An abstract argumentation framework can be used to model the argumentative stance of an agent at a high level of abstraction, by indicating for every pair of arguments that is being considered in a debate whether the first attacks the second. When modelling a group of agents engaged in a debate, we may wish to aggregate their individual argumentation frameworks to obtain a single such framework that reflects the consensus of the group. Even when agents disagree on many details, there may well be high-level agreement on important semantic properties, such as the acceptability of a given argument. Using techniques from social choice theory, we analyse under what circumstances such semantic properties agreed upon by the individual agents can be preserved under aggregation.
{"title":"Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frameworks","authors":"Weiwei Chen, U. Endriss","doi":"10.4204/EPTCS.251.9","DOIUrl":"https://doi.org/10.4204/EPTCS.251.9","url":null,"abstract":"An abstract argumentation framework can be used to model the argumentative stance of an agent at a high level of abstraction, by indicating for every pair of arguments that is being considered in a debate whether the first attacks the second. When modelling a group of agents engaged in a debate, we may wish to aggregate their individual argumentation frameworks to obtain a single such framework that reflects the consensus of the group. Even when agents disagree on many details, there may well be high-level agreement on important semantic properties, such as the acceptability of a given argument. Using techniques from social choice theory, we analyse under what circumstances such semantic properties agreed upon by the individual agents can be preserved under aggregation.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116970120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and categories of Kripke frames, with particular emphasis on the duality between relations and adjoint homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The DEL idea of updating a model into another is captured naturally by the categorical perspective -- which emphasizes a family of objects and structural relationships among them, as opposed to a single object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.
{"title":"Categories for Dynamic Epistemic Logic","authors":"K. Kishida","doi":"10.4204/EPTCS.251.26","DOIUrl":"https://doi.org/10.4204/EPTCS.251.26","url":null,"abstract":"The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and categories of Kripke frames, with particular emphasis on the duality between relations and adjoint homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The DEL idea of updating a model into another is captured naturally by the categorical perspective -- which emphasizes a family of objects and structural relationships among them, as opposed to a single object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122053997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent ideas about epistemic modals and indicative conditionals in formal semantics have significant overlap with ideas in modal logic and dynamic epistemic logic. The purpose of this paper is to show how greater interaction between formal semantics and dynamic epistemic logic in this area can be of mutual benefit. In one direction, we show how concepts and tools from modal logic and dynamic epistemic logic can be used to give a simple, complete axiomatization of Yalcin's [16] semantic consequence relation for a language with epistemic modals and indicative conditionals. In the other direction, the formal semantics for indicative conditionals due to Kolodny and MacFarlane [9] gives rise to a new dynamic operator that is very natural from the point of view of dynamic epistemic logic, allowing succinct expression of dependence (as in dependence logic) or supervenience statements. We prove decidability for the logic with epistemic modals and Kolodny and MacFarlane's indicative conditional via a full and faithful computable translation from their logic to the modal logic K45.
{"title":"Indicative Conditionals and Dynamic Epistemic Logic","authors":"W. Holliday, Thomas F. Icard","doi":"10.4204/EPTCS.251.24","DOIUrl":"https://doi.org/10.4204/EPTCS.251.24","url":null,"abstract":"Recent ideas about epistemic modals and indicative conditionals in formal semantics have significant overlap with ideas in modal logic and dynamic epistemic logic. The purpose of this paper is to show how greater interaction between formal semantics and dynamic epistemic logic in this area can be of mutual benefit. In one direction, we show how concepts and tools from modal logic and dynamic epistemic logic can be used to give a simple, complete axiomatization of Yalcin's [16] semantic consequence relation for a language with epistemic modals and indicative conditionals. In the other direction, the formal semantics for indicative conditionals due to Kolodny and MacFarlane [9] gives rise to a new dynamic operator that is very natural from the point of view of dynamic epistemic logic, allowing succinct expression of dependence (as in dependence logic) or supervenience statements. We prove decidability for the logic with epistemic modals and Kolodny and MacFarlane's indicative conditional via a full and faithful computable translation from their logic to the modal logic K45.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122530859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.
{"title":"The Topology of Statistical Verifiability","authors":"K. Genin, Kevin T. Kelly","doi":"10.4204/EPTCS.251.17","DOIUrl":"https://doi.org/10.4204/EPTCS.251.17","url":null,"abstract":"Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116072268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper provides an analysis of the voting method known as delegable proxy voting, or liquid democracy. The analysis first positions liquid democracy within the theory of binary aggregation. It then focuses on two issues of the system: the occurrence of delegation cycles; and the effect of delegations on individual rationality when voting on logically interdependent propositions. It finally points to proposals on how the system may be modified in order to address the above issues.
{"title":"Binary Voting with Delegable Proxy: An Analysis of Liquid Democracy","authors":"Z. Christoff, Davide Grossi","doi":"10.4204/EPTCS.251.10","DOIUrl":"https://doi.org/10.4204/EPTCS.251.10","url":null,"abstract":"The paper provides an analysis of the voting method known as delegable proxy voting, or liquid democracy. The analysis first positions liquid democracy within the theory of binary aggregation. It then focuses on two issues of the system: the occurrence of delegation cycles; and the effect of delegations on individual rationality when voting on logically interdependent propositions. It finally points to proposals on how the system may be modified in order to address the above issues.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129167844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of stan ...
{"title":"A New Game Equivalence and its Modal Logic","authors":"J. Benthem, N. Bezhanishvili, S. Enqvist","doi":"10.4204/EPTCS.251.5","DOIUrl":"https://doi.org/10.4204/EPTCS.251.5","url":null,"abstract":"We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of stan ...","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"128 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133494567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper combines two studies: a topological semantics for epistemic notions and abstract argumentation theory. In our combined setting, we use a topological semantics to represent the structure of an agent's collection of evidence, and we use argumentation theory to single out the relevant sets of evidence through which a notion of beliefs grounded on arguments is defined. We discuss the formal properties of this newly defined notion, providing also a formal language with a matching modality together with a sound and complete axiom system for it. Despite the fact that our agent can combine her evidence in a 'rational' way (captured via the topological structure), argument-based beliefs are not closed under conjunction. This illustrates the difference between an agent's reasoning abilities (i.e. the way she is able to combine her available evidence) and the closure properties of her beliefs. We use this point to argue for why the failure of closure under conjunction of belief should not bear the burden of the failure of rationality.
{"title":"Argument-based Belief in Topological Structures","authors":"Chenwei Shi, S. Smets, F. R. Velázquez-Quesada","doi":"10.4204/EPTCS.251.36","DOIUrl":"https://doi.org/10.4204/EPTCS.251.36","url":null,"abstract":"This paper combines two studies: a topological semantics for epistemic notions and abstract argumentation theory. In our combined setting, we use a topological semantics to represent the structure of an agent's collection of evidence, and we use argumentation theory to single out the relevant sets of evidence through which a notion of beliefs grounded on arguments is defined. We discuss the formal properties of this newly defined notion, providing also a formal language with a matching modality together with a sound and complete axiom system for it. Despite the fact that our agent can combine her evidence in a 'rational' way (captured via the topological structure), argument-based beliefs are not closed under conjunction. This illustrates the difference between an agent's reasoning abilities (i.e. the way she is able to combine her available evidence) and the closure properties of her beliefs. We use this point to argue for why the failure of closure under conjunction of belief should not bear the burden of the failure of rationality.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125229365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Belardinelli, Umberto Grandi, A. Herzig, Dominique Longin, E. Lorini, Arianna Novaro, Laurent Perrussel
In the typical framework for boolean games (BG) each player can change the truth value of some propositional atoms, while attempting to make her goal true. In standard BG goals are propositional formulas, whereas in iterated BG goals are formulas of Linear Temporal Logic. Both notions of BG are characterised by the fact that agents have exclusive control over their set of atoms, meaning that no two agents can control the same atom. In the present contribution we drop the exclusivity assumption and explore structures where an atom can be controlled by multiple agents. We introduce Concurrent Game Structures with Shared Propositional Control (CGS-SPC) and show that they account for several classes of repeated games, including iterated boolean games, influence games, and aggregation games. Our main result shows that, as far as verification is concerned, CGS-SPC can be reduced to concurrent game structures with exclusive control. This result provides a polynomial reduction for the model checking problem of specifications in Alternating-time Temporal Logic on CGS-SPC.
{"title":"Relaxing Exclusive Control in Boolean Games","authors":"F. Belardinelli, Umberto Grandi, A. Herzig, Dominique Longin, E. Lorini, Arianna Novaro, Laurent Perrussel","doi":"10.4204/EPTCS.251.4","DOIUrl":"https://doi.org/10.4204/EPTCS.251.4","url":null,"abstract":"In the typical framework for boolean games (BG) each player can change the truth value of some propositional atoms, while attempting to make her goal true. In standard BG goals are propositional formulas, whereas in iterated BG goals are formulas of Linear Temporal Logic. Both notions of BG are characterised by the fact that agents have exclusive control over their set of atoms, meaning that no two agents can control the same atom. In the present contribution we drop the exclusivity assumption and explore structures where an atom can be controlled by multiple agents. We introduce Concurrent Game Structures with Shared Propositional Control (CGS-SPC) and show that they account for several classes of repeated games, including iterated boolean games, influence games, and aggregation games. Our main result shows that, as far as verification is concerned, CGS-SPC can be reduced to concurrent game structures with exclusive control. This result provides a polynomial reduction for the model checking problem of specifications in Alternating-time Temporal Logic on CGS-SPC.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123581977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Equilibrium notions for games with unawareness in the literature cannot be interpreted as steady-states of a learning process because players may discover novel actions during play. In this sense, many games with unawareness are "self-destroying" as a player's representation of the game must change after playing it once. We define discovery processes where at each state there is an extensive-form game with unawareness that together with the players' play determines the transition to possibly another extensive-form games with unawareness in which players are now aware of actions that they have previously discovered. A discovery process is rationalizable if players play extensive-form rationalizable strategies in each game with unawareness. We show that for any game with unawareness there is a rationalizable discovery process that leads to a self-confirming game that possesses an extensive-form rationalizable self-confirming equilibrium. This notion of equilibrium can be interpreted as steady-state of a learning and discovery process.
{"title":"Self-confirming Games: Unawareness, Discovery, and Equilibrium","authors":"Burkhard C. Schipper","doi":"10.4204/EPTCS.251.35","DOIUrl":"https://doi.org/10.4204/EPTCS.251.35","url":null,"abstract":"Equilibrium notions for games with unawareness in the literature cannot be interpreted as steady-states of a learning process because players may discover novel actions during play. In this sense, many games with unawareness are \"self-destroying\" as a player's representation of the game must change after playing it once. We define discovery processes where at each state there is an extensive-form game with unawareness that together with the players' play determines the transition to possibly another extensive-form games with unawareness in which players are now aware of actions that they have previously discovered. A discovery process is rationalizable if players play extensive-form rationalizable strategies in each game with unawareness. We show that for any game with unawareness there is a rationalizable discovery process that leads to a self-confirming game that possesses an extensive-form rationalizable self-confirming equilibrium. This notion of equilibrium can be interpreted as steady-state of a learning and discovery process.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128636819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the connection between the two major mathematical frameworks for modeling interactive beliefs: Harsanyi type spaces and possible-worlds style probability frames. While translating the former into the latter is straightforward, we demonstrate that the reverse translation relies implicitly on a background logical language. Once this "language parameter" is made explicit, it reveals a close relationship between universal type spaces and canonical models: namely, that they are essentially the same construct. As the nature of a canonical model depends heavily on the background logic used to generate it, this work suggests a new view into a corresponding landscape of universal type spaces.
{"title":"From Type Spaces to Probability Frames and Back, via Language","authors":"Adam Bjorndahl, Joseph Y. Halpern","doi":"10.4204/EPTCS.251.6","DOIUrl":"https://doi.org/10.4204/EPTCS.251.6","url":null,"abstract":"We investigate the connection between the two major mathematical frameworks for modeling interactive beliefs: Harsanyi type spaces and possible-worlds style probability frames. While translating the former into the latter is straightforward, we demonstrate that the reverse translation relies implicitly on a background logical language. Once this \"language parameter\" is made explicit, it reveals a close relationship between universal type spaces and canonical models: namely, that they are essentially the same construct. As the nature of a canonical model depends heavily on the background logic used to generate it, this work suggests a new view into a corresponding landscape of universal type spaces.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127745216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}