Pub Date : 2024-06-15DOI: 10.1016/j.euromechflu.2024.06.001
Yanjun Sun , Beinan Jia , Long Chang , Yongjun Jian
The Soret effect, also known as thermal diffusion, plays a crucial role in the phenomenon of double diffusion convection in liquids. This study investigates Soret-driven convection within a vertical double-diffusive layer of Maxwell-Cattaneo (M-C) fluids, where the boundaries maintain constant temperatures and solute concentrations that are distinct from each other. The heat transfer equation for Maxwell-Cattaneo fluids is governed by a hyperbolic rule of heat conduction, rather than the typical Fourier parabolic one. The Chebyshev collocation method is employed to solve the corresponding stability eigenvalue problem. The neutral stability curve shows significant fluctuation responses due to the M-C effect. When the Cattaneo number (C) reaches 0.02, multiple local minima appear in the critical Grashof number (Gr). The instability the thermal convection is found to be amplified by the combined effects of Maxwell-Cattaneo and Soret, along with the Grashof number, while the double diffusion effect appears to suppress the instability of convective system. The influence of Soret effect on convective instability will diminish dramatically as the Gr number rises above 8200.
{"title":"Soret-driven convection of Maxwell-Cattaneo fluids in a vertical channel","authors":"Yanjun Sun , Beinan Jia , Long Chang , Yongjun Jian","doi":"10.1016/j.euromechflu.2024.06.001","DOIUrl":"10.1016/j.euromechflu.2024.06.001","url":null,"abstract":"<div><p>The Soret effect, also known as thermal diffusion, plays a crucial role in the phenomenon of double diffusion convection in liquids. This study investigates Soret-driven convection within a vertical double-diffusive layer of Maxwell-Cattaneo (M-C) fluids, where the boundaries maintain constant temperatures and solute concentrations that are distinct from each other. The heat transfer equation for Maxwell-Cattaneo fluids is governed by a hyperbolic rule of heat conduction, rather than the typical Fourier parabolic one. The Chebyshev collocation method is employed to solve the corresponding stability eigenvalue problem. The neutral stability curve shows significant fluctuation responses due to the M-C effect. When the Cattaneo number (<em>C</em>) reaches 0.02, multiple local minima appear in the critical Grashof number (<em>Gr</em>). The instability the thermal convection is found to be amplified by the combined effects of Maxwell-Cattaneo and Soret, along with the Grashof number, while the double diffusion effect appears to suppress the instability of convective system. The influence of Soret effect on convective instability will diminish dramatically as the <em>Gr</em> number rises above 8200.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 17-28"},"PeriodicalIF":2.6,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.euromechflu.2024.04.014
K. Aiswaria , Ramakrishnan Balaji , P. Krishnendu
Integrating wave energy devices with coastal structures is a promising solution to reduce the cost of wave energy development along with additional shared benefits. In this study, the performance of a heaving spherical point absorber wave energy converter model in irregular waves is analysed and compared experimentally and numerically. After the fundamental investigation of models in regular waves, it is important to advance the testing in more realistic conditions before the sea trial phase. The investigations are conducted in irregular waves on a 1:30 scale model under two scenarios, (1) model heaving alone and (2) model heaving in a chambered breakwater. Irregular waves are generated based on the JONSWAP spectrum with modified parameters to suit the Indian coastal conditions. Results indicate that the wave energy converter model in the chambered breakwater produces 40.25 % higher power than the model heaving alone in irregular sea conditions. The performance of the model is found to be less compared to that in regular waves.
{"title":"Experimental and numerical investigation of breakwater-integrated heaving point absorber device under irregular waves","authors":"K. Aiswaria , Ramakrishnan Balaji , P. Krishnendu","doi":"10.1016/j.euromechflu.2024.04.014","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.04.014","url":null,"abstract":"<div><p>Integrating wave energy devices with coastal structures is a promising solution to reduce the cost of wave energy development along with additional shared benefits. In this study, the performance of a heaving spherical point absorber wave energy converter model in irregular waves is analysed and compared experimentally and numerically. After the fundamental investigation of models in regular waves, it is important to advance the testing in more realistic conditions before the sea trial phase. The investigations are conducted in irregular waves on a 1:30 scale model under two scenarios, (1) model heaving alone and (2) model heaving in a chambered breakwater. Irregular waves are generated based on the JONSWAP spectrum with modified parameters to suit the Indian coastal conditions. Results indicate that the wave energy converter model in the chambered breakwater produces 40.25 % higher power than the model heaving alone in irregular sea conditions. The performance of the model is found to be less compared to that in regular waves.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 40-51"},"PeriodicalIF":2.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1016/j.euromechflu.2024.05.002
Danial Rezaee
Flow stability plays a key role in transition to turbulence in various systems. This transition initiates with disturbances appearing in the laminar base flow, potentially amplifying over time based on flow and fluid parameters. In response to these amplified disturbances, the flow undergoes successive stages of different laminar flows, ultimately transitioning to turbulence. One influential parameter affecting flow stability is the nanoparticle volume fraction () in nanofluids, extensively employed in thermofluid systems like cooling devices to enhance fluid thermal conductivity and the heat transfer coefficient. Focusing on the impact of nanoparticles on Jeffery–Hamel flow stability, this study assumes fluid properties are temperature- and pressure-independent, exclusively examining the momentum transfer aspect. The analysis commences by deriving the base laminar flow solution. Subsequently, linear temporal stability analysis is employed, imposing infinitesimally-small perturbations on the base flow as a modified form of normal modes. A generalized Orr–Sommerfeld equation is derived and solved using a spectral method. Results indicate that, assuming nanofluid viscosity as , nanoparticle effects on momentum transfer and flow stability hinge on the ratio of nano-solid particle density to base fluid density (). For , flow stabilization occurs with when , while destabilization is observed when . Notably, nanoparticles exhibit a negligible impact on flow stability when .
{"title":"Linear temporal stability of Jeffery–Hamel flow of nanofluids","authors":"Danial Rezaee","doi":"10.1016/j.euromechflu.2024.05.002","DOIUrl":"10.1016/j.euromechflu.2024.05.002","url":null,"abstract":"<div><p>Flow stability plays a key role in transition to turbulence in various systems. This transition initiates with disturbances appearing in the laminar base flow, potentially amplifying over time based on flow and fluid parameters. In response to these amplified disturbances, the flow undergoes successive stages of different laminar flows, ultimately transitioning to turbulence. One influential parameter affecting flow stability is the nanoparticle volume fraction (<span><math><mi>ϕ</mi></math></span>) in nanofluids, extensively employed in thermofluid systems like cooling devices to enhance fluid thermal conductivity and the heat transfer coefficient. Focusing on the impact of nanoparticles on Jeffery–Hamel flow stability, this study assumes fluid properties are temperature- and pressure-independent, exclusively examining the momentum transfer aspect. The analysis commences by deriving the base laminar flow solution. Subsequently, linear temporal stability analysis is employed, imposing infinitesimally-small perturbations on the base flow as a modified form of normal modes. A generalized Orr–Sommerfeld equation is derived and solved using a spectral method. Results indicate that, assuming nanofluid viscosity as <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>nf</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>/</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϕ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msup></mrow></math></span>, nanoparticle effects on momentum transfer and flow stability hinge on the ratio of nano-solid particle density to base fluid density (<span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>/</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span>). For <span><math><mrow><mi>ϕ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, flow stabilization occurs with <span><math><mi>ϕ</mi></math></span> when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo><</mo><mn>3</mn><mo>.</mo><mn>5000</mn></mrow></math></span>, while destabilization is observed when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>></mo><mn>4</mn><mo>.</mo><mn>0135</mn></mrow></math></span>. Notably, nanoparticles exhibit a negligible impact on flow stability when <span><math><mrow><mn>3</mn><mo>.</mo><mn>5000</mn><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>≤</mo><mn>4</mn><mo>.</mo><mn>0135</mn></mrow></math></span>.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 1-16"},"PeriodicalIF":2.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141280947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.euromechflu.2024.05.001
Dhanya Chennuri, Jai Prakash
The thermocapillary migration of a concentric compound drop in an arbitrary viscous flow under the consideration of negligible Reynolds number is investigated. The thermocapillary effect refers to the migration of a drop under the influence of a temperature gradient. The thermal and hydrodynamic problems are examined. The thermal field is governed by the heat conduction equation whereas the hydrodynamic fluid velocities are governed by the linearized Navier–Stokes equations. Presence of temperature gradient results in variation of the interfacial tension which is assumed to depend on temperature linearly. Variation of interfacial gradient leads to the coupling of the hydrodynamic problem with the thermal problem through the boundary condition. A complete general solution of Stokes equations is utilized to obtain closed-form expressions for the velocity vector and pressure. The hydrodynamic forces acting on the compound drop are obtained and expressed in terms of Fax́en’s law. Some important asymptotic limiting cases of hydrodynamic drag are also derived. The hydrodynamic drag for cases of uniform flow, shear flow, and heat source with the known ambient flow are derived and it is found that in the case of shear flow, the hydrodynamic drag is contributed only by the thermal component and the shear flow has no effect on it. The obtained results for drag and torque in the limiting cases are in agreement with the existing results in the literature. Furthermore, the migration velocity of the compound drop is obtained by equating the hydrodynamic drag force to zero. The results obtained for migration velocity are explained with the aid of graphs. The migration velocity is found to be a monotonic function of the Marangoni number and the radius of the innermost drop.
{"title":"Thermocapillary migration of a compound drop in an arbitrary viscous flow","authors":"Dhanya Chennuri, Jai Prakash","doi":"10.1016/j.euromechflu.2024.05.001","DOIUrl":"10.1016/j.euromechflu.2024.05.001","url":null,"abstract":"<div><p>The thermocapillary migration of a concentric compound drop in an arbitrary viscous flow under the consideration of negligible Reynolds number is investigated. The thermocapillary effect refers to the migration of a drop under the influence of a temperature gradient. The thermal and hydrodynamic problems are examined. The thermal field is governed by the heat conduction equation whereas the hydrodynamic fluid velocities are governed by the linearized Navier–Stokes equations. Presence of temperature gradient results in variation of the interfacial tension which is assumed to depend on temperature linearly. Variation of interfacial gradient leads to the coupling of the hydrodynamic problem with the thermal problem through the boundary condition. A complete general solution of Stokes equations is utilized to obtain closed-form expressions for the velocity vector and pressure. The hydrodynamic forces acting on the compound drop are obtained and expressed in terms of Fax́en’s law. Some important asymptotic limiting cases of hydrodynamic drag are also derived. The hydrodynamic drag for cases of uniform flow, shear flow, and heat source with the known ambient flow are derived and it is found that in the case of shear flow, the hydrodynamic drag is contributed only by the thermal component and the shear flow has no effect on it. The obtained results for drag and torque in the limiting cases are in agreement with the existing results in the literature. Furthermore, the migration velocity of the compound drop is obtained by equating the hydrodynamic drag force to zero. The results obtained for migration velocity are explained with the aid of graphs. The migration velocity is found to be a monotonic function of the Marangoni number and the radius of the innermost drop.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 280-289"},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141029420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1016/j.euromechflu.2024.04.012
Venkatesa Iyengar Vasanta Ram
This paper is on the transition scenario of the class of spiral Poiseuille flows that results from the onset, propagation and evolution of disturbances according to mechanisms of Tollmien-Schlichting, and Taylor, acting simultaneously. The problem is approached from the fundamental point of view of following the growth of initially infinitesimally small disturbances into their nonlinear stage when the effect of Reynolds stresses makes itself felt. To this end a set of Generalised Nonlinear Orr–Sommerfeld, Squire and Continuity Equations is set up that enables accounting for effects of growth of initially infinitesimally small disturbances into nonlinearities through a rational iteration scheme. The present proposal closely follows the method put forth for this pupose in 1971 by Stuart and Stewartson in their seminal papers on the influence of nonlinear effects during transition in the bench-mark flows of the class of spiral Poiseuille flows; which are the plane-walled channel flow and the flow in the gap between concentric circular cylinders (Taylor instability).
The basic feature of the proposed method is the introduction of an Amplitude Parameter and of a slow/long- scale variable through which the effects of growing disturbances are accounted for within the framework of a rational iteration scheme. It is shown that the effect of amplified disturbances is capturable, as in the bench-mark flows, by a Ginzburg–Landau type differential equation for an Amplitude Function in terms of suitably defined slow/long-scale variables. However, the coefficients in this equation are numbers that depend upon the flow parameters of the spiral Poiseuille flow, which are a suitably defined Reynolds Number, the Swirl Number, and the geometric parameter of transverse curvature inherent in the flow geometry. The Ginzburg–Landau equation derived hints at the drastic changes in flow pattern that the spiral Poiseuille flow in transition may undergo, as its Swirl Number is taken from very small to very large values.
{"title":"A nonlinear instability theory for a wave system inducing transition in spiral Poiseuille flow","authors":"Venkatesa Iyengar Vasanta Ram","doi":"10.1016/j.euromechflu.2024.04.012","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.04.012","url":null,"abstract":"<div><p>This paper is on the transition scenario of the class of spiral Poiseuille flows that results from the onset, propagation and evolution of disturbances according to mechanisms of <em>Tollmien-Schlichting</em>, and <em>Taylor</em>, acting simultaneously. The problem is approached from the fundamental point of view of following the growth of initially infinitesimally small disturbances into their nonlinear stage when the effect of Reynolds stresses makes itself felt. To this end a set of <em>Generalised Nonlinear Orr–Sommerfeld, Squire and Continuity Equations</em> is set up that enables accounting for effects of growth of initially infinitesimally small disturbances into nonlinearities through a rational iteration scheme. The present proposal closely follows the method put forth for this pupose in 1971 by Stuart and Stewartson in their seminal papers on the influence of nonlinear effects during transition in the bench-mark flows of the class of spiral Poiseuille flows; which are the plane-walled channel flow and the flow in the gap between concentric circular cylinders (Taylor instability).</p><p>The basic feature of the proposed method is the introduction of an Amplitude Parameter and of a slow/long- scale variable through which the effects of growing disturbances are accounted for within the framework of a rational iteration scheme. It is shown that the effect of amplified disturbances is capturable, as in the bench-mark flows, by a Ginzburg–Landau type differential equation for an Amplitude Function in terms of suitably defined slow/long-scale variables. However, the coefficients in this equation are numbers that depend upon the flow parameters of the spiral Poiseuille flow, which are a suitably defined Reynolds Number, the Swirl Number, and the geometric parameter of transverse curvature inherent in the flow geometry. The Ginzburg–Landau equation derived hints at the drastic changes in flow pattern that the spiral Poiseuille flow in transition may undergo, as its Swirl Number is taken from very small to very large values.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 238-262"},"PeriodicalIF":2.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000645/pdfft?md5=1b5407c8556741356f12f8b5a7b00653&pid=1-s2.0-S0997754624000645-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1016/j.euromechflu.2024.04.006
Kshitij Shakya, Shubhajit Roy Chowdhury
The study on arterial stenosis has gained rapid interest among researchers in the last decade because of its chronic consequences. Several researchers have tried to investigate stenosis and plaque progression in the carotid artery with different simulation models. In this study, a realistic 3-D geometry of the carotid artery has been used to analyze the effect of varying degrees of stenosis present at different locations of the carotid artery on various hemodynamic parameters. An extensive range of stenosis degrees, starting from a healthy artery(0 %stenosis) to 10%, 30%, 50%, 75%, and 90% stenosis, have been studied. These degrees of stenosis were planted at different locations of the artery grown simultaneously. The whole study was done under the realm of Fluid–Structure Interaction multiphysics. The change in velocity profiles at the areas of stenosis has been found along with the wall shear stress and arterial displacement. The magnitude of velocity and wall shear stress in the case of multiple stenosis locations has been found to be dependent on each other. The presence or absence of one stenosis affects the other, and given the regular and irregular patterns of the velocity profile, wall shear stress, and displacement, their inclusion in blood flow simulation studies having multiple stenoses should be considered.
{"title":"A fluid–structure interaction study to analyze the severity of carotid artery stenosis at different locations and its effect on various hemodynamic biomarkers","authors":"Kshitij Shakya, Shubhajit Roy Chowdhury","doi":"10.1016/j.euromechflu.2024.04.006","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.04.006","url":null,"abstract":"<div><p>The study on arterial stenosis has gained rapid interest among researchers in the last decade because of its chronic consequences. Several researchers have tried to investigate stenosis and plaque progression in the carotid artery with different simulation models. In this study, a realistic 3-D geometry of the carotid artery has been used to analyze the effect of varying degrees of stenosis present at different locations of the carotid artery on various hemodynamic parameters. An extensive range of stenosis degrees, starting from a healthy artery(0 %stenosis) to 10%, 30%, 50%, 75%, and 90% stenosis, have been studied. These degrees of stenosis were planted at different locations of the artery grown simultaneously. The whole study was done under the realm of Fluid–Structure Interaction multiphysics. The change in velocity profiles at the areas of stenosis has been found along with the wall shear stress and arterial displacement. The magnitude of velocity and wall shear stress in the case of multiple stenosis locations has been found to be dependent on each other. The presence or absence of one stenosis affects the other, and given the regular and irregular patterns of the velocity profile, wall shear stress, and displacement, their inclusion in blood flow simulation studies having multiple stenoses should be considered.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 227-237"},"PeriodicalIF":2.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-05DOI: 10.1016/j.euromechflu.2024.04.013
Yuzhu Wang , Jun Wu , Bo Shui , Jian Yang , Wei Wei
Bubble curtains are linear multiphase plumes that are used in industry and engineering to reduce diffusive flows between two zones. The circulating shear flow generated by the bubble plume can effectively create a particle barrier in the water; thus, it is also widely used to suppress the diffusion of suspended particles during dredging operations. To clarify the interaction mechanism between the bubble curtain and suspended particles under pressure-driven flow, experimental studies and numerical simulations were conducted to investigate the particle dynamics in the flow field around the bubble curtain. In this study, we established a formal analogy between a bubble curtain and an air curtain and qualitatively identified four typical distribution zones of the particles in the flow field. Based on the quantitative measurements and theoretical considerations, the optimal operating conditions and the upper limit of effectiveness of the bubble curtain were determined. In addition, the blocking behavior and efficiency of bubble plumes on particles with different and numbers and different particle properties were simulated via the computational fluid dynamicsdiscrete element method (CFDDEM) numerical simulation method.
{"title":"Particle dynamic behaviors in bubble curtain barriers blocking the diffusion of sediment","authors":"Yuzhu Wang , Jun Wu , Bo Shui , Jian Yang , Wei Wei","doi":"10.1016/j.euromechflu.2024.04.013","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.04.013","url":null,"abstract":"<div><p>Bubble curtains are linear multiphase plumes that are used in industry and engineering to reduce diffusive flows between two zones. The circulating shear flow generated by the bubble plume can effectively create a particle barrier in the water; thus, it is also widely used to suppress the diffusion of suspended particles during dredging operations. To clarify the interaction mechanism between the bubble curtain and suspended particles under pressure-driven flow, experimental studies and numerical simulations were conducted to investigate the particle dynamics in the flow field around the bubble curtain. In this study, we established a formal analogy between a bubble curtain and an air curtain and qualitatively identified four typical distribution zones of the particles in the flow field. Based on the quantitative measurements and theoretical considerations, the optimal operating conditions and the upper limit of effectiveness of the bubble curtain were determined. In addition, the blocking behavior and efficiency of bubble plumes on particles with different <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>U</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>F</mi><msub><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></msub></mrow></math></span>numbers and different particle properties were simulated via the computational fluid dynamics<img>discrete element method (CFD<img>DEM) numerical simulation method.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 214-226"},"PeriodicalIF":2.6,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1016/j.euromechflu.2024.04.007
Jonathan Highgate , Esra Sorguven , Sevil Incir
Understanding the loss generation mechanisms in water pumps is a vital step in decarbonising our built environment, and achieve sustainable cities and communities. In this paper, loss generation mechanisms in a centrifugal pump are quantified by performing exergy analysis with unsteady Reynold Averaged Navier Stokes simulations (uRANS). Exergy analyses are performed at various operational conditions for a commercially available pump and its ideal version that has zero surface roughness. Numerical results are used to derive mathematical expressions to describe exergy destruction rates as functions of normalized flow rates. These expressions provide insight on how and where losses are generated within a centrifugal pump, and how loss generation mechanisms are affected by the flow rate. Results show that 80% of the losses are generated within the impeller, intersection and volute, whereas secondary flows through the deadzone and leakage paths have insignificant contribution to the total losses even though mass flow rate through these paths are considerable. The exergy destruction rate equations derived here, have the potential to replace the semi-empirical estimations of losses in traditional turbomachinery design methodologies and serve as a tool to develop a novel knowledge-based turbomachinery design methodology.
{"title":"Exergy destruction within a centrifugal water pump","authors":"Jonathan Highgate , Esra Sorguven , Sevil Incir","doi":"10.1016/j.euromechflu.2024.04.007","DOIUrl":"10.1016/j.euromechflu.2024.04.007","url":null,"abstract":"<div><p>Understanding the loss generation mechanisms in water pumps is a vital step in decarbonising our built environment, and achieve sustainable cities and communities. In this paper, loss generation mechanisms in a centrifugal pump are quantified by performing exergy analysis with unsteady Reynold Averaged Navier Stokes simulations (uRANS). Exergy analyses are performed at various operational conditions for a commercially available pump and its ideal version that has zero surface roughness. Numerical results are used to derive mathematical expressions to describe exergy destruction rates as functions of normalized flow rates. These expressions provide insight on how and where losses are generated within a centrifugal pump, and how loss generation mechanisms are affected by the flow rate. Results show that 80% of the losses are generated within the impeller, intersection and volute, whereas secondary flows through the deadzone and leakage paths have insignificant contribution to the total losses even though mass flow rate through these paths are considerable. The exergy destruction rate equations derived here, have the potential to replace the semi-empirical estimations of losses in traditional turbomachinery design methodologies and serve as a tool to develop a novel knowledge-based turbomachinery design methodology.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 263-279"},"PeriodicalIF":2.6,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000591/pdfft?md5=d10d5b2b54a7c4675f03d7d04d324b76&pid=1-s2.0-S0997754624000591-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141031452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aneurysm is a permanent irreversible bulge in the artery that can occur with higher prevalence among elderly individuals. Although invasive surgical procedures can prevent their development, they come with considerable side effects. Recently, treatments based on targeted drug delivery have gained a lot of attention to suppress aneurysm growth. Numerical simulations have been shown to be of great role in the prediction of blood hemodynamics and vascular wall behaviour in the case of an aneurysm. Moreover, the utilization of high-fidelity approaches such as the Lagrangian frame of reference can address the motion characteristics of microbubble (MB) contrast agents in particulate flows. This study aims to investigate the effect of particle aspect ratio on the adhesion of oblate spheroid particles to the vascular wall. Accordingly, a two-way fluid–structure interaction (FSI) method consisting of a hyperelastic material model for the vessel along with a non-Newtonian, compressible model for blood was employed to simulate an abdominal aortic aneurysm (AAA). Moreover, the ligand–receptor binding concept has been utilized to address the quantification of MBs adhesion. Five sets of aspect ratios ranging from 1 to 9 have been investigated and results indicated that with the increase of the aspect ratio the rate of adhesion decreases. Two drastic changes in the particle number occurred due to the diastolic peak and negative velocity profile, respectively. However, it was concluded that the hydrodynamic of the MBs in terms of velocity and wall distance is rather insensible to the particle shape.
{"title":"Effect of particle aspect ratio in targeted drug delivery in abdominal aortic aneurysm","authors":"Sajad Salavatidezfouli , Saeid Barzegar , Armin Sheidani , Arash Hajisharifi , Michele Girfoglio , Giovanni Stabile , Gianluigi Rozza","doi":"10.1016/j.euromechflu.2024.04.009","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.04.009","url":null,"abstract":"<div><p>Aneurysm is a permanent irreversible bulge in the artery that can occur with higher prevalence among elderly individuals. Although invasive surgical procedures can prevent their development, they come with considerable side effects. Recently, treatments based on targeted drug delivery have gained a lot of attention to suppress aneurysm growth. Numerical simulations have been shown to be of great role in the prediction of blood hemodynamics and vascular wall behaviour in the case of an aneurysm. Moreover, the utilization of high-fidelity approaches such as the Lagrangian frame of reference can address the motion characteristics of microbubble (MB) contrast agents in particulate flows. This study aims to investigate the effect of particle aspect ratio on the adhesion of oblate spheroid particles to the vascular wall. Accordingly, a two-way fluid–structure interaction (FSI) method consisting of a hyperelastic material model for the vessel along with a non-Newtonian, compressible model for blood was employed to simulate an abdominal aortic aneurysm (AAA). Moreover, the ligand–receptor binding concept has been utilized to address the quantification of MBs adhesion. Five sets of aspect ratios ranging from 1 to 9 have been investigated and results indicated that with the increase of the aspect ratio the rate of adhesion decreases. Two drastic changes in the particle number occurred due to the diastolic peak and negative velocity profile, respectively. However, it was concluded that the hydrodynamic of the MBs in terms of velocity and wall distance is rather insensible to the particle shape.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 181-196"},"PeriodicalIF":2.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140843111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.euromechflu.2024.04.008
Santu Das , Michael H. Meylan
An analytical solution of three-dimensional surface wave profiles due to arbitrary spatio-temporal disturbance of a circular ocean bottom in a compressible ocean is obtained by incorporating the influence of the static ocean background compression under the assumptions of linearized water wave theory. Time-domain simulations of the surface profile in three dimensions and the pressure distribution within the water column for a circular uniform rise and tilt are shown. The corresponding animation movies depict the temporal evolution of the surface profile and pressure field inside the water column eloquently, which was not shown in earlier literature. The impact of static compression is also discussed through the simulations. A novel analytical expression of the potential function for a generic tilted motion () of the circular ocean floor is derived. An efficient numerical code is developed to find surface elevation and pressure distribution, implementing the inverse Fourier integral as matrix multiplication. Validation is performed for the specific case of a rising flat ocean floor, showing the oscillations due to acoustic-gravity modes. Initially, a simplified problem of a flat rising ocean bottom is solved using the eigenfunction matching method, which involves finding a particular solution for the nonhomogeneous ocean bottom condition and the solution for its homogeneous counterpart. Solutions are obtained using a newly developed inner product between the depth-dependent functions. Later, a Green function technique is used to incorporate the impact of the arbitrary spatio-temporal motion of the circular portion of the ocean bed. The solution obtained from the eigenfunction matching method is utilized to obtain the analytical form of Green’s function and, eventually, an expression of surface elevation and pressure distribution inside the ocean water column.
{"title":"Effect of static compression on near-field tsunami waves: Three-dimensional solution","authors":"Santu Das , Michael H. Meylan","doi":"10.1016/j.euromechflu.2024.04.008","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.04.008","url":null,"abstract":"<div><p>An analytical solution of three-dimensional surface wave profiles due to arbitrary spatio-temporal disturbance of a circular ocean bottom in a compressible ocean is obtained by incorporating the influence of the static ocean background compression under the assumptions of linearized water wave theory. Time-domain simulations of the surface profile in three dimensions and the pressure distribution within the water column for a circular uniform rise and tilt are shown. The corresponding animation movies depict the temporal evolution of the surface profile and pressure field inside the water column eloquently, which was not shown in earlier literature. The impact of static compression is also discussed through the simulations. A novel analytical expression of the potential function for a generic tilted motion (<span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>cos</mo><mrow><mo>(</mo><mi>m</mi><mi>θ</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></math></span>) of the circular ocean floor is derived. An efficient numerical code is developed to find surface elevation and pressure distribution, implementing the inverse Fourier integral as matrix multiplication. Validation is performed for the specific case of a rising flat ocean floor, showing the oscillations due to acoustic-gravity modes. Initially, a simplified problem of a flat rising ocean bottom is solved using the eigenfunction matching method, which involves finding a particular solution for the nonhomogeneous ocean bottom condition and the solution for its homogeneous counterpart. Solutions are obtained using a newly developed inner product between the depth-dependent functions. Later, a Green function technique is used to incorporate the impact of the arbitrary spatio-temporal motion of the circular portion of the ocean bed. The solution obtained from the eigenfunction matching method is utilized to obtain the analytical form of Green’s function and, eventually, an expression of surface elevation and pressure distribution inside the ocean water column.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 197-213"},"PeriodicalIF":2.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}