Pub Date : 2024-06-11DOI: 10.3390/environments11060123
Oluwaseun Nubi, Richard J. Murphy, Stephen Morse
The global move towards a circular economy, as well as that of achieving the United Nations Sustainable Development Goals (SDGs), has necessitated the search for several sustainable solutions in various sectors. Given this, the provision of sustainable waste management and electricity systems constitute a significant part of the SDGs, and the waste-to-energy (WtE) concept has recently become a key topic given that it can potentially help reduce the dependence on fossil fuels for energy generation, as well as minimizing the need to dispose of waste in landfill. However, to date, the sustainability assessments of WtE generation technologies have been limited in scope concerning the three-dimensional sustainability framework (economic, environmental, and social). Life Cycle Sustainability Assessment (LCSA) has been proposed as a potential approach that could comprehensively address these three pillars of sustainability simultaneously based on life cycle thinking. LCSA, as a holistic method, could also potentially deal with the complexity associated with decision-making by allowing for the consideration of a full range of possible sustainability consequences. LCSA is an analytical tool that integrates the Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (sLCA) methodologies, which already exist and continue to be developed. Individually, these life-cycle approaches tend to be used to point out particular ‘hotspots’ in product or service systems, and hence focus on direct impacts in a given sustainability domain, neglecting the indirect ones. LCSA aims for a more holistic sustainability perspective and seeks to address the associated challenge of integrating these three pillars of sustainability into an overall and more comprehensive sustainability assessment. This need for harmonization within the LCSA methodology is a major challenge in its operationalization. In recent years there has been steady progress towards developing and applying LCSA, including for WtE. The aim of this paper is to review the most recent trends and perspectives in developing countries, especially regarding how LCSA could help inform decision-making. The paper also analyses the LCSA literature to set out the theoretical and practical challenges behind integrating the three methods (LCA, LCC, and sLCA). The review was conducted via a search of keywords such as LCSA, waste, and energy in the Web of Science databases, resulting in the selection of 187 publications written in English. Of those, 13 articles operationalized LCSA in specific waste and WtE related case studies. The review provides a review of the application of LCSA for researchers, technological experts, and policymakers through published findings and identifies perspectives on new research. These include uncertainty, subjectivity in weighting, double-counting, the low maturity of sLCA, and the integration of the interconnection between the three dimensions (environmental, econ
{"title":"Life Cycle Sustainability Assessment of Waste to Energy Systems in the Developing World: A Review","authors":"Oluwaseun Nubi, Richard J. Murphy, Stephen Morse","doi":"10.3390/environments11060123","DOIUrl":"https://doi.org/10.3390/environments11060123","url":null,"abstract":"The global move towards a circular economy, as well as that of achieving the United Nations Sustainable Development Goals (SDGs), has necessitated the search for several sustainable solutions in various sectors. Given this, the provision of sustainable waste management and electricity systems constitute a significant part of the SDGs, and the waste-to-energy (WtE) concept has recently become a key topic given that it can potentially help reduce the dependence on fossil fuels for energy generation, as well as minimizing the need to dispose of waste in landfill. However, to date, the sustainability assessments of WtE generation technologies have been limited in scope concerning the three-dimensional sustainability framework (economic, environmental, and social). Life Cycle Sustainability Assessment (LCSA) has been proposed as a potential approach that could comprehensively address these three pillars of sustainability simultaneously based on life cycle thinking. LCSA, as a holistic method, could also potentially deal with the complexity associated with decision-making by allowing for the consideration of a full range of possible sustainability consequences. LCSA is an analytical tool that integrates the Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (sLCA) methodologies, which already exist and continue to be developed. Individually, these life-cycle approaches tend to be used to point out particular ‘hotspots’ in product or service systems, and hence focus on direct impacts in a given sustainability domain, neglecting the indirect ones. LCSA aims for a more holistic sustainability perspective and seeks to address the associated challenge of integrating these three pillars of sustainability into an overall and more comprehensive sustainability assessment. This need for harmonization within the LCSA methodology is a major challenge in its operationalization. In recent years there has been steady progress towards developing and applying LCSA, including for WtE. The aim of this paper is to review the most recent trends and perspectives in developing countries, especially regarding how LCSA could help inform decision-making. The paper also analyses the LCSA literature to set out the theoretical and practical challenges behind integrating the three methods (LCA, LCC, and sLCA). The review was conducted via a search of keywords such as LCSA, waste, and energy in the Web of Science databases, resulting in the selection of 187 publications written in English. Of those, 13 articles operationalized LCSA in specific waste and WtE related case studies. The review provides a review of the application of LCSA for researchers, technological experts, and policymakers through published findings and identifies perspectives on new research. These include uncertainty, subjectivity in weighting, double-counting, the low maturity of sLCA, and the integration of the interconnection between the three dimensions (environmental, econ","PeriodicalId":11886,"journal":{"name":"Environments","volume":"72 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.3390/environments11060122
Serge Langunu, Jacques Kilela Mwanasomwe, Gilles Colinet, Mylor Ngoy Shutcha
This study aims to contribute to the characterization of Katangese Copperbelt’s (DR Congo) mining wastes and soils polluted with trace metals, using pollution indices and direct concentration measurements. This study also evaluated the use of these indices in assessing the success of remediation projects. Data from previous studies and samples collected from six types of discharge and one polluted soil were used to address the first objective. Soil and plant samples were collected at Kipushi and Penga Penga for the second objective. The results reveal very high concentrations of As, Cd, Co, Cu, Mn, Pb, and Zn in all mine tailings and polluted soils, compared with local references. The degree of contamination (DC) values (from 72 to 5440) and potential ecological risk (RI) values (from 549 to 162,091) indicate very high-risk situations associated with polluted discharges and soils. Regarding revegetation trials, the results show lower concentrations and RIs in tree rhizospheres compared with unamended areas at both sites. However, trace metal concentrations are higher in tree rhizospheres compared with local references, and RI values are in the considerable risk range for Penga Penga (RI = 533) and in the very high range (>1500) for Kipushi. Bioconcentration factor values are below 1, indicating low accumulation in roots, wood, and leaves, and low risk of contamination of the trophic chain. In this context, it seems that the pollution indices used are suitable for characterizing pollution and prioritization for remediation. However, there seems unsuitable for assessing the effectiveness of phytotechnology processes based on metal stabilization. Direct plant performance measurements combined with direct measurements of metals in substrates and plants to assess transfer and efficiency are more appropriate.
{"title":"Are Ecological Risk Indices for Trace Metals Relevant for Characterizing Polluted Substrates in the Katangese Copperbelt (DR Congo) and for Assessment of the Performance of Remediation Trials?","authors":"Serge Langunu, Jacques Kilela Mwanasomwe, Gilles Colinet, Mylor Ngoy Shutcha","doi":"10.3390/environments11060122","DOIUrl":"https://doi.org/10.3390/environments11060122","url":null,"abstract":"This study aims to contribute to the characterization of Katangese Copperbelt’s (DR Congo) mining wastes and soils polluted with trace metals, using pollution indices and direct concentration measurements. This study also evaluated the use of these indices in assessing the success of remediation projects. Data from previous studies and samples collected from six types of discharge and one polluted soil were used to address the first objective. Soil and plant samples were collected at Kipushi and Penga Penga for the second objective. The results reveal very high concentrations of As, Cd, Co, Cu, Mn, Pb, and Zn in all mine tailings and polluted soils, compared with local references. The degree of contamination (DC) values (from 72 to 5440) and potential ecological risk (RI) values (from 549 to 162,091) indicate very high-risk situations associated with polluted discharges and soils. Regarding revegetation trials, the results show lower concentrations and RIs in tree rhizospheres compared with unamended areas at both sites. However, trace metal concentrations are higher in tree rhizospheres compared with local references, and RI values are in the considerable risk range for Penga Penga (RI = 533) and in the very high range (>1500) for Kipushi. Bioconcentration factor values are below 1, indicating low accumulation in roots, wood, and leaves, and low risk of contamination of the trophic chain. In this context, it seems that the pollution indices used are suitable for characterizing pollution and prioritization for remediation. However, there seems unsuitable for assessing the effectiveness of phytotechnology processes based on metal stabilization. Direct plant performance measurements combined with direct measurements of metals in substrates and plants to assess transfer and efficiency are more appropriate.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"23 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141357394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.3390/environments11060124
Ashish Kumar Das, Lide Chen
Dairy wastewater (DW) contains a high concentration of organic and inorganic pollutants. In recent years, extensive research has been conducted to develop more efficient techniques for the treatment of DW. Electrochemical advanced oxidation processes (EAOPs) have gained significant attention among the various treatment approaches. EAOPs rely on electrochemical generation of hydroxyl radicals (•OH) which are considered highly potent oxidizing compounds for the degradation of pollutants in DW. In this paper, we provide an overview of the treatment of DW using various EAOPs, including anodic oxidation (AO), electro-Fenton (EF), photo electro-Fenton (PEF), and solar photo electro-Fenton (SPEF) processes, both individually and in combination with other techniques. Additionally, we discuss the reactor design and operating parameters employed in EAOPs. The variation in degradation efficiency is due to different oxidizing agents produced in specific approaches and their pollutant degradation abilities. In AO process, •OH radicals generated on electrode surfaces are influenced by electrode material and current density, while EF procedures use Fe2+ to create oxidizing agents both on electrodes and in the DW solution, with degradation mechanisms being affected by Fe2+, pH, and current density; additionally, PEF and SPEF approaches enhance oxidizing component production and pollutant degradation using ultraviolet (UV) light. Integration of EAOPs with other biological processes can enhance the pollutant removal efficiency of the treatment system. There is a scope of further research to exhibit the effectiveness of EAOPs for DW treatment in large scale implementation.
{"title":"A Review on Electrochemical Advanced Oxidation Treatment of Dairy Wastewater","authors":"Ashish Kumar Das, Lide Chen","doi":"10.3390/environments11060124","DOIUrl":"https://doi.org/10.3390/environments11060124","url":null,"abstract":"Dairy wastewater (DW) contains a high concentration of organic and inorganic pollutants. In recent years, extensive research has been conducted to develop more efficient techniques for the treatment of DW. Electrochemical advanced oxidation processes (EAOPs) have gained significant attention among the various treatment approaches. EAOPs rely on electrochemical generation of hydroxyl radicals (•OH) which are considered highly potent oxidizing compounds for the degradation of pollutants in DW. In this paper, we provide an overview of the treatment of DW using various EAOPs, including anodic oxidation (AO), electro-Fenton (EF), photo electro-Fenton (PEF), and solar photo electro-Fenton (SPEF) processes, both individually and in combination with other techniques. Additionally, we discuss the reactor design and operating parameters employed in EAOPs. The variation in degradation efficiency is due to different oxidizing agents produced in specific approaches and their pollutant degradation abilities. In AO process, •OH radicals generated on electrode surfaces are influenced by electrode material and current density, while EF procedures use Fe2+ to create oxidizing agents both on electrodes and in the DW solution, with degradation mechanisms being affected by Fe2+, pH, and current density; additionally, PEF and SPEF approaches enhance oxidizing component production and pollutant degradation using ultraviolet (UV) light. Integration of EAOPs with other biological processes can enhance the pollutant removal efficiency of the treatment system. There is a scope of further research to exhibit the effectiveness of EAOPs for DW treatment in large scale implementation.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"93 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mangrove ecosystems provide key ecosystem services in coastal areas. This study describes the riparian mangrove of the Wouri estuary, in the Douala region (Cameroon), emphasizing the changes in this ecosystem over the past decade and its current state. It highlights the different groups of actors who participate in the management and regulation of the resource. Finally, an analysis of the governance of the mangrove wood resource based on the theory of common goods by Elinor Ostrom (1990) is proposed by examining the results obtained from the previous points. The scientific interest lies in contributing to a better understanding of the socio-ecological changes in the mangrove in the context of increasing anthropogenic pressures, highlighting the governance challenges and conservation opportunities in a strategic region of Central Africa. This research reveals complex processes that characterize mangrove ecosystems on the Manoka and Cap Cameroon Islands. The lack of urbanization regulations, continued infrastructure growth, repeated flooding, and coastal erosion all have a negative impact on natural landscapes and forests. The use of wood for smoking and fishing, as well as coastal pollution resulting from deficient garbage management, also have a considerable influence. Strategic interventions are needed to ensure sustainable ecosystem management. Recommendations include the application of rules to prevent forest overexploitation.
{"title":"What Occurs within the Mangrove Ecosystems of the Douala Region in Cameroon? Exploring the Challenging Governance of Readily Available Woody Resources in the Wouri Estuary","authors":"J. Bissonnette, Kossivi Fabrice Dossa, Celestin Arnaud Nsangou, Yangue Abidah Satchie, Haman Moussa, Y. Miassi, Nathalie Gravel, Guillaume Marie, Raphaël Onguene","doi":"10.3390/environments11060121","DOIUrl":"https://doi.org/10.3390/environments11060121","url":null,"abstract":"Mangrove ecosystems provide key ecosystem services in coastal areas. This study describes the riparian mangrove of the Wouri estuary, in the Douala region (Cameroon), emphasizing the changes in this ecosystem over the past decade and its current state. It highlights the different groups of actors who participate in the management and regulation of the resource. Finally, an analysis of the governance of the mangrove wood resource based on the theory of common goods by Elinor Ostrom (1990) is proposed by examining the results obtained from the previous points. The scientific interest lies in contributing to a better understanding of the socio-ecological changes in the mangrove in the context of increasing anthropogenic pressures, highlighting the governance challenges and conservation opportunities in a strategic region of Central Africa. This research reveals complex processes that characterize mangrove ecosystems on the Manoka and Cap Cameroon Islands. The lack of urbanization regulations, continued infrastructure growth, repeated flooding, and coastal erosion all have a negative impact on natural landscapes and forests. The use of wood for smoking and fishing, as well as coastal pollution resulting from deficient garbage management, also have a considerable influence. Strategic interventions are needed to ensure sustainable ecosystem management. Recommendations include the application of rules to prevent forest overexploitation.","PeriodicalId":11886,"journal":{"name":"Environments","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/environments11060120
Gregory M. Hill, Steven Kolmes
We review and draw distinctions between positions held by various federal agencies, tribal agencies, and civil society organizations to identify distinct stakeholder scenarios for salmonid recovery in the Columbia River Basin. We view the Columbia River Basin through a resilience lens from the point of view of the resident endangered salmonid populations. Using the resilience concept of multiple stable states we describe a stability landscape for the basin as a social–ecological system. We use a shared stability landscape as a common locus for mapping and comparing multiple scenarios representing distinct stakeholder perspectives of pathways towards salmon recovery. We found that the potential of using this approach goes well beyond the specifics of the Columbia River Basin.
{"title":"A Review of the Multi-Stakeholder Process for Salmon Recovery and Scenario Mapping onto Stability Landscapes","authors":"Gregory M. Hill, Steven Kolmes","doi":"10.3390/environments11060120","DOIUrl":"https://doi.org/10.3390/environments11060120","url":null,"abstract":"We review and draw distinctions between positions held by various federal agencies, tribal agencies, and civil society organizations to identify distinct stakeholder scenarios for salmonid recovery in the Columbia River Basin. We view the Columbia River Basin through a resilience lens from the point of view of the resident endangered salmonid populations. Using the resilience concept of multiple stable states we describe a stability landscape for the basin as a social–ecological system. We use a shared stability landscape as a common locus for mapping and comparing multiple scenarios representing distinct stakeholder perspectives of pathways towards salmon recovery. We found that the potential of using this approach goes well beyond the specifics of the Columbia River Basin.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"77 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/environments11060119
Kien Tat Wai, A. O’Sullivan, R. Bello-Mendoza
Nitrogen and phosphorus in freshwaters are a global environmental challenge. Concurrently, the shellfish industry’s calcareous waste shells (CWSs) amount to ~10 million tonnes annually. CWSs can effectively adsorb dissolved pollutants, including nutrients, from water, which has motivated a growing number of experimental studies on recycling CWSs in wastewater treatment. This comprehensive literature review summarises and critically assesses the effectiveness of using different CWSs for removing nutrients from water. The effects of CWS type, initial pollutant concentration, adsorbent dosage, particle size, and contact time (CT) are investigated. The results show that phosphorus removal has been examined more than nitrogen. Most studies have been conducted using synthetic wastewater under laboratory conditions only. There is a large variability in experimental conditions, such as CWS adsorbent dosages (0.1–100 g/L) and CT (0.083–360 h). The calcination of CWSs is frequently used to enhance adsorption capacity. The Langmuir isotherm model has been found to fit adsorption data best when raw oyster shells are used, while the Freundlich isotherm is best when the adsorbent is calcinated mussel shells. The pseudo-second-order (PSO) kinetics model tends to describe adsorption data better than the pseudo-first-order (PFO) model in all shell types. There is significant potential for using calcareous waste shells to remove nutrients from wastewater in line with circular economy aspirations.
{"title":"Nitrogen and Phosphorus Removal from Wastewater Using Calcareous Waste Shells—A Systematic Literature Review","authors":"Kien Tat Wai, A. O’Sullivan, R. Bello-Mendoza","doi":"10.3390/environments11060119","DOIUrl":"https://doi.org/10.3390/environments11060119","url":null,"abstract":"Nitrogen and phosphorus in freshwaters are a global environmental challenge. Concurrently, the shellfish industry’s calcareous waste shells (CWSs) amount to ~10 million tonnes annually. CWSs can effectively adsorb dissolved pollutants, including nutrients, from water, which has motivated a growing number of experimental studies on recycling CWSs in wastewater treatment. This comprehensive literature review summarises and critically assesses the effectiveness of using different CWSs for removing nutrients from water. The effects of CWS type, initial pollutant concentration, adsorbent dosage, particle size, and contact time (CT) are investigated. The results show that phosphorus removal has been examined more than nitrogen. Most studies have been conducted using synthetic wastewater under laboratory conditions only. There is a large variability in experimental conditions, such as CWS adsorbent dosages (0.1–100 g/L) and CT (0.083–360 h). The calcination of CWSs is frequently used to enhance adsorption capacity. The Langmuir isotherm model has been found to fit adsorption data best when raw oyster shells are used, while the Freundlich isotherm is best when the adsorbent is calcinated mussel shells. The pseudo-second-order (PSO) kinetics model tends to describe adsorption data better than the pseudo-first-order (PFO) model in all shell types. There is significant potential for using calcareous waste shells to remove nutrients from wastewater in line with circular economy aspirations.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141380993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.3390/environments11060118
Matthew Thompson, Bruce Dvorak
Small water resource recovery facilities (WRRFs) account for the majority of centralized systems in the world and have higher energy intensities than large facilities. This study compares potential greenhouse gas emission reductions based on on-site solar energy and energy efficiency (E2) improvements made at small WRRFs. Case study data from 31 existing small WRRFs in Nebraska were collected and included 35 site-specific energy efficiency (E2) recommendations and on-site solar renewable energy systems integrated at three facilities, and the data were used to compare the benefits of on-site solar energy and E2 improvements made at small WRRFs. Improvements in E2 (e.g., improved aeration control) presented the largest reduction in emissions per dollar invested. They often exhibited shorter paybacks, with operational changes in aeration strategies showing the highest impact (up to 0.2 kg CO2eq/m3 treated water). On-site solar systems showed the largest net potential for reducing environmental footprint (0.35 kg CO2eq/m3) but often showed the smallest emissions reduction per cost. While the use of both E2 improvements and the integration of on-site solar renewable energy can significantly improve the sustainability of small WRRFs, on-site solar has advantages for small facilities in that it often requires less operational involvement, allows for greater facility resiliency, and presents less uncertainty in terms of environmental benefit.
{"title":"Comparison of Greenhouse Gas Emission Assessments of Solar and Energy Efficiency Improvements at Small Water Resource Recovery Facilities","authors":"Matthew Thompson, Bruce Dvorak","doi":"10.3390/environments11060118","DOIUrl":"https://doi.org/10.3390/environments11060118","url":null,"abstract":"Small water resource recovery facilities (WRRFs) account for the majority of centralized systems in the world and have higher energy intensities than large facilities. This study compares potential greenhouse gas emission reductions based on on-site solar energy and energy efficiency (E2) improvements made at small WRRFs. Case study data from 31 existing small WRRFs in Nebraska were collected and included 35 site-specific energy efficiency (E2) recommendations and on-site solar renewable energy systems integrated at three facilities, and the data were used to compare the benefits of on-site solar energy and E2 improvements made at small WRRFs. Improvements in E2 (e.g., improved aeration control) presented the largest reduction in emissions per dollar invested. They often exhibited shorter paybacks, with operational changes in aeration strategies showing the highest impact (up to 0.2 kg CO2eq/m3 treated water). On-site solar systems showed the largest net potential for reducing environmental footprint (0.35 kg CO2eq/m3) but often showed the smallest emissions reduction per cost. While the use of both E2 improvements and the integration of on-site solar renewable energy can significantly improve the sustainability of small WRRFs, on-site solar has advantages for small facilities in that it often requires less operational involvement, allows for greater facility resiliency, and presents less uncertainty in terms of environmental benefit.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.3390/environments11060117
Iuliana Paun, Luoana Florentina Pascu, Vasile Ion Iancu, Florinela Pirvu, Toma Galaon, Florentina Laura Chiriac
A high-performance liquid chromatography with diode array detector (HPLC-DAD) analytical method was developed for the simultaneous detection of 17 phenolic compounds, including phenols, chlorophenols, alkylphenols, and nitrophenols, in two types of water matrices: wastewater and surface water. Prior to HPLC-DAD determination, a solid-phase extraction (SPE) procedure was optimized. The proposed method uses multiwavelength analysis, with the optimum detection wavelengths selected as 268 nm, 280 nm, 386 nm, 304 nm, and 316 nm. The highest resolution was achieved using a chromatographic column, Eclipse XDB-C18 (150 × 4.6 mm, 5 μm), which was kept at 20 °C. The mobile phase consisted of a gradient elution program, with mobile phase A being a 0.1% H3PO4 aqueous solution and mobile phase B being acetonitrile. The flow rate was set at 0.6 mL/min. The 17 target phenolic compounds were fully separated in less than 27 min. All compounds showed good linear regression, with correlation coefficients higher than 0.999. The method’s quantitation limits ranged from 4.38 to 89.7 ng/L for surface water and 7.83 to 167 ng/L for wastewater. The recovery rates were in the range of 86.2–95.1% for surface water and 79.1–86.3% for wastewater. The SPE-HPLC-DAD method was proven to be fast, sensitive, accurate, and reproducible. The developed method was successfully applied for the analysis of the 17 phenolic compounds in real surface water and wastewater samples, with phenol, 2,4-DNP, and 2,4-DNP being determined at levels greater than the method’s limits of quantitation (LOQs). The proposed analytical method represents an original technical resource for the simultaneous determination of 17 phenolic compounds in environmental water matrices.
{"title":"Simultaneous Determination of 17 Phenolic Compounds in Surface Water and Wastewater Matrices Using an HPLC-DAD Method","authors":"Iuliana Paun, Luoana Florentina Pascu, Vasile Ion Iancu, Florinela Pirvu, Toma Galaon, Florentina Laura Chiriac","doi":"10.3390/environments11060117","DOIUrl":"https://doi.org/10.3390/environments11060117","url":null,"abstract":"A high-performance liquid chromatography with diode array detector (HPLC-DAD) analytical method was developed for the simultaneous detection of 17 phenolic compounds, including phenols, chlorophenols, alkylphenols, and nitrophenols, in two types of water matrices: wastewater and surface water. Prior to HPLC-DAD determination, a solid-phase extraction (SPE) procedure was optimized. The proposed method uses multiwavelength analysis, with the optimum detection wavelengths selected as 268 nm, 280 nm, 386 nm, 304 nm, and 316 nm. The highest resolution was achieved using a chromatographic column, Eclipse XDB-C18 (150 × 4.6 mm, 5 μm), which was kept at 20 °C. The mobile phase consisted of a gradient elution program, with mobile phase A being a 0.1% H3PO4 aqueous solution and mobile phase B being acetonitrile. The flow rate was set at 0.6 mL/min. The 17 target phenolic compounds were fully separated in less than 27 min. All compounds showed good linear regression, with correlation coefficients higher than 0.999. The method’s quantitation limits ranged from 4.38 to 89.7 ng/L for surface water and 7.83 to 167 ng/L for wastewater. The recovery rates were in the range of 86.2–95.1% for surface water and 79.1–86.3% for wastewater. The SPE-HPLC-DAD method was proven to be fast, sensitive, accurate, and reproducible. The developed method was successfully applied for the analysis of the 17 phenolic compounds in real surface water and wastewater samples, with phenol, 2,4-DNP, and 2,4-DNP being determined at levels greater than the method’s limits of quantitation (LOQs). The proposed analytical method represents an original technical resource for the simultaneous determination of 17 phenolic compounds in environmental water matrices.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Dismantling and Decommissioning (D&D) of nuclear facilities poses several challenges for radioactivity measurement laboratories involved in environmental radiation monitoring plans. One of them is the definition of the detection limits to be achieved for the radionuclides analysis in different samples. The detection limits should be set in such a way that the obtained concentration values for each radionuclide are easily discriminated from certain maximum activity concentration levels. These maximum activity concentration levels are usually set in view of the respective dose contributions from each radionuclide. There are some national legislations that settle detection limits for drinking water. However, there is no regulation containing detection limits for groundwater or surface water. In this way, different institutions or companies require very different detection limits for radioactivity concentration assessment in those types of water associated with D&D activities. In this work, we focus on the detection limits required for the D&D activities in rainwater, surface water and groundwater. We propose detection limits obtained by applying the WHO methodology for maximum activity concentration levels and compare with those requested by radioactive waste management agencies and regulatory bodies. Some real cases where our proposal allows identification of events are analysed and conclusions are extracted.
{"title":"Proposed Detection Limits for Radioactivity Concentrations in Water in the Decommissioning and Dismantling of Nuclear Facilities","authors":"Raquel Idoeta, Susana Petisco-Ferrero, Saroa Rozas, Concepción Olondo, Margarita Herranz","doi":"10.3390/environments11060116","DOIUrl":"https://doi.org/10.3390/environments11060116","url":null,"abstract":"The Dismantling and Decommissioning (D&D) of nuclear facilities poses several challenges for radioactivity measurement laboratories involved in environmental radiation monitoring plans. One of them is the definition of the detection limits to be achieved for the radionuclides analysis in different samples. The detection limits should be set in such a way that the obtained concentration values for each radionuclide are easily discriminated from certain maximum activity concentration levels. These maximum activity concentration levels are usually set in view of the respective dose contributions from each radionuclide. There are some national legislations that settle detection limits for drinking water. However, there is no regulation containing detection limits for groundwater or surface water. In this way, different institutions or companies require very different detection limits for radioactivity concentration assessment in those types of water associated with D&D activities. In this work, we focus on the detection limits required for the D&D activities in rainwater, surface water and groundwater. We propose detection limits obtained by applying the WHO methodology for maximum activity concentration levels and compare with those requested by radioactive waste management agencies and regulatory bodies. Some real cases where our proposal allows identification of events are analysed and conclusions are extracted.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.3390/environments11060115
Ana J. Wells, John Harrington, Nick J. Balster
Recently exposed reservoir sediments, prone to colonization by invasive species, provide novel settings to test hypotheses related to soil conditions and propagule supply as potential drivers of plant assembly in disturbed ecosystems. We used a dam removal site in southwestern Wisconsin to examine the relationship between the physiochemical properties of dewatered sediments, seeding density, and plant community assembly. The plant communities from five seed densities (1000, 500, 250, 125, and 0 seed m−2) were annually assessed over four years. We hypothesized (1) that the native aboveground biomass and the proportion of native to invasive (non-seeded species) aboveground biomass would increase with the seeding density and (2) that the diversity of seeded native species would increase with a higher seeding density. We found evidence that sowing at least 500 seeds m−2 of prairie species increased their abundance, establishment, and plot diversity compared to non-seeded plants that persisted four years after seeding (p < 0.05). The seeding density treatments led to the assembly of two distinct communities: “native” and “invasive”. The “native” community, assembled in plots seeded with at least 500 seeds m−2, had a greater aboveground biomass and diversity (i.e., richness) of seeded plants compared to plots with lower seed densities, and its productivity was positively related to this richness. In the “weedy” community, the diversity of invasive species had no relationship to their aboveground biomass, likely because these species share similar traits (i.e., redundancy) and may have performed similar functions within the plant community. These findings suggest that the seeding density interacted with the disturbed soil resources to increase the diversity and productivity of seeded native species and may serve as a positive feedback mechanism for the establishment of native communities in dewatered sediments.
{"title":"Seeding Density Alters the Assembly of a Restored Plant Community after the Removal of a Dam in Southern Wisconsin, USA","authors":"Ana J. Wells, John Harrington, Nick J. Balster","doi":"10.3390/environments11060115","DOIUrl":"https://doi.org/10.3390/environments11060115","url":null,"abstract":"Recently exposed reservoir sediments, prone to colonization by invasive species, provide novel settings to test hypotheses related to soil conditions and propagule supply as potential drivers of plant assembly in disturbed ecosystems. We used a dam removal site in southwestern Wisconsin to examine the relationship between the physiochemical properties of dewatered sediments, seeding density, and plant community assembly. The plant communities from five seed densities (1000, 500, 250, 125, and 0 seed m−2) were annually assessed over four years. We hypothesized (1) that the native aboveground biomass and the proportion of native to invasive (non-seeded species) aboveground biomass would increase with the seeding density and (2) that the diversity of seeded native species would increase with a higher seeding density. We found evidence that sowing at least 500 seeds m−2 of prairie species increased their abundance, establishment, and plot diversity compared to non-seeded plants that persisted four years after seeding (p < 0.05). The seeding density treatments led to the assembly of two distinct communities: “native” and “invasive”. The “native” community, assembled in plots seeded with at least 500 seeds m−2, had a greater aboveground biomass and diversity (i.e., richness) of seeded plants compared to plots with lower seed densities, and its productivity was positively related to this richness. In the “weedy” community, the diversity of invasive species had no relationship to their aboveground biomass, likely because these species share similar traits (i.e., redundancy) and may have performed similar functions within the plant community. These findings suggest that the seeding density interacted with the disturbed soil resources to increase the diversity and productivity of seeded native species and may serve as a positive feedback mechanism for the establishment of native communities in dewatered sediments.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}