The South Korean government has implemented an acceptance system to promote the high-quality recycling of waste. Industrial waste generators must provide “hazardous characteristics data” to recycling operators. Nonetheless, ~80% of industrial safety accidents in South Korea occur during recycling, most involving fire or explosions. Moreover, a gap in safety management exists during ‘Circular Resource’ acceptance if the target substance is not regarded as waste. In this study collected data on hazardous waste characteristics. From 62 waste generators, 72 waste samples were collected, accounting for most of the resources accepted for recycling, including waste synthetic polymers, slag, dust, waste sand, and waste foundry sand. Then, the hazardous characteristics, as stated in the Ministry of Environment notifications, were assessed. Leaching toxicity was detected in one slag sample and six dust samples. The Cd, Cu, As, Pb, Zn, Ni, Hg, F, and CN levels dissatisfied the Soil Contamination Warning Standard in 31 samples. Explosivity was not detected in any sample, whereas flammability was detected in one waste synthetic polymer sample. The results revealed 15 cases of potential flammability. Flammability is legally defined as below the criteria if the combustion speed criterion is not met. However, in the case of flame ignition, which could cause large fires and safety accidents, the relevant notification should be revised. In this study, we aimed to improve the gap between the hazardous waste management systems and industrial fields through actual measurements of hazardous characteristics. By doing so, we seek to contribute to the prevention of environmental and safety accidents. By continuously accumulating data and utilizing actual measurements, we aim to revise and enhance relevant regulations, ultimately improving the hazardous characteristics of waste management systems.
{"title":"Enhancement of Sustainable Recycling Systems for Industrial Waste in South Korea via Hazardous Characteristics Analysis","authors":"Su-Han Jang, Na-Hyeon Cho, Tae-Woo Kim, Young-Yeul Kang, Young-Sam Yoon, Heung-Min Yoo","doi":"10.3390/environments11070143","DOIUrl":"https://doi.org/10.3390/environments11070143","url":null,"abstract":"The South Korean government has implemented an acceptance system to promote the high-quality recycling of waste. Industrial waste generators must provide “hazardous characteristics data” to recycling operators. Nonetheless, ~80% of industrial safety accidents in South Korea occur during recycling, most involving fire or explosions. Moreover, a gap in safety management exists during ‘Circular Resource’ acceptance if the target substance is not regarded as waste. In this study collected data on hazardous waste characteristics. From 62 waste generators, 72 waste samples were collected, accounting for most of the resources accepted for recycling, including waste synthetic polymers, slag, dust, waste sand, and waste foundry sand. Then, the hazardous characteristics, as stated in the Ministry of Environment notifications, were assessed. Leaching toxicity was detected in one slag sample and six dust samples. The Cd, Cu, As, Pb, Zn, Ni, Hg, F, and CN levels dissatisfied the Soil Contamination Warning Standard in 31 samples. Explosivity was not detected in any sample, whereas flammability was detected in one waste synthetic polymer sample. The results revealed 15 cases of potential flammability. Flammability is legally defined as below the criteria if the combustion speed criterion is not met. However, in the case of flame ignition, which could cause large fires and safety accidents, the relevant notification should be revised. In this study, we aimed to improve the gap between the hazardous waste management systems and industrial fields through actual measurements of hazardous characteristics. By doing so, we seek to contribute to the prevention of environmental and safety accidents. By continuously accumulating data and utilizing actual measurements, we aim to revise and enhance relevant regulations, ultimately improving the hazardous characteristics of waste management systems.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.3390/environments11070144
Nefta-Eleftheria Votsi, Orestis Speyer, Danai-Eleni Michailidou, Athanasios Koukoulis, Charalampos Chatzidiakos, Ine Vandecasteele, Christiana Photiadou, Jose Miguel Rubio Iglesias, Jean-Philippe Aurambout, Evangelos Gerasopoulos
A historically large percentage of the world’s population has moved to urban areas in the past few decades, causing various negative effects for the environment, such as air, noise, water, and light pollution; land degradation; and biodiversity loss. Under the current climate crisis, cities are anticipated to play an essential part in adaptation strategies to extreme atmospheric events. This study aims at developing indicators at an urban scale that can highlight adaptation progress by investigating relevant data (especially in situ) and statistics at a pan-European level in support of the EU’s strategy for adapting to the impacts of climate change. The proposed indicator, Urban Biodiversity Indicator for Trees (UBI4T), which can be derived from city tree inventories, assesses one essential component of urban biodiversity by computing the proportion of native, alien, invasive, and toxic tree species spatially across a city. According to our findings (applying the UBI4T for Amsterdam and exploring its policy potential for Barcelona), the UBI4T can offer crucial information for decision and policy makers, as well as stakeholders of a city, with the aim of conducting dedicated and effective strategic initiatives to restore, improve, and protect nature in the urban environment, thus contributing to adaptation and resilience to extreme atmospheric events in cities.
{"title":"Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories","authors":"Nefta-Eleftheria Votsi, Orestis Speyer, Danai-Eleni Michailidou, Athanasios Koukoulis, Charalampos Chatzidiakos, Ine Vandecasteele, Christiana Photiadou, Jose Miguel Rubio Iglesias, Jean-Philippe Aurambout, Evangelos Gerasopoulos","doi":"10.3390/environments11070144","DOIUrl":"https://doi.org/10.3390/environments11070144","url":null,"abstract":"A historically large percentage of the world’s population has moved to urban areas in the past few decades, causing various negative effects for the environment, such as air, noise, water, and light pollution; land degradation; and biodiversity loss. Under the current climate crisis, cities are anticipated to play an essential part in adaptation strategies to extreme atmospheric events. This study aims at developing indicators at an urban scale that can highlight adaptation progress by investigating relevant data (especially in situ) and statistics at a pan-European level in support of the EU’s strategy for adapting to the impacts of climate change. The proposed indicator, Urban Biodiversity Indicator for Trees (UBI4T), which can be derived from city tree inventories, assesses one essential component of urban biodiversity by computing the proportion of native, alien, invasive, and toxic tree species spatially across a city. According to our findings (applying the UBI4T for Amsterdam and exploring its policy potential for Barcelona), the UBI4T can offer crucial information for decision and policy makers, as well as stakeholders of a city, with the aim of conducting dedicated and effective strategic initiatives to restore, improve, and protect nature in the urban environment, thus contributing to adaptation and resilience to extreme atmospheric events in cities.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.3390/environments11070142
Khaja Zillur Rahman, Shamsa Al Saadi, Mohamed Al Rawahi, Manfred van Afferden, Katy Bernhard, Jan Friesen, Roland A. Müller
Rural and semi-urban areas in arid/semi-arid regions are facing severe water scarcity and a series of environmental challenges nowadays, specifically due to rapid urbanization and economic development, climate change, population growth, increasing water demand, influxes of refugees caused by war and regional political conflict, etc. To solve the emerging problems, the safe reuse of treated wastewater in agriculture can provide an additional water resource for countries with high water scarcity. The aim of this study was to investigate the treatment performance and effectiveness of small decentralized wastewater treatment (DWWT) technologies treating high-strength wastewater with concentrations far beyond the European Union testing ranges of parameters such as five-day biochemical oxygen demand (BOD5 > 500 mg/L), chemical oxygen demand (COD > 1000 mg/L), or total suspended solids (TSS > 700 mg/L). Four (4) commercially available DWWT technologies with a design capacity of 4–8 PE (population equivalent) were selected and operated with various wastewater compositions in Leipzig, Germany. The technologies were (i) the moving bed biofilm reactor (MBBR), (ii) the sequencing batch reactor (SBR), (iii) the membrane bioreactor (MBR) and (iv) the aerated vertical-flow constructed wetland (AVFCW). This study results clearly demonstrated that the EU-certified small DWWT technologies are quite capable of treating high-strength wastewater and can provide high-quality treated water for safe reuse in rural communities of arid and semi-arid regions. During operation with high-strength wastewater with a mean inflow BOD5, COD and TSS concentrations of 1532 ± 478, 2547 ± 830 and 546 ± 176 mg/L, a low mean BOD5 (<10 mg/L), COD (<70 mg/L) and TSS (<15 mg/L) in the outflow of the four systems showed removal efficiency of BOD5 (>99%), COD (>97%) and TSS (>97%), and met the maximum allowable limit value of water quality class A for reuse in agriculture according to Jordanian and Omani standard. The MBR showed almost a complete removal of Escherichia coli (E. coli) in a range of 6.1–6.9-log removal in the outflow during all three experimental phases and performed best for BOD5, COD, TSS and pathogen removal when treating high-strength wastewater if properly maintained to prevent potential fouling and clogging of the membrane. Before the final permitting process, long-term monitoring under local temperature and climatic conditions as well as guidelines based on local needs (e.g., in Jordan, Oman, etc.) should be developed to guarantee a minimum level of performance standards of such small DWWT technologies and requirements for operation and maintenance (O&M).
{"title":"Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions","authors":"Khaja Zillur Rahman, Shamsa Al Saadi, Mohamed Al Rawahi, Manfred van Afferden, Katy Bernhard, Jan Friesen, Roland A. Müller","doi":"10.3390/environments11070142","DOIUrl":"https://doi.org/10.3390/environments11070142","url":null,"abstract":"Rural and semi-urban areas in arid/semi-arid regions are facing severe water scarcity and a series of environmental challenges nowadays, specifically due to rapid urbanization and economic development, climate change, population growth, increasing water demand, influxes of refugees caused by war and regional political conflict, etc. To solve the emerging problems, the safe reuse of treated wastewater in agriculture can provide an additional water resource for countries with high water scarcity. The aim of this study was to investigate the treatment performance and effectiveness of small decentralized wastewater treatment (DWWT) technologies treating high-strength wastewater with concentrations far beyond the European Union testing ranges of parameters such as five-day biochemical oxygen demand (BOD5 > 500 mg/L), chemical oxygen demand (COD > 1000 mg/L), or total suspended solids (TSS > 700 mg/L). Four (4) commercially available DWWT technologies with a design capacity of 4–8 PE (population equivalent) were selected and operated with various wastewater compositions in Leipzig, Germany. The technologies were (i) the moving bed biofilm reactor (MBBR), (ii) the sequencing batch reactor (SBR), (iii) the membrane bioreactor (MBR) and (iv) the aerated vertical-flow constructed wetland (AVFCW). This study results clearly demonstrated that the EU-certified small DWWT technologies are quite capable of treating high-strength wastewater and can provide high-quality treated water for safe reuse in rural communities of arid and semi-arid regions. During operation with high-strength wastewater with a mean inflow BOD5, COD and TSS concentrations of 1532 ± 478, 2547 ± 830 and 546 ± 176 mg/L, a low mean BOD5 (<10 mg/L), COD (<70 mg/L) and TSS (<15 mg/L) in the outflow of the four systems showed removal efficiency of BOD5 (>99%), COD (>97%) and TSS (>97%), and met the maximum allowable limit value of water quality class A for reuse in agriculture according to Jordanian and Omani standard. The MBR showed almost a complete removal of Escherichia coli (E. coli) in a range of 6.1–6.9-log removal in the outflow during all three experimental phases and performed best for BOD5, COD, TSS and pathogen removal when treating high-strength wastewater if properly maintained to prevent potential fouling and clogging of the membrane. Before the final permitting process, long-term monitoring under local temperature and climatic conditions as well as guidelines based on local needs (e.g., in Jordan, Oman, etc.) should be developed to guarantee a minimum level of performance standards of such small DWWT technologies and requirements for operation and maintenance (O&M).","PeriodicalId":11886,"journal":{"name":"Environments","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.3390/environments11070141
Kendall Wontor, Boluwatife S. Olubusoye, James V. Cizdziel
The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies.
{"title":"Microplastics in the Mississippi River System during Flash Drought Conditions","authors":"Kendall Wontor, Boluwatife S. Olubusoye, James V. Cizdziel","doi":"10.3390/environments11070141","DOIUrl":"https://doi.org/10.3390/environments11070141","url":null,"abstract":"The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.3390/environments11070140
Halina Falfushynska
The European Union’s Green Deal concept prioritizes the installation of photovoltaic and wind turbine systems, with the aim of significantly reducing greenhouse gas emissions and expanding the use of renewable energy. The inclusion of metals/metaloids such as Cd, Pb, Ni, and As to PV panels may be a matter of concern because they may provoke numerous negative environmental effects, especially after decommissioning. Although the release of Pb and Cd from solar panels is generally low, these releases may increase, posing long-term harm. Cd and Pb, if only released from solar panels, can enter the environment, including soil and water, posing a significant risk to human health and ecosystems. Cd, in particular, can have profound and lasting negative impacts on animals and humans, affecting cellular responses, enzyme operations, and immune system functionality. Pb exposure, in turn, can induce oxidative stress and neurotoxicity, disrupt ion regulatory pathways, and impair immune function. Despite efforts to reduce the release of toxic metals from PV panels, controlling their disposal and avoiding environmental contamination remains challenging. Discovering substitute materials for PV panel manufacture, implementing enhanced recycling procedures, performing bioremediation, and enforcing stronger restrictions are among the strategies to mitigate environmental concerns.
{"title":"Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy","authors":"Halina Falfushynska","doi":"10.3390/environments11070140","DOIUrl":"https://doi.org/10.3390/environments11070140","url":null,"abstract":"The European Union’s Green Deal concept prioritizes the installation of photovoltaic and wind turbine systems, with the aim of significantly reducing greenhouse gas emissions and expanding the use of renewable energy. The inclusion of metals/metaloids such as Cd, Pb, Ni, and As to PV panels may be a matter of concern because they may provoke numerous negative environmental effects, especially after decommissioning. Although the release of Pb and Cd from solar panels is generally low, these releases may increase, posing long-term harm. Cd and Pb, if only released from solar panels, can enter the environment, including soil and water, posing a significant risk to human health and ecosystems. Cd, in particular, can have profound and lasting negative impacts on animals and humans, affecting cellular responses, enzyme operations, and immune system functionality. Pb exposure, in turn, can induce oxidative stress and neurotoxicity, disrupt ion regulatory pathways, and impair immune function. Despite efforts to reduce the release of toxic metals from PV panels, controlling their disposal and avoiding environmental contamination remains challenging. Discovering substitute materials for PV panel manufacture, implementing enhanced recycling procedures, performing bioremediation, and enforcing stronger restrictions are among the strategies to mitigate environmental concerns.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.3390/environments11070139
Jesús López-Santiago, Amelia Md Som, Luis Ruiz-Garcia, Sergio Zubelzu Mínguez, María Teresa Gómez Villarino
This study assesses the adoption and operational effectiveness of Environmental Management Systems (EMSs) in Italian wineries, focusing on ISO 14001:2015. It evaluates commitment, planning, communication strategies, emergency preparedness, and employee training practices. Using a comprehensive survey-based methodology, the research elucidates the dynamics of EMS implementation across various scales of winery operations. The research reveals a strong commitment among wineries to environmental objectives such as waste reduction and efficient electricity and water use. However, significant deficiencies were identified in EMS policy implementation, emergency preparedness, and the uptake of ISO 14001:2015 certification, with larger wineries showing more robust engagement in environmental training than smaller ones. The study incorporates five key performance indicators (KPIs) and a predictive model using logistic regression and Random Forest to analyze the likelihood of ISO 14001 certification based on the analyzed variables. The model highlights established processes, environmental policies, and frequent reviews as significant predictors of certification. These findings contribute original value by identifying critical leverage points and barriers affecting EMS effectiveness within the wine sector. The research uncovers nuanced interactions between the scale of operations and management engagement influencing EMSs’ success. It proposes novel, survey-based KPIs essential for assessing EMS performance in wineries, demonstrating their practical utility in pinpointing areas for improvement. The research limitations include potential biases from varying participation rates among surveyed wineries, affecting extrapolation to the broader Italian wine industry. Despite these limitations, the study provides substantive practical implications, suggesting that wineries can enhance both environmental sustainability and a competitive edge by addressing gaps in EMS implementation.
本研究以 ISO 14001:2015 为重点,评估了意大利葡萄酒厂采用环境管理体系(EMS)的情况及其运行效果。研究评估了承诺、规划、沟通策略、应急准备和员工培训实践。研究采用综合调查方法,阐明了在不同规模的酒庄运营中实施环境管理体系的动态。研究表明,酒庄对减少废物、高效用电用水等环保目标有着坚定的承诺。然而,在环境管理体系政策的实施、应急准备以及 ISO 14001:2015 认证的采用方面却发现了明显的不足,大型酒庄在环境培训方面的参与度要高于小型酒庄。研究结合了五项关键绩效指标(KPI),并使用逻辑回归和随机森林建立了一个预测模型,根据分析变量来分析获得 ISO 14001 认证的可能性。该模型强调,既定流程、环境政策和频繁审查是获得认证的重要预测因素。这些发现通过确定影响葡萄酒行业环境管理体系有效性的关键杠杆点和障碍,为研究提供了新的价值。研究揭示了影响环管系统成功与否的运营规模和管理参与之间的微妙互动关系。研究提出了新颖的、基于调查的关键绩效指标(KPI),这些指标对评估酒厂的环境管理体系绩效至关重要,并证明了它们在确定需要改进的领域方面的实用性。研究的局限性包括:受访酒庄的参与率不一,可能会产生偏差,影响对更广泛的意大利葡萄酒行业的推断。尽管存在这些局限性,但这项研究提供了实质性的实际意义,表明酒厂可以通过解决环境管理体系实施过程中存在的差距来提高环境的可持续性和竞争优势。
{"title":"Assessment of Environmental Management Performance in Wineries: A Survey-Based Analysis to Create Key Performance Indicators","authors":"Jesús López-Santiago, Amelia Md Som, Luis Ruiz-Garcia, Sergio Zubelzu Mínguez, María Teresa Gómez Villarino","doi":"10.3390/environments11070139","DOIUrl":"https://doi.org/10.3390/environments11070139","url":null,"abstract":"This study assesses the adoption and operational effectiveness of Environmental Management Systems (EMSs) in Italian wineries, focusing on ISO 14001:2015. It evaluates commitment, planning, communication strategies, emergency preparedness, and employee training practices. Using a comprehensive survey-based methodology, the research elucidates the dynamics of EMS implementation across various scales of winery operations. The research reveals a strong commitment among wineries to environmental objectives such as waste reduction and efficient electricity and water use. However, significant deficiencies were identified in EMS policy implementation, emergency preparedness, and the uptake of ISO 14001:2015 certification, with larger wineries showing more robust engagement in environmental training than smaller ones. The study incorporates five key performance indicators (KPIs) and a predictive model using logistic regression and Random Forest to analyze the likelihood of ISO 14001 certification based on the analyzed variables. The model highlights established processes, environmental policies, and frequent reviews as significant predictors of certification. These findings contribute original value by identifying critical leverage points and barriers affecting EMS effectiveness within the wine sector. The research uncovers nuanced interactions between the scale of operations and management engagement influencing EMSs’ success. It proposes novel, survey-based KPIs essential for assessing EMS performance in wineries, demonstrating their practical utility in pinpointing areas for improvement. The research limitations include potential biases from varying participation rates among surveyed wineries, affecting extrapolation to the broader Italian wine industry. Despite these limitations, the study provides substantive practical implications, suggesting that wineries can enhance both environmental sustainability and a competitive edge by addressing gaps in EMS implementation.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-29DOI: 10.3390/environments11070138
Muhammad Omer, Yong C. Wang, Mikel Quintana Roma, Stanislav Bedrich, Václav Nežerka, Juan Ferriz-Papi, Jesus J. Moros Montanes, Ines Diez Ortiz
This paper presents the development of a 3D digital model of end-of-service-life buildings to facilitate a step change in preparation of pre-demolition protocols that can eliminate problems of inadequate documentation and extensive time spent in preparing pre-demolition audits. The 3D digital model consists of the following four main components: (i) digitization of paper-based drawings and their conversion to CAD; (ii) automated generation of a 3D digital model from CAD; (iii) corrections to the 3D digital model to account for changes in the lifetime of a building; (iv) a sub-model for performing pre-demolition audit. This paper proposes the innovative approaches of incorporating a minimal amount of human intervention to overcome numerous difficulties in automated drawing analysis, application of augmented reality (AR) in corrections to the 3D digital model, and data compatibility for pre-demolition audit. These processes are demonstrated using one building as case study. Using the digital model, a pre-demolition audit can be prepared in minutes rather than the many days required in current practice without a digital model. The accurate quantification of the quantities and locations of different demolition waste materials and products in buildings to be demolished will enable a systematic and quantitative evaluation of potentials of material and product reuse and eliminate contamination of different demolition waste streams (which may contain hazardous waste), which is the main cause of environmental degradation and downcycling of demolition waste materials.
{"title":"Development of a 3D Digital Model of End-of-Service-Life Buildings for Improved Demolition Waste Management through Automated Demolition Waste Audit","authors":"Muhammad Omer, Yong C. Wang, Mikel Quintana Roma, Stanislav Bedrich, Václav Nežerka, Juan Ferriz-Papi, Jesus J. Moros Montanes, Ines Diez Ortiz","doi":"10.3390/environments11070138","DOIUrl":"https://doi.org/10.3390/environments11070138","url":null,"abstract":"This paper presents the development of a 3D digital model of end-of-service-life buildings to facilitate a step change in preparation of pre-demolition protocols that can eliminate problems of inadequate documentation and extensive time spent in preparing pre-demolition audits. The 3D digital model consists of the following four main components: (i) digitization of paper-based drawings and their conversion to CAD; (ii) automated generation of a 3D digital model from CAD; (iii) corrections to the 3D digital model to account for changes in the lifetime of a building; (iv) a sub-model for performing pre-demolition audit. This paper proposes the innovative approaches of incorporating a minimal amount of human intervention to overcome numerous difficulties in automated drawing analysis, application of augmented reality (AR) in corrections to the 3D digital model, and data compatibility for pre-demolition audit. These processes are demonstrated using one building as case study. Using the digital model, a pre-demolition audit can be prepared in minutes rather than the many days required in current practice without a digital model. The accurate quantification of the quantities and locations of different demolition waste materials and products in buildings to be demolished will enable a systematic and quantitative evaluation of potentials of material and product reuse and eliminate contamination of different demolition waste streams (which may contain hazardous waste), which is the main cause of environmental degradation and downcycling of demolition waste materials.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.3390/environments11070137
Lena Goritschnig, Helmut Burtscher-Schaden, Thomas Durstberger, Johann G. Zaller
Pesticides affect biota inside and outside agricultural fields due to their intrinsic mode of action. This study investigated whether pesticide active substances (AS) approved for conventional agriculture in Europe differ in their ecotoxicity from AS approved for organic agriculture. The evaluation was based on official ecotoxicological data for surrogate honeybee, bird, and earthworm species, which also serve as a reference for official environmental risk assessments in the pesticide authorization process. In October 2022, 268 chemical-synthetic AS approved for conventional and 179 nature-based AS approved for organic agriculture were listed in the EU Pesticide Database. Ecotoxicological data were only available for 254 AS approved for use in conventional agriculture and 110 AS approved for use in organic agriculture. The results showed a higher ecotoxicity of conventional AS: 79% (201 AS), 64% (163 AS) and 91% (230 AS) were moderately to acutely toxic to honeybees, birds, and earthworms, respectively, compared to 44% (48 AS), 14% (15 AS) and 36% (39 AS) of AS approved for organic agriculture. We have only considered the potential ecotoxicities of individual substances in this assessment; actual exposure in the field, where multiple AS formulations with other chemicals (including impurities) are applied, will be different. Nevertheless, these results emphasize that an increase in organic agriculture in Europe would reduce the ecotoxicological burden on biodiversity and associated ecosystem services.
农药因其固有的作用模式而影响农田内外的生物群。本研究调查了欧洲批准用于常规农业的农药活性物质(AS)与批准用于有机农业的农药活性物质(AS)在生态毒性方面是否存在差异。评估依据的是蜜蜂、鸟类和蚯蚓等替代物种的官方生态毒理学数据,这些数据也可作为农药授权过程中官方环境风险评估的参考。2022 年 10 月,欧盟农药数据库中列出了 268 种获准用于常规农业的化学合成 AS 和 179 种获准用于有机农业的基于自然的 AS。仅有 254 种获准用于常规农业的 AS 和 110 种获准用于有机农业的 AS 的生态毒理学数据。结果显示,常规 AS 的生态毒性较高:79%(201 种 AS)、64%(163 种 AS)和 91%(230 种 AS)的 AS 对蜜蜂、鸟类和蚯蚓有中度至急性毒性,而获准用于有机农业的 AS 的生态毒性分别为 44%(48 种 AS)、14%(15 种 AS)和 36%(39 种 AS)。在本次评估中,我们只考虑了单个物质的潜在生态毒性;在田间应用含有其他化学品(包括杂质)的多种 AS 配方时,实际接触情况会有所不同。尽管如此,这些结果强调,欧洲有机农业的增加将减少对生物多样性和相关生态系统服务的生态毒理学负担。
{"title":"Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms","authors":"Lena Goritschnig, Helmut Burtscher-Schaden, Thomas Durstberger, Johann G. Zaller","doi":"10.3390/environments11070137","DOIUrl":"https://doi.org/10.3390/environments11070137","url":null,"abstract":"Pesticides affect biota inside and outside agricultural fields due to their intrinsic mode of action. This study investigated whether pesticide active substances (AS) approved for conventional agriculture in Europe differ in their ecotoxicity from AS approved for organic agriculture. The evaluation was based on official ecotoxicological data for surrogate honeybee, bird, and earthworm species, which also serve as a reference for official environmental risk assessments in the pesticide authorization process. In October 2022, 268 chemical-synthetic AS approved for conventional and 179 nature-based AS approved for organic agriculture were listed in the EU Pesticide Database. Ecotoxicological data were only available for 254 AS approved for use in conventional agriculture and 110 AS approved for use in organic agriculture. The results showed a higher ecotoxicity of conventional AS: 79% (201 AS), 64% (163 AS) and 91% (230 AS) were moderately to acutely toxic to honeybees, birds, and earthworms, respectively, compared to 44% (48 AS), 14% (15 AS) and 36% (39 AS) of AS approved for organic agriculture. We have only considered the potential ecotoxicities of individual substances in this assessment; actual exposure in the field, where multiple AS formulations with other chemicals (including impurities) are applied, will be different. Nevertheless, these results emphasize that an increase in organic agriculture in Europe would reduce the ecotoxicological burden on biodiversity and associated ecosystem services.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"78 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.3390/environments11070136
Junhao Zheng, Mei Jiang, Qingzhu Li, Weichun Yang
Fe/Mn (hydr)oxides are metallic compounds that exhibit significant redox activity in environmental media and play a pivotal role in geochemical processes, thereby influencing the fate of metals in porous media. The morphology of Fe/Mn (hydr)oxides in natural environments and their interactions with trace metals are significantly influenced by the presence of natural organic matter (NOM). However, there is limited understanding regarding the formation, transport, and stability of Fe/Mn (hydr)oxides in the environment. The present study employed humic acid (HA) as a representative NOM material to investigate the positive influence of HA on the formation of Fe/Mn colloids. However, there remains limited comprehension regarding the formation, transport, and stability of Fe/Mn (hydr)oxides in the natural environment. In this study, we investigated the positive effect of natural organic matter (NOM) on the formation of Fe/Mn colloids using humic acid (HA) as a representative NOM material. We comprehensively characterized the chemical and physical properties of HA–Fe/Mn colloids formed under various environmentally relevant conditions and quantitatively analyzed their subsequent aggregation and stability behaviors. The findings suggest that the molar ratios of C to Fe/Mn (hydr)oxide play a pivotal role in influencing the properties of HA–Fe/Mn colloids. The formation and stability of HA–Fe/Mn colloids exhibit an upward trend with increasing initial molar ratios of C to Fe/Mn. Redox and metal–carboxylic acid complexation reactions between HA and hydrated iron/manganese oxides play a pivotal role in forming colloidal HA–Fe/Mn complexes. Subsequent investigations simulating porous media environments have demonstrated that the colloidal structure resulting from the interaction between HA and Fe/Mn facilitates their migration within surrounding porous media while also enhancing their retention in the surface layers of these media. This study offers novel insights into the formation and stabilization mechanisms of HA–Fe/Mn colloids, which are pivotal for comprehending the behavior of Fe/Mn colloids and the involvement of Fe/Mn (hydr)oxides in geochemical cycling processes within porous media.
铁/锰(氢)氧化物是一种金属化合物,在环境介质中表现出显著的氧化还原活性,在地球化学过程中起着关键作用,从而影响多孔介质中金属的归宿。铁/锰(水)氧化物在自然环境中的形态及其与痕量金属的相互作用受到天然有机物(NOM)的显著影响。然而,人们对环境中铁/锰(水)氧化物的形成、迁移和稳定性了解有限。本研究采用腐植酸(HA)作为具有代表性的 NOM 材料,研究 HA 对铁/锰胶体形成的积极影响。然而,人们对自然环境中铁/锰(水)氧化物的形成、迁移和稳定性的了解仍然有限。在本研究中,我们以腐植酸(HA)为代表性的 NOM 材料,研究了天然有机物(NOM)对铁/锰胶体形成的积极影响。我们全面描述了在各种环境相关条件下形成的 HA-Fe/Mn 胶体的化学和物理特性,并定量分析了它们随后的聚集和稳定性行为。研究结果表明,C 与 Fe/Mn(氢)氧化物的摩尔比在影响 HA-Fe/Mn 胶体的性质方面起着关键作用。随着 C 与 Fe/Mn 初始摩尔比的增加,HA-Fe/Mn 胶体的形成和稳定性呈上升趋势。在形成胶体 HA-Fe/Mn 复合物的过程中,HA 与水合铁/锰氧化物之间的氧化还原反应和金属羧酸络合反应发挥了关键作用。随后模拟多孔介质环境的研究表明,HA 和铁/锰之间相互作用产生的胶体结构有利于它们在周围多孔介质中迁移,同时也增强了它们在这些介质表层的保留。这项研究为 HA-Fe/Mn 胶体的形成和稳定机制提供了新的见解,这对于理解 Fe/Mn 胶体的行为以及 Fe/Mn(氢)氧化物参与多孔介质中的地球化学循环过程至关重要。
{"title":"The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media","authors":"Junhao Zheng, Mei Jiang, Qingzhu Li, Weichun Yang","doi":"10.3390/environments11070136","DOIUrl":"https://doi.org/10.3390/environments11070136","url":null,"abstract":"Fe/Mn (hydr)oxides are metallic compounds that exhibit significant redox activity in environmental media and play a pivotal role in geochemical processes, thereby influencing the fate of metals in porous media. The morphology of Fe/Mn (hydr)oxides in natural environments and their interactions with trace metals are significantly influenced by the presence of natural organic matter (NOM). However, there is limited understanding regarding the formation, transport, and stability of Fe/Mn (hydr)oxides in the environment. The present study employed humic acid (HA) as a representative NOM material to investigate the positive influence of HA on the formation of Fe/Mn colloids. However, there remains limited comprehension regarding the formation, transport, and stability of Fe/Mn (hydr)oxides in the natural environment. In this study, we investigated the positive effect of natural organic matter (NOM) on the formation of Fe/Mn colloids using humic acid (HA) as a representative NOM material. We comprehensively characterized the chemical and physical properties of HA–Fe/Mn colloids formed under various environmentally relevant conditions and quantitatively analyzed their subsequent aggregation and stability behaviors. The findings suggest that the molar ratios of C to Fe/Mn (hydr)oxide play a pivotal role in influencing the properties of HA–Fe/Mn colloids. The formation and stability of HA–Fe/Mn colloids exhibit an upward trend with increasing initial molar ratios of C to Fe/Mn. Redox and metal–carboxylic acid complexation reactions between HA and hydrated iron/manganese oxides play a pivotal role in forming colloidal HA–Fe/Mn complexes. Subsequent investigations simulating porous media environments have demonstrated that the colloidal structure resulting from the interaction between HA and Fe/Mn facilitates their migration within surrounding porous media while also enhancing their retention in the surface layers of these media. This study offers novel insights into the formation and stabilization mechanisms of HA–Fe/Mn colloids, which are pivotal for comprehending the behavior of Fe/Mn colloids and the involvement of Fe/Mn (hydr)oxides in geochemical cycling processes within porous media.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.3390/environments11070135
Jenna R. Krall, Jonathan Thornburg, Ting Zhang, Anna Z. Pollack, Yi-Ching Lee, Michelle McCombs, Lucas R. F. Henneman
Increased daily exposure to fine particulate matter air pollution (PM2.5) is associated with increased morbidity, yet high exposures over shorter timeframes (e.g., hourly) may also play a role. Transportation is a milieu for increased transient pollution exposures. Both the road traveled and nearby roadways (i.e., surrounding road density) may play a role in increased PM2.5 exposure during commutes. For 2311 min of commutes, corresponding to 25 participants, we obtained in-vehicle PM2.5 exposures using personal monitors and, through GPS data, road features, including road density and road type (e.g., highway vs. local roads). We considered the density of both the surrounding highways and the local roads at 500 m and 1000 m resolutions. We estimated associations of road features with minute-averaged in-vehicle PM2.5 by applying linear mixed-effects models with random intercepts and autoregressive errors. The difference in log PM2.5, comparing the highest vs. lowest quartile of highway road density at 1 km resolution, was 0.09 log μg/m3 (95% confidence interval: 0, 0.19), which was similar to the difference between driving on highways vs. local roads (0.07 log μg/m3 (95% confidence interval: 0.00, 0.14)). Estimated differences were attenuated for local road density and 500 m resolution. The results were robust to adjustment for meteorology and ambient PM2.5. Unlike road features such as speed and road type, the surrounding road density is less modifiable during transportation. Therefore, road choice may not have a large impact on personal PM2.5 exposures.
{"title":"Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area","authors":"Jenna R. Krall, Jonathan Thornburg, Ting Zhang, Anna Z. Pollack, Yi-Ching Lee, Michelle McCombs, Lucas R. F. Henneman","doi":"10.3390/environments11070135","DOIUrl":"https://doi.org/10.3390/environments11070135","url":null,"abstract":"Increased daily exposure to fine particulate matter air pollution (PM2.5) is associated with increased morbidity, yet high exposures over shorter timeframes (e.g., hourly) may also play a role. Transportation is a milieu for increased transient pollution exposures. Both the road traveled and nearby roadways (i.e., surrounding road density) may play a role in increased PM2.5 exposure during commutes. For 2311 min of commutes, corresponding to 25 participants, we obtained in-vehicle PM2.5 exposures using personal monitors and, through GPS data, road features, including road density and road type (e.g., highway vs. local roads). We considered the density of both the surrounding highways and the local roads at 500 m and 1000 m resolutions. We estimated associations of road features with minute-averaged in-vehicle PM2.5 by applying linear mixed-effects models with random intercepts and autoregressive errors. The difference in log PM2.5, comparing the highest vs. lowest quartile of highway road density at 1 km resolution, was 0.09 log μg/m3 (95% confidence interval: 0, 0.19), which was similar to the difference between driving on highways vs. local roads (0.07 log μg/m3 (95% confidence interval: 0.00, 0.14)). Estimated differences were attenuated for local road density and 500 m resolution. The results were robust to adjustment for meteorology and ambient PM2.5. Unlike road features such as speed and road type, the surrounding road density is less modifiable during transportation. Therefore, road choice may not have a large impact on personal PM2.5 exposures.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}