possible. Advanced oxidation processes are a practical choice for the degradation of NOx; among them, heterogeneous photocatalysis has proven to be a viable route. However, while the efficiency of this process has been widely demonstrated on a laboratory scale, it is still the subject of debate for real-life applications. The purpose of this study was to present a new field experiment on the application of a photocatalytic coating to outdoor walls. Air quality monitoring stations were used to evaluate the NOx concentration reduction instead of the chemiluminescent analyzer, in order to increase the number of sampling points. Statistical analysis was carried out to interpret the results. Density probability functions were plotted and showed a positive impact of the coating, leading to lower NOx concentrations. This work was completed by a laboratory-scale assessment of the coating’s durability using abrasion, QUV, and immersion/drying tests. The air depollution capacity of the chosen coating was significantly reduced after QUV testing.
{"title":"NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment","authors":"Julie Hot, Clément Fériot, Emilie Lenard, Erick Ringot","doi":"10.3390/environments11080166","DOIUrl":"https://doi.org/10.3390/environments11080166","url":null,"abstract":"In urban environments, various pollutants generated by road traffic, human, and industrial activities degrade outdoor and indoor air quality. Among these pollutants, nitrogen oxides (NOx) are subject to air quality regulations designed to protect human health and the environment. It is therefore crucial to keep their concentration as low as possible. Advanced oxidation processes are a practical choice for the degradation of NOx; among them, heterogeneous photocatalysis has proven to be a viable route. However, while the efficiency of this process has been widely demonstrated on a laboratory scale, it is still the subject of debate for real-life applications. The purpose of this study was to present a new field experiment on the application of a photocatalytic coating to outdoor walls. Air quality monitoring stations were used to evaluate the NOx concentration reduction instead of the chemiluminescent analyzer, in order to increase the number of sampling points. Statistical analysis was carried out to interpret the results. Density probability functions were plotted and showed a positive impact of the coating, leading to lower NOx concentrations. This work was completed by a laboratory-scale assessment of the coating’s durability using abrasion, QUV, and immersion/drying tests. The air depollution capacity of the chosen coating was significantly reduced after QUV testing.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.3390/environments11080165
Wei-Chun Chin, Peter H. Santschi, Antonietta Quigg, Chen Xu, Peng Lin, Manoj Kamalanathan
Plastics are produced, consumed, and disposed of worldwide, with more than eight million tons of plastic litter entering the ocean each year. Plastic litter accumulates in marine and terrestrial environments through a variety of pathways. Large plastic debris can be broken down into micro- and nano-plastic particles through physical/mechanical mechanisms and biologically or chemically mediated degradation. Their toxicity to aquatic organisms includes the scavenging of pollutant compounds and the production of reactive oxygen species (ROS). Higher levels of ROS cause oxidative damages to microalgae and bacteria; this triggers the release of large amounts of exopolymeric substances (EPSs) with distinct molecular characteristics. This review will address what is known about the molecular mechanisms phytoplankton and bacteria use to regulate the fate and transport of plastic particles and identify the knowledge gaps, which should be considered in future research. In particular, the microbial communities react to plastic pollution through the production of EPSs that can reduce the plastic impacts via marine plastic snow (MPS) formation, allowing plastics to settle into sediments and facilitating their removal from the water column to lessen the plastic burden to ecosystems.
{"title":"Micro- and Nano-Plastics Induced Release of Protein-Enriched Microbial Exopolymeric Substances (EPSs) in Marine Environments","authors":"Wei-Chun Chin, Peter H. Santschi, Antonietta Quigg, Chen Xu, Peng Lin, Manoj Kamalanathan","doi":"10.3390/environments11080165","DOIUrl":"https://doi.org/10.3390/environments11080165","url":null,"abstract":"Plastics are produced, consumed, and disposed of worldwide, with more than eight million tons of plastic litter entering the ocean each year. Plastic litter accumulates in marine and terrestrial environments through a variety of pathways. Large plastic debris can be broken down into micro- and nano-plastic particles through physical/mechanical mechanisms and biologically or chemically mediated degradation. Their toxicity to aquatic organisms includes the scavenging of pollutant compounds and the production of reactive oxygen species (ROS). Higher levels of ROS cause oxidative damages to microalgae and bacteria; this triggers the release of large amounts of exopolymeric substances (EPSs) with distinct molecular characteristics. This review will address what is known about the molecular mechanisms phytoplankton and bacteria use to regulate the fate and transport of plastic particles and identify the knowledge gaps, which should be considered in future research. In particular, the microbial communities react to plastic pollution through the production of EPSs that can reduce the plastic impacts via marine plastic snow (MPS) formation, allowing plastics to settle into sediments and facilitating their removal from the water column to lessen the plastic burden to ecosystems.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}