Access cavity preparation represents the initial step in root canal treatment. Minimally invasive approaches have gained increasing attention and involve advancements in the traditional access cavity preparation. Simultaneously, the development of three-dimensional finite element analysis (3D-FEA) has provided a theoretical foundation for evaluating the merits and drawbacks of various access cavity preparations. Studies using static loading 3D-FEA have suggested that conservative access cavity preparation reduces the concentration of stress in the cervical region, thereby strengthening fracture resistance. However, the lack of support from clinical data raises concerns about the validity of this suggestion. Conversely, studies involving cyclic loading 3D-FEA and dynamic loading 3D-FEA have challenged the prevailing perspectives by taking into account additional factors such as filling materials, thus providing a more comprehensive understanding of the impact of access cavity preparation on fracture resistance. Existing research lacks a comprehensive comparison of the different 3D-FEA methods, and this review fills this gap by providing a systematic assessment of different 3D-FEA methods and their applications in access cavity preparation.
{"title":"Three-dimensional finite element analysis of the impact of access cavity preparation on first molar fracture resistance: A scoping review","authors":"Chuang Zhou, Ruochen Pu, Bin Liu","doi":"10.1111/eos.13021","DOIUrl":"10.1111/eos.13021","url":null,"abstract":"<p>Access cavity preparation represents the initial step in root canal treatment. Minimally invasive approaches have gained increasing attention and involve advancements in the traditional access cavity preparation. Simultaneously, the development of three-dimensional finite element analysis (3D-FEA) has provided a theoretical foundation for evaluating the merits and drawbacks of various access cavity preparations. Studies using static loading 3D-FEA have suggested that conservative access cavity preparation reduces the concentration of stress in the cervical region, thereby strengthening fracture resistance. However, the lack of support from clinical data raises concerns about the validity of this suggestion. Conversely, studies involving cyclic loading 3D-FEA and dynamic loading 3D-FEA have challenged the prevailing perspectives by taking into account additional factors such as filling materials, thus providing a more comprehensive understanding of the impact of access cavity preparation on fracture resistance. Existing research lacks a comprehensive comparison of the different 3D-FEA methods, and this review fills this gap by providing a systematic assessment of different 3D-FEA methods and their applications in access cavity preparation.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluated the effects of two chlorophyll derivatives, sodium copper chlorophyllin (Cu-Chl) and sodium iron chlorophyllin (Fe-Chl), on the bond strength between a self-curing luting agent (4-META/MMA-TBB resin) and dentin. Five aqueous primers containing 35% 2-hydroxyethylmethacrylate with 0.007% Cu-Chl, 0.07% Cu-Chl, 0.007% Fe-Chl, 0.07% Fe-Chl, or neither Cu-Chl nor Fe-Chl (no-Chl) were prepared. The extracted human dentin surfaces were etched with 10% phosphoric acid (10PA), primed, and bonded to a resin block using the 4-META/MMA-TBB resin. A conventional etching agent (10-3) and 10PA without primer (PA/no-primer) were used as controls. The microtensile bond strength was determined after 48 h. The arithmetic medians for 20 stick specimens were calculated and statistically analyzed using a nonparametric Steel-Dwass test (α = 0.05). The maximum bond strength was achieved in the 0.007% Cu-Chl group, followed by those in the 0.07% Cu-Chl, 0.07% Fe-Chl, 10-3, 0.007% Fe-Chl, no-Chl, and PA/no-primer groups. No significant difference was observed between 0.007% Fe-Chl, 0.07% Fe-Chl, and 10-3. The bond strength to dentin etched with 10PA was influenced by the type and concentration of the chlorophyll derivatives applied. Cu-Chl rather than Fe-Chl should be useful as a component of surface treatment agents for bonding 4-META/MMA-TBB resin to dentin.
{"title":"Effects of sodium copper- and sodium iron-chlorophyllin primers on resin bonding to dentin","authors":"Yohsuke Taira, Takafumi Egoshi, Kei Kaida, Shizuka Yamada","doi":"10.1111/eos.13017","DOIUrl":"https://doi.org/10.1111/eos.13017","url":null,"abstract":"<p>This study evaluated the effects of two chlorophyll derivatives, sodium copper chlorophyllin (Cu-Chl) and sodium iron chlorophyllin (Fe-Chl), on the bond strength between a self-curing luting agent (4-META/MMA-TBB resin) and dentin. Five aqueous primers containing 35% 2-hydroxyethylmethacrylate with 0.007% Cu-Chl, 0.07% Cu-Chl, 0.007% Fe-Chl, 0.07% Fe-Chl, or neither Cu-Chl nor Fe-Chl (no-Chl) were prepared. The extracted human dentin surfaces were etched with 10% phosphoric acid (10PA), primed, and bonded to a resin block using the 4-META/MMA-TBB resin. A conventional etching agent (10-3) and 10PA without primer (PA/no-primer) were used as controls. The microtensile bond strength was determined after 48 h. The arithmetic medians for 20 stick specimens were calculated and statistically analyzed using a nonparametric Steel-Dwass test (<i>α</i> = 0.05). The maximum bond strength was achieved in the 0.007% Cu-Chl group, followed by those in the 0.07% Cu-Chl, 0.07% Fe-Chl, 10-3, 0.007% Fe-Chl, no-Chl, and PA/no-primer groups. No significant difference was observed between 0.007% Fe-Chl, 0.07% Fe-Chl, and 10-3. The bond strength to dentin etched with 10PA was influenced by the type and concentration of the chlorophyll derivatives applied. Cu-Chl rather than Fe-Chl should be useful as a component of surface treatment agents for bonding 4-META/MMA-TBB resin to dentin.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to pro-inflammatory cytokines such as interleukin (IL)-1β, dental pulp fibroblasts produce various inflammatory mediators, including IL-6, IL-8, CC chemokine ligand 20 (CCL20), and CXC chemokine ligand 10 (CXCL10), leading to the progression of pulpitis. IL-17/IL-17A (IL-17A) is a pro-inflammatory cytokine secreted by T helper (Th) 17 cells following their recruitment to inflamed sites; however, the roles of IL-17A during pulpitis remain unclear. The purpose of this study was to investigate the effect of IL-17A on IL-6, IL-8, CCL20 and CXCL10 production by human dental pulp fibroblasts (HDPFs) in vitro. IL-17A at a concentration of 100 ng/ml induced the production of 10 times more IL-8 and 4 times more CXCL10, but not IL-6 and CCL20, compared to controls. Co-stimulation of HDPFs with IL-17A and IL-1β synergistically enhanced the production of IL-6, CCL20, IL-8 and CXCL10. IL-1β increased expression of IL-17 receptor/IL-17RA (IL-17R) on HDPFs. Moreover, the cell signal pathways of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were more potently activated by simultaneous stimulation with IL-17A and IL-1β. These findings suggest that IL-17A participates in the progression of dental pulp inflammation through the enhanced production of inflammatory mediators in HDPFs.
{"title":"Effect of interleukin-17A on inflammatory mediator production in interleukin-1β-stimulated human dental pulp fibroblasts","authors":"Tadashi Nakanishi, Katsuhiro Mieda, Hitomi Kuramoto, Daisuke Takegawa","doi":"10.1111/eos.13019","DOIUrl":"10.1111/eos.13019","url":null,"abstract":"<p>In response to pro-inflammatory cytokines such as interleukin (IL)-1β, dental pulp fibroblasts produce various inflammatory mediators, including IL-6, IL-8, CC chemokine ligand 20 (CCL20), and CXC chemokine ligand 10 (CXCL10), leading to the progression of pulpitis. IL-17/IL-17A (IL-17A) is a pro-inflammatory cytokine secreted by T helper (Th) 17 cells following their recruitment to inflamed sites; however, the roles of IL-17A during pulpitis remain unclear. The purpose of this study was to investigate the effect of IL-17A on IL-6, IL-8, CCL20 and CXCL10 production by human dental pulp fibroblasts (HDPFs) in vitro. IL-17A at a concentration of 100 ng/ml induced the production of 10 times more IL-8 and 4 times more CXCL10, but not IL-6 and CCL20, compared to controls. Co-stimulation of HDPFs with IL-17A and IL-1β synergistically enhanced the production of IL-6, CCL20, IL-8 and CXCL10. IL-1β increased expression of IL-17 receptor/IL-17RA (IL-17R) on HDPFs. Moreover, the cell signal pathways of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were more potently activated by simultaneous stimulation with IL-17A and IL-1β. These findings suggest that IL-17A participates in the progression of dental pulp inflammation through the enhanced production of inflammatory mediators in HDPFs.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Majed M. Alsarani, Aftab Ahmed Khan, Leonel S. J. Bautista, Hanan Alsunbul, Jukka P. Matinlinna
The study aimed to investigate the influence of H2O2-based and H2O2-free in-office bleaching on the surface and mechanical attributes of CAD/CAM composite blocks. CAD/CAM composite blocks from five different composite materials (CC1, CC2, CC3, CC4, and CC5) were randomly divided into two groups according to bleaching application (H2O2-based and H2O2-free). The surface topography, morphology, nanohardness, elastic modulus, flexural strength, and fracture toughness were measured. A paired and unpaired sample t-tests gauged the effect of pre- and post-bleaching on the substrates. The estimated mean differences (before-after bleaching) suggested an increase in surface roughness for two materials CC2 and CC4, and a significant decrease in nanohardness for material CC4 and in elastic modulus for materials CC2 and CC4 with H2O2-based bleaching, whereas H2O2-free bleaching resulted in changes compatible with no change in these properties. Flexural strength and fracture toughness showed no evidence of changes, irrespective of the bleaching gel used. Scanning electron microscopic analysis revealed erosive effects and micropore formation due to H2O2-based bleaching. H2O2-based bleaching deteriorates the surface of CAD/CAM composite materials while H2O2-free bleaching gel had an insignificant effect on both surface and bulk properties. The clinician should carefully evaluate the potential effects of H2O2-based bleaching on the surface properties of CAD/CAM composites.
{"title":"Effect of peroxide-free and peroxide-based in-office bleaching on the surface and mechanical properties of CAD/CAM esthetic restorative materials","authors":"Majed M. Alsarani, Aftab Ahmed Khan, Leonel S. J. Bautista, Hanan Alsunbul, Jukka P. Matinlinna","doi":"10.1111/eos.13016","DOIUrl":"10.1111/eos.13016","url":null,"abstract":"<p>The study aimed to investigate the influence of H<sub>2</sub>O<sub>2</sub>-based and H<sub>2</sub>O<sub>2</sub>-free in-office bleaching on the surface and mechanical attributes of CAD/CAM composite blocks. CAD/CAM composite blocks from five different composite materials (CC1, CC2, CC3, CC4, and CC5) were randomly divided into two groups according to bleaching application (H<sub>2</sub>O<sub>2</sub>-based and H<sub>2</sub>O<sub>2</sub>-free). The surface topography, morphology, nanohardness, elastic modulus, flexural strength, and fracture toughness were measured. A paired and unpaired sample <i>t</i>-tests gauged the effect of pre- and post-bleaching on the substrates. The estimated mean differences (before-after bleaching) suggested an increase in surface roughness for two materials CC2 and CC4, and a significant decrease in nanohardness for material CC4 and in elastic modulus for materials CC2 and CC4 with H<sub>2</sub>O<sub>2</sub>-based bleaching, whereas H<sub>2</sub>O<sub>2</sub>-free bleaching resulted in changes compatible with no change in these properties. Flexural strength and fracture toughness showed no evidence of changes, irrespective of the bleaching gel used. Scanning electron microscopic analysis revealed erosive effects and micropore formation due to H<sub>2</sub>O<sub>2</sub>-based bleaching. H<sub>2</sub>O<sub>2</sub>-based bleaching deteriorates the surface of CAD/CAM composite materials while H<sub>2</sub>O<sub>2</sub>-free bleaching gel had an insignificant effect on both surface and bulk properties. The clinician should carefully evaluate the potential effects of H<sub>2</sub>O<sub>2</sub>-based bleaching on the surface properties of CAD/CAM composites.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting-Ting Wang, Wen-Rui Jiang, Li Xu, Mei-Yun Zhou, Yong-Song Huang
Dental pulp inflammation is a common and significant factor related to poor dental prognosis. Current treatment strategies primarily concentrate on managing the inflammatory response, with specific targets for intervention still under investigation. Triggering receptors expressed on myeloid cells (TREMs) are a group of receptor molecules extensively present on myeloid cell surfaces, crucial in the regulation of inflammatory process. Our analysis of transcriptomic sequencing data from clinical pulp samples of dataset GSE77459 and animal models revealed up-regulation of Trem1 during pulpitis. Administration of the Trem1-blocking peptide LP17 led to lower (more than 1-fold) levels of several pro-inflammatory factors and inhibition of M1 macrophage polarization both in vivo and in vitro. This study of the expression patterns and functions of Trem1 in the development of dental pulp inflammation provides novel insights into the therapeutic strategies for clinical pulpitis.
{"title":"Effect of blockage of Trem1 on the M1 polarization of macrophages in the regulation dental pulp inflammation","authors":"Ting-Ting Wang, Wen-Rui Jiang, Li Xu, Mei-Yun Zhou, Yong-Song Huang","doi":"10.1111/eos.13018","DOIUrl":"10.1111/eos.13018","url":null,"abstract":"<p>Dental pulp inflammation is a common and significant factor related to poor dental prognosis. Current treatment strategies primarily concentrate on managing the inflammatory response, with specific targets for intervention still under investigation. Triggering receptors expressed on myeloid cells (TREMs) are a group of receptor molecules extensively present on myeloid cell surfaces, crucial in the regulation of inflammatory process. Our analysis of transcriptomic sequencing data from clinical pulp samples of dataset GSE77459 and animal models revealed up-regulation of Trem1 during pulpitis. Administration of the Trem1-blocking peptide LP17 led to lower (more than 1-fold) levels of several pro-inflammatory factors and inhibition of M1 macrophage polarization both in vivo and in vitro. This study of the expression patterns and functions of Trem1 in the development of dental pulp inflammation provides novel insights into the therapeutic strategies for clinical pulpitis.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Gullo Augusto, Luis Felipe Oliveira da Silva, Giovanna Lotto, Tamires Maria de Andrade Santos, Idalina Vieira Aoki, Carlos Rocha Gomes Torres, Tais Scaramucci, Alessandra Bühler Borges
This study evaluated the effect of solutions containing aminomethacrylate copolymer (AA) and sodium fluoride (F; 225 ppm F−) or fluoride plus stannous chloride (FSn; 225 ppm F−, 800 ppm Sn2+) against enamel and dentin erosion/abrasion. Solutions F, FSn, AA, F+AA, FSn+AA, and deionized water as negative control were tested. Bovine enamel and dentin specimens (n = 13/solution/substrate) underwent a set of erosion-abrasion cycles (0.3% citric acid [5 min, 4×/day], human saliva [1 h, 4×/day], brushing [15 s, 2×/day], and treatments [2 min, 2×/day]) for each of five days. Initial enamel erosion was evaluated using Knoop microhardness after the first and second acid challenge on day 1, and surface loss with profilometry after day 5. KOH-soluble fluoride was assessed. Data were analyzed with ANOVA/Tukey tests. The combination of fluoride and AA resulted in higher protection against enamel erosion, whereas this was not the case for the combination of AA and FSn. All treatments protected against enamel and dentin loss. The lowest surface loss values were observed with F+AA and FSn+AA. The polymer did not significantly influence the KOH-soluble fluoride formation on enamel/dentin specimens. The aminomethacrylate copolymer effectively enhanced the efficacy of sodium fluoride against initial erosion and improved the control of enamel and dentin wear of F and FSn solutions.
{"title":"Effect of combining aminomethacrylate and fluoride against erosive and abrasive challenges on enamel and dentin","authors":"Marina Gullo Augusto, Luis Felipe Oliveira da Silva, Giovanna Lotto, Tamires Maria de Andrade Santos, Idalina Vieira Aoki, Carlos Rocha Gomes Torres, Tais Scaramucci, Alessandra Bühler Borges","doi":"10.1111/eos.13015","DOIUrl":"10.1111/eos.13015","url":null,"abstract":"<p>This study evaluated the effect of solutions containing aminomethacrylate copolymer (AA) and sodium fluoride (F; 225 ppm F<sup>−</sup>) or fluoride plus stannous chloride (FSn; 225 ppm F<sup>−</sup>, 800 ppm Sn<sup>2+</sup>) against enamel and dentin erosion/abrasion. Solutions F, FSn, AA, F+AA, FSn+AA, and deionized water as negative control were tested. Bovine enamel and dentin specimens (<i>n</i> = 13/solution/substrate) underwent a set of erosion-abrasion cycles (0.3% citric acid [5 min, 4×/day], human saliva [1 h, 4×/day], brushing [15 s, 2×/day], and treatments [2 min, 2×/day]) for each of five days. Initial enamel erosion was evaluated using Knoop microhardness after the first and second acid challenge on day 1, and surface loss with profilometry after day 5. KOH-soluble fluoride was assessed. Data were analyzed with ANOVA/Tukey tests. The combination of fluoride and AA resulted in higher protection against enamel erosion, whereas this was not the case for the combination of AA and FSn. All treatments protected against enamel and dentin loss. The lowest surface loss values were observed with F+AA and FSn+AA. The polymer did not significantly influence the KOH-soluble fluoride formation on enamel/dentin specimens. The aminomethacrylate copolymer effectively enhanced the efficacy of sodium fluoride against initial erosion and improved the control of enamel and dentin wear of F and FSn solutions.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andréa Karina Ruivo, Bruno Calsa, Matheus Gomez Cancellara, João Paulo Nascimento Lima, Karla Rovaris da Silva, Marcelo Augusto Marretto Esquisatto, Milton Santamaria-Jr
This study aimed to evaluate the effects of the estrogen depression during orthodontic tooth movement on alveolar bone microarchitecture and periodontal ligament. Female Wistar rats were divided into two groups, one consisting of non-ovariectomized animals subjected to orthodontic tooth movement, and one comprising ovariectomized animals subjected to orthodontic tooth movement. Micro-CT assessment of bone volume to total volume (BV/TV), total porosity, trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) in the alveolar bone of the orthodontically moved tooth was performed. Histomorphometric analyses were made in the periodontal ligament, and immunoexpression of RANK, RANKL, OPG, and TUNEL were quantified. Orthodontic tooth movement in the group of ovariectomized rats was faster than in non-ovariectomized animals. The alveolar bone area showed lower values of BV/TV and trabecular thickness, and higher bone porosity and trabeculae numbers in the ovariectomized rats. Histological analyses in the ovariectomized group revealed an increase in collagen fibers in the periodontal ligament. The apoptotic cell counts in the periodontal ligament were higher in the group of ovariectomized rats than in the sham-operated rats. Ovariectomy resulted in an increase in tooth movement and alteration of the alveolar bone microstructure in the first 7 day of orthodontic tooth movement, and in the presence of apoptotic cells in the periodontal ligament.
{"title":"Effect of estrogen depression on alveolar bone microarchitecture and periodontal ligament cells during orthodontic movement","authors":"Andréa Karina Ruivo, Bruno Calsa, Matheus Gomez Cancellara, João Paulo Nascimento Lima, Karla Rovaris da Silva, Marcelo Augusto Marretto Esquisatto, Milton Santamaria-Jr","doi":"10.1111/eos.13014","DOIUrl":"10.1111/eos.13014","url":null,"abstract":"<p>This study aimed to evaluate the effects of the estrogen depression during orthodontic tooth movement on alveolar bone microarchitecture and periodontal ligament. Female Wistar rats were divided into two groups, one consisting of non-ovariectomized animals subjected to orthodontic tooth movement, and one comprising ovariectomized animals subjected to orthodontic tooth movement. Micro-CT assessment of bone volume to total volume (BV/TV), total porosity, trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) in the alveolar bone of the orthodontically moved tooth was performed. Histomorphometric analyses were made in the periodontal ligament, and immunoexpression of RANK, RANKL, OPG, and TUNEL were quantified. Orthodontic tooth movement in the group of ovariectomized rats was faster than in non-ovariectomized animals. The alveolar bone area showed lower values of BV/TV and trabecular thickness, and higher bone porosity and trabeculae numbers in the ovariectomized rats. Histological analyses in the ovariectomized group revealed an increase in collagen fibers in the periodontal ligament. The apoptotic cell counts in the periodontal ligament were higher in the group of ovariectomized rats than in the sham-operated rats. Ovariectomy resulted in an increase in tooth movement and alteration of the alveolar bone microstructure in the first 7 day of orthodontic tooth movement, and in the presence of apoptotic cells in the periodontal ligament.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Karanasiou, Dimitrios Dionysopoulos, Petros Mourouzis, Dimitrios Strakas, Olga Naka, Kosmas Tolidis
This study evaluated the changes in surface properties of three resin-based restorative materials after two laser-assisted, in-office tooth bleaching protocols using erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) or diode (980 nm) lasers. A nanohybrid composite (Enamel Plus HRi), a Bis-GMA-free composite (Enamel Plus HRi Bio Function), and a resin-matrix CAD-CAM ceramic (Shofu Block HC) were tested. Forty specimens for each material were prepared and divided into four groups (n = 10/group). The control specimens did not undergo any bleaching treatment, whereas group 2 received bleaching with 40% hydrogen peroxide (H2O2), while groups 3 and 4 underwent the same bleaching procedure with the use of diode (980 nm) or Er,Cr:YSGG lasers, respectively. Surface microhardness and roughness measurements were conducted using a Vickers tester and an optical profilometer. Microhardness was lower in bleached specimens, with the nanohybrid composite exhibiting the largest difference from the no bleaching group. For the Bis-GMA-free composite the microhardness difference between no bleaching and laser-assisted bleaching were smaller than seen for the conventional bleaching technique. Surface roughness was higher in bleached specimens, with nanohybrid composite showing the largest differences from the control specimens. The examined laser-assisted tooth bleaching protocols were found not to impact surface microhardness and roughness of the tested resin-based specimens and they are deemed suitable for clinical use.
本研究评估了三种树脂基修复材料在使用铒、铬:钇钪镓石榴石(Er,Cr:YSGG)或二极管(980 nm)激光进行两种激光辅助诊室牙齿漂白后表面性质的变化。测试了纳米混合复合材料(Enamel Plus HRi)、不含双-GMA 的复合材料(Enamel Plus HRi Bio Function)和树脂基质 CAD-CAM 陶瓷(Shofu Block HC)。每种材料制备了 40 个试样,分为四组(n = 10/组)。对照组未进行任何漂白处理,第 2 组使用 40% 过氧化氢(H2O2)进行漂白,第 3 组和第 4 组分别使用二极管激光器(980 纳米)或 Er,Cr:YSGG 激光器进行相同的漂白处理。使用维氏硬度计和光学轮廓仪测量表面显微硬度和粗糙度。漂白试样的显微硬度较低,纳米杂化复合材料与无漂白组的差异最大。对于不含 Bis-GMA 的复合材料,无漂白和激光辅助漂白之间的显微硬度差异小于传统漂白技术。漂白试样的表面粗糙度较高,纳米杂化复合材料与对照试样的差异最大。研究发现,激光辅助牙齿漂白方案不会影响受测树脂基试样的表面显微硬度和粗糙度,因此适合临床使用。
{"title":"Effect of laser irradiation during in-office tooth bleaching on surface properties of resin-based restorative materials","authors":"Christina Karanasiou, Dimitrios Dionysopoulos, Petros Mourouzis, Dimitrios Strakas, Olga Naka, Kosmas Tolidis","doi":"10.1111/eos.13013","DOIUrl":"10.1111/eos.13013","url":null,"abstract":"<p>This study evaluated the changes in surface properties of three resin-based restorative materials after two laser-assisted, in-office tooth bleaching protocols using erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) or diode (980 nm) lasers. A nanohybrid composite (Enamel Plus HRi), a Bis-GMA-free composite (Enamel Plus HRi Bio Function), and a resin-matrix CAD-CAM ceramic (Shofu Block HC) were tested. Forty specimens for each material were prepared and divided into four groups (<i>n</i> = 10/group). The control specimens did not undergo any bleaching treatment, whereas group 2 received bleaching with 40% hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), while groups 3 and 4 underwent the same bleaching procedure with the use of diode (980 nm) or Er,Cr:YSGG lasers, respectively. Surface microhardness and roughness measurements were conducted using a Vickers tester and an optical profilometer. Microhardness was lower in bleached specimens, with the nanohybrid composite exhibiting the largest difference from the no bleaching group. For the Bis-GMA-free composite the microhardness difference between no bleaching and laser-assisted bleaching were smaller than seen for the conventional bleaching technique. Surface roughness was higher in bleached specimens, with nanohybrid composite showing the largest differences from the control specimens. The examined laser-assisted tooth bleaching protocols were found not to impact surface microhardness and roughness of the tested resin-based specimens and they are deemed suitable for clinical use.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eos.13013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guido Artemio Marañón-Vásquez, Flares Baratto-Filho, Christian Kirschneck, Erika Calvano Küchler
{"title":"Response to letter to the Editor","authors":"Guido Artemio Marañón-Vásquez, Flares Baratto-Filho, Christian Kirschneck, Erika Calvano Küchler","doi":"10.1111/eos.13012","DOIUrl":"10.1111/eos.13012","url":null,"abstract":"","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}