首页 > 最新文献

European Journal of Soil Science最新文献

英文 中文
Sorption retards remediation of clayey sulfuric soils with straw-derived dissolved organic matter 吸附作用延缓了秸秆溶解有机物对含硫粘土的修复作用
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-05 DOI: 10.1111/ejss.13574
Angelika Kölbl, Luke Mosley, Rob Fitzpatrick, Klaus Kaiser

When sulfidic soils become drained, oxidation of pyrite can cause acidification and formation of iron (Fe) oxyhydroxy sulfate phases such as jarosite. Remediation via re-establishment of reducing conditions requires submergence and addition of biodegradable organic carbon (OC) to stimulate activity of reducing bacteria. Addition of straw-derived dissolved organic carbon (DOC) has been shown to induce rapid microbial reduction in sandy sulfuric (pH <4) soils. In clayey sulfuric soil, DOC may be less efficient because of limited availability for microbes due to its sorption to reactive minerals. We tested the possible effect of sorption on the remediative potential of straw-derived DOC using a set of incubation and sorption experiments, and used solid-state 13C-NMR spectroscopy for the chemical characterization of OC. The tested materials were a clayey, jarosite-containing sulfuric soil (pH 3), and artificial model soils composed of synthesized jarosite either mixed with quartz powder or quartz powder + clay minerals. The results showed that addition of DOC from wheat straw induces reduction conditions varying with soil sorptivity. For the model soils, DOC sorption was little, and DOC additions of 0.8 mg OC g−1 were sufficient to achieve permanently reducing conditions and an increase in pH to >6.0. In the natural sulfuric soil, much higher DOC additions were needed (1.8 mg OC g−1) to facilitate continuous reducing conditions, but pH increased only to values no higher than 5.0–5.5. The natural soil revealed strong sorption of added DOC. Sorption preferentially reduced the proportion of proteins, while the proportion of lignin components, which can hardly be used by microorganisms under reducing conditions, remained relatively high in solution. Thus, high DOC additions were required to overcome the sorption-induced limitations in OC availability. The results suggest that wheat straw-derived DOC is a promising approach also for remediation of clayey sulfuric soils; however, OC additions need to be adjusted to compensate for possible sorption.

当硫化土壤排水不畅时,黄铁矿的氧化会导致酸化,并形成铁(Fe)羟基硫酸盐相,如硫铁矿。通过重建还原条件进行修复,需要浸没并添加可生物降解的有机碳(OC),以刺激还原菌的活性。在沙质硫酸土壤(pH 值为 4)中,添加秸秆衍生的溶解有机碳 (DOC) 可诱导微生物快速还原。在粘质硫酸土壤中,DOC 的效率可能较低,因为它吸附在活性矿物质上,对微生物的可用性有限。我们通过一系列培养和吸附实验,测试了吸附对秸秆衍生 DOC 的修复潜力可能产生的影响,并使用固态 13C-NMR 光谱对 OC 进行了化学表征。实验材料为含粘土、石榴石的硫化土壤(pH 值为 3),以及由合成石榴石与石英粉或石英粉 + 粘土矿物混合组成的人工模拟土壤。结果表明,添加小麦秸秆中的 DOC 会引起随土壤吸附性而变化的还原条件。在模型土壤中,DOC 的吸附量很小,添加 0.8 mg OC g-1 的 DOC 就足以实现永久还原条件,并将 pH 值提高到 6.0。在天然硫化土壤中,需要添加更高的 DOC(1.8 毫克 OC g-1)来促进持续的还原条件,但 pH 值仅上升到不高于 5.0-5.5 的水平。天然土壤对添加的 DOC 有很强的吸附作用。吸附作用优先降低了蛋白质的比例,而在还原条件下微生物难以利用的木质素成分在溶液中的比例仍然相对较高。因此,需要添加大量 DOC 才能克服吸附引起的 OC 可用性限制。研究结果表明,小麦秸秆衍生 DOC 也是一种很有前景的修复含硫粘土的方法;不过,需要对 OC 的添加量进行调整,以弥补可能出现的吸附现象。
{"title":"Sorption retards remediation of clayey sulfuric soils with straw-derived dissolved organic matter","authors":"Angelika Kölbl,&nbsp;Luke Mosley,&nbsp;Rob Fitzpatrick,&nbsp;Klaus Kaiser","doi":"10.1111/ejss.13574","DOIUrl":"10.1111/ejss.13574","url":null,"abstract":"<p>When sulfidic soils become drained, oxidation of pyrite can cause acidification and formation of iron (Fe) oxyhydroxy sulfate phases such as jarosite. Remediation via re-establishment of reducing conditions requires submergence and addition of biodegradable organic carbon (OC) to stimulate activity of reducing bacteria. Addition of straw-derived dissolved organic carbon (DOC) has been shown to induce rapid microbial reduction in sandy sulfuric (pH &lt;4) soils. In clayey sulfuric soil, DOC may be less efficient because of limited availability for microbes due to its sorption to reactive minerals. We tested the possible effect of sorption on the remediative potential of straw-derived DOC using a set of incubation and sorption experiments, and used solid-state <sup>13</sup>C-NMR spectroscopy for the chemical characterization of OC. The tested materials were a clayey, jarosite-containing sulfuric soil (pH 3), and artificial model soils composed of synthesized jarosite either mixed with quartz powder or quartz powder + clay minerals. The results showed that addition of DOC from wheat straw induces reduction conditions varying with soil sorptivity. For the model soils, DOC sorption was little, and DOC additions of 0.8 mg OC g<sup>−1</sup> were sufficient to achieve permanently reducing conditions and an increase in pH to &gt;6.0. In the natural sulfuric soil, much higher DOC additions were needed (1.8 mg OC g<sup>−1</sup>) to facilitate continuous reducing conditions, but pH increased only to values no higher than 5.0–5.5. The natural soil revealed strong sorption of added DOC. Sorption preferentially reduced the proportion of proteins, while the proportion of lignin components, which can hardly be used by microorganisms under reducing conditions, remained relatively high in solution. Thus, high DOC additions were required to overcome the sorption-induced limitations in OC availability. The results suggest that wheat straw-derived DOC is a promising approach also for remediation of clayey sulfuric soils; however, OC additions need to be adjusted to compensate for possible sorption.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.13574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stronger aggregation reduces temperature sensitivity of soil organic carbon decomposition in croplands 更强的聚集性降低了耕地土壤有机碳分解对温度的敏感性
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-03 DOI: 10.1111/ejss.13565
Chong Ma, Xun Duan, Hang Qiao, Yajun Hu, Xunyang He, Jinshui Wu, Yirong Su, Xiangbi Chen

The temperature sensitivity (Q10) of soil organic C (SOC) decomposition is an important parameter to predict C dynamics under climate change. Given that SOC is mainly protected by aggregates and minerals, differentiating the Q10 of the two C fractions helps to explain bulk soil C dynamics. In the present study, we collected agricultural soils from adjacent paddy and upland areas in mid-temperate (Mollisols) and subtropic (Ultisols) regions of China. We employed density fractionation to separate aggregate-protected and free mineral-associated C fractions of soil samples and determined the Q10 of SOC and the two C fractions at 15 and 25°C incubated conditions. Results showed that the Q10 of SOC for Mollisols were lower than that for Ultisols, with an exception of aggregates in upland soils. Aggregate-protected C had lower Q10 than free mineral-associated C, except in the upland Mollisols. The Q10 of SOC was negatively correlated with the proportion of C protected in aggregates, whereas it was positively correlated with the proportions of mass or C of free minerals. Given that the mass and C proportion of aggregates in bulk soils of Mollisols were 271% and 80% higher than of Ultisols, respectively, the SOC of Mollisols exhibited lower Q10 than Ultisols. Therefore, stronger soil aggregation and higher proportion of aggregate-protected C contributed to the lower temperature sensitivity of SOC in Mollisols. Consequently, agricultural practices aimed at promoting soil aggregation will alleviate SOC loss under future global warming scenarios.

土壤有机碳(SOC)分解的温度敏感性(Q10)是预测气候变化下碳动态的一个重要参数。鉴于 SOC 主要受到团聚体和矿物质的保护,区分这两种 C 部分的 Q10 有助于解释大体积土壤 C 的动态变化。在本研究中,我们采集了中国中温带(Mollisols)和亚热带(Ultisols)地区相邻水稻田和高地的农用土壤。我们采用密度分馏法分离了土壤样品中受团聚体保护的碳组分和与矿物质相关的游离碳组分,并测定了在 15 和 25°C 培养条件下 SOC 和两种碳组分的 Q10。结果表明,除高地土壤中的团聚体外,Mollisols 的 SOC Q10 低于 Ultisols。除高地莫利土壤外,受团聚体保护的碳的 Q10 值低于与矿物相关的自由碳。SOC 的 Q10 与聚集体中受保护的 C 的比例呈负相关,而与游离矿物的质量或 C 的比例呈正相关。鉴于莫利土壤的团聚体质量和碳比例分别比超微土壤高 271% 和 80%,莫利土壤的 SOC 的 Q10 值比超微土壤低。因此,较强的土壤团聚和较高比例的团聚保护碳有助于降低 Mollisols 中 SOC 的温度敏感性。因此,在未来全球变暖的情况下,旨在促进土壤聚合的农业措施将减轻 SOC 的损失。
{"title":"Stronger aggregation reduces temperature sensitivity of soil organic carbon decomposition in croplands","authors":"Chong Ma,&nbsp;Xun Duan,&nbsp;Hang Qiao,&nbsp;Yajun Hu,&nbsp;Xunyang He,&nbsp;Jinshui Wu,&nbsp;Yirong Su,&nbsp;Xiangbi Chen","doi":"10.1111/ejss.13565","DOIUrl":"https://doi.org/10.1111/ejss.13565","url":null,"abstract":"<p>The temperature sensitivity (<i>Q</i><sub>10</sub>) of soil organic C (SOC) decomposition is an important parameter to predict C dynamics under climate change. Given that SOC is mainly protected by aggregates and minerals, differentiating the <i>Q</i><sub>10</sub> of the two C fractions helps to explain bulk soil C dynamics. In the present study, we collected agricultural soils from adjacent paddy and upland areas in mid-temperate (Mollisols) and subtropic (Ultisols) regions of China. We employed density fractionation to separate aggregate-protected and free mineral-associated C fractions of soil samples and determined the <i>Q</i><sub>10</sub> of SOC and the two C fractions at 15 and 25°C incubated conditions. Results showed that the <i>Q</i><sub>10</sub> of SOC for Mollisols were lower than that for Ultisols, with an exception of aggregates in upland soils. Aggregate-protected C had lower <i>Q</i><sub>10</sub> than free mineral-associated C, except in the upland Mollisols. The <i>Q</i><sub>10</sub> of SOC was negatively correlated with the proportion of C protected in aggregates, whereas it was positively correlated with the proportions of mass or C of free minerals. Given that the mass and C proportion of aggregates in bulk soils of Mollisols were 271% and 80% higher than of Ultisols, respectively, the SOC of Mollisols exhibited lower <i>Q</i><sub>10</sub> than Ultisols. Therefore, stronger soil aggregation and higher proportion of aggregate-protected C contributed to the lower temperature sensitivity of SOC in Mollisols. Consequently, agricultural practices aimed at promoting soil aggregation will alleviate SOC loss under future global warming scenarios.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Adsorption kinetics of organic phosphates on goethite and aluminium oxide: The equation used to describe the reaction” 更正 "有机磷酸盐在鹅卵石和氧化铝上的吸附动力学:用于描述反应的方程式"
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-03 DOI: 10.1111/ejss.13569

Asif, S. K. M. D., & Debnath, A. (2024). Adsorption kinetics of organic phosphates on goethite and aluminium oxide: The equation used to describe the reaction. European Journal of Soil Science, 75(4), e13545. 10.1111/ejss.13545

The name of the first author was originally published as ‘S.K. M.D. Asif’, in both the author byline and the Author Contributions section. The correct name of this author should be SK. MD. Asif

We sincerely apologize for this error.

Asif, S. K. M. D., & Debnath, A. (2024)。有机磷酸盐在网纹石和氧化铝上的吸附动力学:用于描述反应的方程。欧洲土壤科学杂志》,75(4),e13545。10.1111/ejss.13545在作者署名和作者贡献部分,第一作者的姓名最初发布为 "S.K. M.D. Asif"。该作者的正确姓名应为 SK.MD.Asif我们对这一错误表示诚挚的歉意。
{"title":"Correction to “Adsorption kinetics of organic phosphates on goethite and aluminium oxide: The equation used to describe the reaction”","authors":"","doi":"10.1111/ejss.13569","DOIUrl":"https://doi.org/10.1111/ejss.13569","url":null,"abstract":"<p>Asif, S. K. M. D., &amp; Debnath, A. (2024). Adsorption kinetics of organic phosphates on goethite and aluminium oxide: The equation used to describe the reaction. <i>European Journal of Soil Science</i>, 75(4), e13545. 10.1111/ejss.13545</p><p>The name of the first author was originally published as ‘S.K. M.D. Asif’, in both the author byline and the Author Contributions section. The correct name of this author should be SK. MD. Asif</p><p>We sincerely apologize for this error.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.13569","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating nitrogen loss in paddy field microcosms through indigenous arbuscular mycorrhizal fungi assemblage 通过本地丛枝菌根真菌群减轻稻田微生态系统的氮损失
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-03 DOI: 10.1111/ejss.13572
Shujuan Zhang, Xinlong Chen, Yuexiao Dong, Jingfan Qi, Zhaoyang You

Whether farmers should consider the role of arbuscular mycorrhizal fungi (AMF) in agriculture is a hotly debated topic. We aimed to investigate the role of indigenous AMF in reducing nitrogen (N) loss from paddy fields via runoff, leaching, NH3 volatilization, and N2O emission. We conducted a pot experiment employing a mycorrhiza-defective rice mutant (non-mycorrhizal) as the control, grown in soil containing indigenous AMF. The corresponding AMF treatment used the progenitor of this mutant with the same soil. The plants were fertilized with nitrogen, phosphorus and potassium 6 weeks after sowing. The root colonization was 23% in mycorrhizal rice, and no typical AMF structures were observed in the roots of non-mycorrhizal rice. Our findings indicated that the mycorrhizal system exhibited lower N concentrations of runoff and leachate further compounded by reduced fluxes of N2O and NH3. This led to 14% decrease (mycorrhizal rice 111 kg N ha−1; the non-mycorrhizal rice: 129 kg N ha−1) in cumulative N loss within 3 days post-fertilization. While this AMF effect was consistent across the four tested N loss pathways, differences were observed between NH4+-N and NO3-N in the runoff pathway. Notably, our results revealed no evidence of trade-offs in AMF effect on N loss among the tested pathways. Additionally, mycorrhizal rice had larger shoots and roots than their non-mycorrhizal counterparts. Our study underscores the potential benefits of indigenous AMF in paddy fields for mitigating water pollution and reducing greenhouse gas emission.

农民是否应该考虑丛枝菌根真菌(AMF)在农业中的作用是一个备受争议的话题。我们的目的是研究本地菌根真菌在减少水稻田通过径流、淋洗、NH3挥发和N2O排放造成的氮损失方面的作用。我们采用菌根缺陷水稻突变体(无菌根)作为对照,在含有本地 AMF 的土壤中进行了盆栽实验。相应的 AMF 处理使用该突变体的原种和相同的土壤。播种 6 周后,对植株施以氮、磷和钾肥。菌根水稻根部定殖率为 23%,而非菌根水稻根部未观察到典型的 AMF 结构。我们的研究结果表明,菌根系统的径流和沥滤液中的氮浓度较低,同时 N2O 和 NH3 的通量也有所减少。这导致施肥后 3 天内的累积氮损失减少了 14%(菌根水稻:111 千克氮公顷-1;非菌根水稻:129 千克氮公顷-1)。虽然 AMF 对四种测试氮损失途径的影响是一致的,但在径流途径中,NH4+-N 和 NO3--N 之间存在差异。值得注意的是,我们的结果表明,在所测试的途径中,AMF 对氮损失的影响没有权衡的迹象。此外,菌根水稻的芽和根比非菌根水稻大。我们的研究强调了本土 AMF 在减轻水污染和减少温室气体排放方面的潜在益处。
{"title":"Mitigating nitrogen loss in paddy field microcosms through indigenous arbuscular mycorrhizal fungi assemblage","authors":"Shujuan Zhang,&nbsp;Xinlong Chen,&nbsp;Yuexiao Dong,&nbsp;Jingfan Qi,&nbsp;Zhaoyang You","doi":"10.1111/ejss.13572","DOIUrl":"https://doi.org/10.1111/ejss.13572","url":null,"abstract":"<p>Whether farmers should consider the role of arbuscular mycorrhizal fungi (AMF) in agriculture is a hotly debated topic. We aimed to investigate the role of indigenous AMF in reducing nitrogen (N) loss from paddy fields via runoff, leaching, NH<sub>3</sub> volatilization, and N<sub>2</sub>O emission. We conducted a pot experiment employing a mycorrhiza-defective rice mutant (non-mycorrhizal) as the control, grown in soil containing indigenous AMF. The corresponding AMF treatment used the progenitor of this mutant with the same soil. The plants were fertilized with nitrogen, phosphorus and potassium 6 weeks after sowing. The root colonization was 23% in mycorrhizal rice, and no typical AMF structures were observed in the roots of non-mycorrhizal rice. Our findings indicated that the mycorrhizal system exhibited lower N concentrations of runoff and leachate further compounded by reduced fluxes of N<sub>2</sub>O and NH<sub>3</sub>. This led to 14% decrease (mycorrhizal rice 111 kg N ha<sup>−1</sup>; the non-mycorrhizal rice: 129 kg N ha<sup>−1</sup>) in cumulative N loss within 3 days post-fertilization. While this AMF effect was consistent across the four tested N loss pathways, differences were observed between NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N in the runoff pathway. Notably, our results revealed no evidence of trade-offs in AMF effect on N loss among the tested pathways. Additionally, mycorrhizal rice had larger shoots and roots than their non-mycorrhizal counterparts. Our study underscores the potential benefits of indigenous AMF in paddy fields for mitigating water pollution and reducing greenhouse gas emission.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree species identity affects soil P bioavailability by altering labile organic P after tree mixing in subtropical China 中国亚热带地区树种混交后,树种特征通过改变可溶性有机钾影响土壤钾的生物利用率
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-02 DOI: 10.1111/ejss.13571
Piaoyun Deng, Yunchao Zhou, Fenghua Tang, Wensha Chen

Converting monocultures to mixed plantations has been emphasized to improve ecosystem productivity and services. However, the impact of tree species identity on phosphorus (P) bioavailability in acidic soils in subtropical China, where P is relatively scarce, is not fully understood. This study explored the changes in soil biologically-based P fractions and the effect of mineral and microbial properties on P transformation after mixing five broadleaved trees (Bretschneidera sinensis, Manglietia conifera, Cercidiphyllum japonicum, Michelia maudiae and Camellia oleifera) individually with coniferous trees (Pinus massoniana). The results showed that most mixed plantations significantly increased pH and citric acid and decreased exchangeable Fe3+ and Al3+ and the activation of Fe and Al oxides compared with monospecific plantations, which significantly reduced P precipitation and adsorption. Mixed planting significantly increased phosphatase activity and altered the community composition of P-mobilizing bacteria carrying phoD and pqqC genes, which contributed to organic P mineralization and inorganic P (Pi) desorption. Mixed planting increased microbial biomass and the relative rate of microbial biomass P turnover. Labile organic P (Enzyme-P) was a potentially significant source of soluble Pi (CaCl2-P) among the biologically-based P fractions, plus microbial biomass P. Overall, introducing broadleaved species, especially in species (e.g. Cercidiphyllum japonicum, Michelia maudiae and Camellia oleifera) with relatively high litter quality and belowground secretions (e.g. citric acid, phosphatase), significantly increased the solubilization of recalcitrant Pi (HCl-P), desorption of chemisorbed Pi (Citrate-P) and accumulation and mineralization of Enzyme-P, thereby increasing the available P pools. Redundancy analysis demonstrated that P fractions were mainly driven by phosphatases, exchangeable cations, floor fresh litter lignin/N and citric acid. Altogether, we highlight the importance of choosing tree species mixtures that have synergistic or complementary effects when constructing mixed plantations in order to alleviate soil P limitations.

人们一直强调将单一种植转变为混合种植,以提高生态系统的生产力和服务。然而,在磷相对稀缺的中国亚热带酸性土壤中,树种特性对磷(P)生物利用率的影响尚不完全清楚。本研究探讨了五种阔叶树(Bretschneidera sinensis、Manglietia conifera、Cercidiphyllum japonicum、Michelia maudiae 和 Camellia oleifera)与针叶树(Pinus massoniana)混合种植后,土壤生物磷组分的变化以及矿物质和微生物特性对磷转化的影响。结果表明,与单株种植相比,大多数混合种植能显著提高 pH 值和柠檬酸,降低可交换的 Fe3+ 和 Al3+ 以及铁和铝氧化物的活化,从而显著减少钙的沉淀和吸附。混合种植明显提高了磷酸酶活性,改变了携带 phoD 和 pqqC 基因的钾移动细菌群落组成,从而促进了有机钾矿化和无机钾(Pi)解吸。混合种植提高了微生物生物量和微生物生物量 P 转化的相对速率。总体而言,引入阔叶树种,尤其是引入具有相对较高的枯落物质量和地下分泌物(如柠檬酸、磷脂、钙、镁、钾、钙、镁)的树种(如日本蕨、毛蕊花和油茶),可提高微生物生物量和微生物生物量 P 的相对转化率。如柠檬酸、磷酸酶),能显著提高难溶性钙离子(HCl-P)的增溶、化学吸附钙离子(柠檬酸钙-P)的解吸以及酵素钙-P 的积累和矿化,从而增加可用的钙离子池。冗余分析表明,钾组分主要由磷酸酶、可交换阳离子、底层新枯木质素/N 和柠檬酸驱动。总之,我们强调了在建设混交种植园时选择具有协同或互补效应的树种混合物以缓解土壤钾限制的重要性。
{"title":"Tree species identity affects soil P bioavailability by altering labile organic P after tree mixing in subtropical China","authors":"Piaoyun Deng,&nbsp;Yunchao Zhou,&nbsp;Fenghua Tang,&nbsp;Wensha Chen","doi":"10.1111/ejss.13571","DOIUrl":"10.1111/ejss.13571","url":null,"abstract":"<p>Converting monocultures to mixed plantations has been emphasized to improve ecosystem productivity and services. However, the impact of tree species identity on phosphorus (P) bioavailability in acidic soils in subtropical China, where P is relatively scarce, is not fully understood. This study explored the changes in soil biologically-based P fractions and the effect of mineral and microbial properties on P transformation after mixing five broadleaved trees (<i>Bretschneidera sinensis, Manglietia conifera, Cercidiphyllum japonicum, Michelia maudiae</i> and <i>Camellia oleifera</i>) individually with coniferous trees (<i>Pinus massoniana</i>). The results showed that most mixed plantations significantly increased pH and citric acid and decreased exchangeable Fe<sup>3+</sup> and Al<sup>3+</sup> and the activation of Fe and Al oxides compared with monospecific plantations, which significantly reduced P precipitation and adsorption. Mixed planting significantly increased phosphatase activity and altered the community composition of P-mobilizing bacteria carrying <i>phoD</i> and <i>pqqC</i> genes, which contributed to organic P mineralization and inorganic P (Pi) desorption. Mixed planting increased microbial biomass and the relative rate of microbial biomass P turnover. Labile organic P (Enzyme-P) was a potentially significant source of soluble Pi (CaCl<sub>2</sub>-P) among the biologically-based P fractions, plus microbial biomass P. Overall, introducing broadleaved species, especially in species (e.g. <i>Cercidiphyllum japonicum</i>, <i>Michelia maudiae</i> and <i>Camellia oleifera</i>) with relatively high litter quality and belowground secretions (e.g. citric acid, phosphatase), significantly increased the solubilization of recalcitrant Pi (HCl-P), desorption of chemisorbed Pi (Citrate-P) and accumulation and mineralization of Enzyme-P, thereby increasing the available P pools. Redundancy analysis demonstrated that P fractions were mainly driven by phosphatases, exchangeable cations, floor fresh litter lignin/N and citric acid. Altogether, we highlight the importance of choosing tree species mixtures that have synergistic or complementary effects when constructing mixed plantations in order to alleviate soil P limitations.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vineyard cover crop management strategies and their effect on soil properties across Europe 欧洲葡萄园覆盖作物管理策略及其对土壤特性的影响
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-02 DOI: 10.1111/ejss.13573
Gunther Liebhard, Gema Guzmán, José A. Gómez, Silvia Winter, Johann G. Zaller, Thomas Bauer, Annegret Nicolai, Daniel Cluzeau, Daniela Popescu, Claudiu-Ioan Bunea, Peter Strauss

Vineyard soils are often of inherently poor quality with low organic carbon content. Management can improve soil properties and thus soil fertility. In European wine-growing regions, a broad range of inter-row management strategies evolved based on specific local site conditions and the varying effects of management intensities on soil, water balance, yield and grape quality. Accordingly, there is a need to investigate the effects of locally common cover crop management strategies and tillage intensity on soil organic carbon content and soil physical parameters. In this study, we investigated the impact of the most common inter-row management practices in Austria, France, Romania and Spain. In all countries, we compared paired sites. Each site with cover crops and inter-row management of low intensity was compared with one site with (temporarily) bare soil and high management intensity. All studied sites with cover crops and low management intensity, except those in Spain, had higher organic carbon contents than the paired more intensively managed vineyards. However, the highly water-limited Spanish vineyards with temporary cover crops had lower organic carbon contents than the paired sites with bare soil. Sites with more organic carbon had better results for bulk density, percolation stability (PS), hydraulic conductivity and available soil water, with soil hydraulic parameters being less pronounced than others. Country comparison of inter-row weed control systems showed that PS was particularly low in sampled vineyards in Romania and Spain, where weed control is based on intensive mechanical tillage. Alternating management systems with tillage every second inter-row showed a decrease in soil structure compared with permanent green cover. Thus, inter-row management with cover crops and reduced tillage increases soil organic carbon content and improves soil structure compared with bare soil management. If local constraints, such as water scarcity, do not allow year-round planting, alternating inter-row management with several years of alternating periods may be an option to mitigate those adverse effects. However, negative impact on the soil structure occurs with the very first tillage operation, whereas negative effects on the carbon balance only appear after long-term use of tillage.

葡萄园的土壤通常本身质量较差,有机碳含量较低。管理可以改善土壤性质,从而提高土壤肥力。在欧洲的葡萄种植区,根据当地的具体条件和管理强度对土壤、水分平衡、产量和葡萄质量的不同影响,形成了多种多样的行间管理策略。因此,有必要研究当地常见的覆盖作物管理策略和耕作强度对土壤有机碳含量和土壤物理参数的影响。在这项研究中,我们调查了奥地利、法国、罗马尼亚和西班牙最常见的行间管理方法的影响。在所有国家,我们都对成对的地点进行了比较。每个采用覆盖作物和低强度行间管理的地点都与一个采用(暂时)裸土和高强度管理的地点进行了比较。除西班牙外,所有采用覆盖作物和低管理强度的研究地点的有机碳含量都高于配对的高管理强度葡萄园。然而,在水资源高度受限的西班牙葡萄园,临时覆盖作物的有机碳含量低于裸露土壤的配对地点。有机碳含量较高的地块在容重、渗流稳定性(PS)、水力传导性和土壤可用水量方面的结果更好,而土壤水力参数则不如其他地块明显。对各国的行间杂草控制体系进行比较后发现,在罗马尼亚和西班牙的取样葡萄园中,PS 值特别低,因为那里的杂草控制是以密集的机械耕作为基础的。与永久性绿色覆盖相比,每隔两行进行一次耕作的交替管理制度会降低土壤结构。因此,与裸土管理相比,使用覆盖作物并减少耕作的行间管理可增加土壤有机碳含量,改善土壤结构。如果当地条件有限(如缺水),不允许全年种植,那么可以选择数年交替进行行间管理,以减轻这些不利影响。不过,对土壤结构的负面影响出现在第一次耕作时,而对碳平衡的负面影响只有在长期耕作后才会出现。
{"title":"Vineyard cover crop management strategies and their effect on soil properties across Europe","authors":"Gunther Liebhard,&nbsp;Gema Guzmán,&nbsp;José A. Gómez,&nbsp;Silvia Winter,&nbsp;Johann G. Zaller,&nbsp;Thomas Bauer,&nbsp;Annegret Nicolai,&nbsp;Daniel Cluzeau,&nbsp;Daniela Popescu,&nbsp;Claudiu-Ioan Bunea,&nbsp;Peter Strauss","doi":"10.1111/ejss.13573","DOIUrl":"https://doi.org/10.1111/ejss.13573","url":null,"abstract":"<p>Vineyard soils are often of inherently poor quality with low organic carbon content. Management can improve soil properties and thus soil fertility. In European wine-growing regions, a broad range of inter-row management strategies evolved based on specific local site conditions and the varying effects of management intensities on soil, water balance, yield and grape quality. Accordingly, there is a need to investigate the effects of locally common cover crop management strategies and tillage intensity on soil organic carbon content and soil physical parameters. In this study, we investigated the impact of the most common inter-row management practices in Austria, France, Romania and Spain. In all countries, we compared paired sites. Each site with cover crops and inter-row management of low intensity was compared with one site with (temporarily) bare soil and high management intensity. All studied sites with cover crops and low management intensity, except those in Spain, had higher organic carbon contents than the paired more intensively managed vineyards. However, the highly water-limited Spanish vineyards with temporary cover crops had lower organic carbon contents than the paired sites with bare soil. Sites with more organic carbon had better results for bulk density, percolation stability (PS), hydraulic conductivity and available soil water, with soil hydraulic parameters being less pronounced than others. Country comparison of inter-row weed control systems showed that PS was particularly low in sampled vineyards in Romania and Spain, where weed control is based on intensive mechanical tillage. Alternating management systems with tillage every second inter-row showed a decrease in soil structure compared with permanent green cover. Thus, inter-row management with cover crops and reduced tillage increases soil organic carbon content and improves soil structure compared with bare soil management. If local constraints, such as water scarcity, do not allow year-round planting, alternating inter-row management with several years of alternating periods may be an option to mitigate those adverse effects. However, negative impact on the soil structure occurs with the very first tillage operation, whereas negative effects on the carbon balance only appear after long-term use of tillage.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.13573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How meeting the ten pedometrics challenges can deliver healthy-soil contributions to SDG-related ecosystem services 应对十项计步挑战如何实现健康土壤对可持续发展目标相关生态系统服务的贡献
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-01 DOI: 10.1111/ejss.13550
Johan Bouma, Jan Adriaan Reijneveld

When considering ecosystem services in line with relevant Sustainable Development Goals, the proposed logical sequence of the ten pedometric challenges can form a framework defining effective contributions by the soil science discipline to the sustainability challenge facing society. Defining relatively simple, but scientifically sound, indicators and thresholds for ecosystem services can be the basis for a transparent regulatory system justifying payment for ecosystem services provided to society. The current serious lack of trust between the policy and farming arenas can and should be restored by scientists and farmers working jointly in Living Labs, aiming to become Lighthouses, to be part of Communites of Practice (CoP). A Living Lab case study is reviewed showing that much know-how is already available to define indicators and innovative cutting-edge methodology adds attractive new opportunities for rapid and relatively cheap characterizations. Field work remains essential and just routinely applying standard techniques fed by existing databases may lead to poor results. Research on indicator-thresholds has a high priority. In the case study, the important soil fertility indicator was based on the current procedure of field sampling and fertilization recommendations by specialized agencies, that is already followed by 85% of farmers. This could be expanded by including indicators for other ecosystem services thereby contributing substantially to the societal sustainability debate. Soil health plays a key role when contributing to all ecosystem services. Showing this with specific examples in a Living Lab/Lighthouse and CoP context is the best way to promote the profession which is needed to justify current major funding. Not only cutting-edge research can contribute to defining indicators and thresholds. A hundred years of research has produced many valuable insights and methodologies that can be applied as well. The: ‘better’ can be the enemy of the: ‘good’. The sustainable development challenge is highly urgent: there is no time to lose.

在根据相关的可持续发展目标考虑生态系统服务时,拟议的十项计步挑战的逻辑顺序可以形成一个框架,确定土壤科学学科对社会面临的可持续性挑战做出的有效贡献。为生态系统服务定义相对简单但科学合理的指标和阈值,可作为透明监管系统的基础,证明为社会提供的生态系统服务付费是合理的。目前,政策与农业领域之间严重缺乏信任,科学家与农民在 "生活实验室"(旨在成为 "灯塔",成为实践社区 (CoP) 的一部分)中共同努力,可以而且应该恢复这种信任。对生活实验室案例研究的回顾表明,目前已有很多确定指标的专门技术,而创新的前沿方法为快速和相对廉价的特征描述提供了极具吸引力的新机遇。实地工作仍然非常重要,只是常规地应用现有数据库提供的标准技术可能会导致结果不佳。指标阈值研究是当务之急。在案例研究中,重要的土壤肥力指标是基于目前的实地采样程序和专门机构的施肥建议,85% 的农民已经遵循了这一程序。可以通过纳入其他生态系统服务的指标来扩展该指标,从而为社会可持续性辩论做出重大贡献。土壤健康在促进所有生态系统服务方面发挥着关键作用。在 "生活实验室/灯塔 "和 "合作伙 伴 "背景下以具体实例展示这一点是促进专业发展的最佳方式,这也是目前主要资金来源所需要的。并非只有前沿研究才能有助于定义指标和阈值。一百年来的研究已经产生了许多有价值的见解和方法,也可以加以应用。更好 "可能是 "好 "的敌人:好 "的敌人。可持续发展的挑战非常紧迫:刻不容缓。
{"title":"How meeting the ten pedometrics challenges can deliver healthy-soil contributions to SDG-related ecosystem services","authors":"Johan Bouma,&nbsp;Jan Adriaan Reijneveld","doi":"10.1111/ejss.13550","DOIUrl":"https://doi.org/10.1111/ejss.13550","url":null,"abstract":"<p>When considering ecosystem services in line with relevant Sustainable Development Goals, the proposed logical sequence of the ten pedometric challenges can form a framework defining effective contributions by the soil science discipline to the sustainability challenge facing society. Defining relatively simple, but scientifically sound, indicators and thresholds for ecosystem services can be the basis for a transparent regulatory system justifying payment for ecosystem services provided to society. The current serious lack of trust between the policy and farming arenas can and should be restored by scientists and farmers working jointly in Living Labs, aiming to become Lighthouses, to be part of Communites of Practice (CoP). A Living Lab case study is reviewed showing that much know-how is already available to define indicators and innovative cutting-edge methodology adds attractive new opportunities for rapid and relatively cheap characterizations. Field work remains essential and just routinely applying standard techniques fed by existing databases may lead to poor results. Research on indicator-thresholds has a high priority. In the case study, the important soil fertility indicator was based on the current procedure of field sampling and fertilization recommendations by specialized agencies, that is already followed by 85% of farmers. This could be expanded by including indicators for other ecosystem services thereby contributing substantially to the societal sustainability debate. Soil health plays a key role when contributing to all ecosystem services. Showing this with specific examples in a Living Lab/Lighthouse and CoP context is the best way to promote the profession which is needed to justify current major funding. Not only cutting-edge research can contribute to defining indicators and thresholds. A hundred years of research has produced many valuable insights and methodologies that can be applied as well. The: ‘better’ can be the enemy of the: ‘good’. The sustainable development challenge is highly urgent: there is no time to lose.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-frequency greenhouse gas flux analysis tool: Insights from automated non-steady-state transparent soil chambers 高频温室气体通量分析工具:自动非稳态透明土壤室的启示
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-09-01 DOI: 10.1111/ejss.13560
George Themistokleous, Andreas M. Savvides, Katerina Philippou, Ioannis M. Ioannides, Michalis Omirou

Non-steady-state chambers are widely employed for quantifying soil emissions of CO2, CH4, and N2O. Automated non-steady-state (a-NSS) soil chambers, when coupled with online gas analysers, offer the ability to capture high-frequency measurements of greenhouse gas (GHG) fluxes. While these sampling systems provide valuable insights into GHG emissions, they present post-measurement challenges, including the management of extensive datasets, intricate flux calculations, and considerations for temporal upscaling. In this study, a computationally efficient algorithm was developed to compute instantaneous fluxes and estimate diel flux patterns using continuous, high-resolution data obtained from an a-NSS sampling system. Applied to a 38-day dataset, the algorithm captured concurrent field measurements of CO2, CH4, and N2O fluxes. The automated sampling system enables the acquisition of high-frequency data, allowing the detection of episodic gas flux events. By using shape-constrained additive models, a median percentage deviation (bias) of −1.031 and −4.340% was achieved for CO2 and N2O fluxes, respectively. Simpson's rule allowed for efficient upscale from instantaneous to diel flux values. As a result, the proposed algorithm can rapidly and simultaneously calculate CO2, CH4, and N2O fluxes, providing both instantaneous and diel values directly from raw, high-temporal-resolution data. These advancements significantly contribute to the field of GHG flux measurement, enhancing both the efficiency and accuracy of calculations for a-NSS soil chambers and deepening our understanding of GHG emissions and their temporal dynamics.

非稳态箱被广泛用于量化土壤中二氧化碳、甲烷和一氧化二氮的排放量。自动非稳态(a-NSS)土壤采样室与在线气体分析仪配合使用,可对温室气体通量进行高频测量。虽然这些采样系统能为温室气体排放提供有价值的见解,但它们也带来了测量后的挑战,包括大量数据集的管理、复杂的通量计算以及对时间放大的考虑。在这项研究中,利用从 a-NSS 采样系统获得的连续、高分辨率数据,开发了一种计算高效的算法,用于计算瞬时通量和估计昼夜通量模式。该算法应用于一个为期 38 天的数据集,捕获了二氧化碳、甲烷和一氧化二氮通量的同期实地测量数据。自动采样系统能够获取高频数据,从而检测到偶发的气体通量事件。通过使用形状约束加法模型,二氧化碳和一氧化二氮通量的中值百分比偏差(偏差)分别为-1.031%和-4.340%。辛普森法则可以有效地将瞬时通量值提升到日通量值。因此,所提出的算法可以同时快速计算 CO2、CH4 和 N2O 通量,直接从原始的高时间分辨率数据中提供瞬时值和昼夜值。这些进展极大地促进了温室气体通量测量领域的发展,提高了 a-NSS 土壤室计算的效率和准确性,加深了我们对温室气体排放及其时间动态的理解。
{"title":"A high-frequency greenhouse gas flux analysis tool: Insights from automated non-steady-state transparent soil chambers","authors":"George Themistokleous,&nbsp;Andreas M. Savvides,&nbsp;Katerina Philippou,&nbsp;Ioannis M. Ioannides,&nbsp;Michalis Omirou","doi":"10.1111/ejss.13560","DOIUrl":"10.1111/ejss.13560","url":null,"abstract":"<p>Non-steady-state chambers are widely employed for quantifying soil emissions of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O. Automated non-steady-state (a-NSS) soil chambers, when coupled with online gas analysers, offer the ability to capture high-frequency measurements of greenhouse gas (GHG) fluxes. While these sampling systems provide valuable insights into GHG emissions, they present post-measurement challenges, including the management of extensive datasets, intricate flux calculations, and considerations for temporal upscaling. In this study, a computationally efficient algorithm was developed to compute instantaneous fluxes and estimate diel flux patterns using continuous, high-resolution data obtained from an a-NSS sampling system. Applied to a 38-day dataset, the algorithm captured concurrent field measurements of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O fluxes. The automated sampling system enables the acquisition of high-frequency data, allowing the detection of episodic gas flux events. By using shape-constrained additive models, a median percentage deviation (bias) of −1.031 and −4.340% was achieved for CO<sub>2</sub> and N<sub>2</sub>O fluxes, respectively. Simpson's rule allowed for efficient upscale from instantaneous to diel flux values. As a result, the proposed algorithm can rapidly and simultaneously calculate CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O fluxes, providing both instantaneous and diel values directly from raw, high-temporal-resolution data. These advancements significantly contribute to the field of GHG flux measurement, enhancing both the efficiency and accuracy of calculations for a-NSS soil chambers and deepening our understanding of GHG emissions and their temporal dynamics.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How does soil water retention change over time? A three-year field study under several production systems 土壤保水性随时间如何变化?在几种生产系统下进行的为期三年的实地研究
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-08-27 DOI: 10.1111/ejss.13558
Clémence Pirlot, Anne-Catherine Renard, Caroline De Clerck, Aurore Degré

Agricultural practices and meteorological conditions affect soil structure and soil hydraulic properties. However, their temporal evolution is rarely studied, and even less in the field. Thus, their dynamics are rarely taken into account in models, often leading to inconsistent results and poor decision making. In this study, the temporal evolution of water retention properties and soil structure was monitored over a 3-year period under several contrasting production systems. Soil Water Retention Curves (SWRCs) obtained directly in the field (with soil water content and potential sensors) were compared with theoretical SWRCs predicted by pedotransfer functions (PTFs) and laboratory SWRCs measured on undisturbed samples. Bulk densities were measured every 2 months. Results indicate a high degree of variability in SWRCs over time and between production systems. The results suggest that variations in the soil water retention behaviour can be induced by crop differentiation, weed control, crop residue management, compaction during harvest, or the introduction of temporary grassland. Contrasting climatic conditions between 2021 (water excess), 2022 (severe drought) and 2023 (intermediate) provided a unique opportunity to study the resilience of the crop systems to extreme climatic conditions. Different soil drying dynamics were observed and some agricultural practices were identified as influencing the soil water retention behaviour for at least 2 years. Comparison of SWRCs showed that the theoretical curves obtained from PTFs are not a good representation of the field SWRCs, especially for less conventional agricultural practices. The laboratory curves are closer with similar trends. However, these SWRCs are not optimal for investigating the temporal evolution of water retention properties. This research also shows that agricultural practices and crops can be levers for contributing to greater food resilience against future climatic conditions. Therefore, to assess the relevance of production systems for tomorrow's needs, studies should focus on the impact of multi-cropping systems on water retention dynamics in the field.

农业生产方式和气象条件会影响土壤结构和土壤水力特性。然而,对它们的时间演变却很少进行研究,实地研究就更少了。因此,模型中很少考虑它们的动态变化,往往导致结果不一致和决策失误。在这项研究中,对几种不同生产系统下土壤保水特性和土壤结构的时间演变进行了为期 3 年的监测。将直接在田间获得的土壤保水曲线(使用土壤含水量和水势传感器)与根据步移函数(PTF)预测的理论土壤保水曲线以及在未扰动样本上测量的实验室土壤保水曲线进行了比较。体积密度每两个月测量一次。结果表明,随着时间的推移以及不同生产系统之间,SWRC 的变化程度很高。结果表明,作物分化、杂草控制、作物残留物管理、收割时的压实或临时草地的引入都会导致土壤保水性能的变化。2021 年(水分过剩)、2022 年(严重干旱)和 2023 年(中间干旱)之间的气候条件对比为研究作物系统对极端气候条件的适应能力提供了一个独特的机会。研究人员观察到了不同的土壤干燥动态,并确定了一些影响土壤保水行为至少两年的农业耕作方式。对 SWRC 进行比较后发现,从 PTF 中获得的理论曲线并不能很好地反映田间 SWRC,尤其是对于不太传统的农业耕作方式。实验室曲线更接近,趋势相似。不过,这些 SWRC 并不是研究保水特性时间演变的最佳方法。这项研究还表明,农业生产方式和农作物可以成为提高粮食抵御未来气候条件能力的杠杆。因此,为了评估生产系统对未来需求的相关性,研究应侧重于多作物系统对田间保水动态的影响。
{"title":"How does soil water retention change over time? A three-year field study under several production systems","authors":"Clémence Pirlot,&nbsp;Anne-Catherine Renard,&nbsp;Caroline De Clerck,&nbsp;Aurore Degré","doi":"10.1111/ejss.13558","DOIUrl":"https://doi.org/10.1111/ejss.13558","url":null,"abstract":"<p>Agricultural practices and meteorological conditions affect soil structure and soil hydraulic properties. However, their temporal evolution is rarely studied, and even less in the field. Thus, their dynamics are rarely taken into account in models, often leading to inconsistent results and poor decision making. In this study, the temporal evolution of water retention properties and soil structure was monitored over a 3-year period under several contrasting production systems. Soil Water Retention Curves (SWRCs) obtained directly in the field (with soil water content and potential sensors) were compared with theoretical SWRCs predicted by pedotransfer functions (PTFs) and laboratory SWRCs measured on undisturbed samples. Bulk densities were measured every 2 months. Results indicate a high degree of variability in SWRCs over time and between production systems. The results suggest that variations in the soil water retention behaviour can be induced by crop differentiation, weed control, crop residue management, compaction during harvest, or the introduction of temporary grassland. Contrasting climatic conditions between 2021 (water excess), 2022 (severe drought) and 2023 (intermediate) provided a unique opportunity to study the resilience of the crop systems to extreme climatic conditions. Different soil drying dynamics were observed and some agricultural practices were identified as influencing the soil water retention behaviour for at least 2 years. Comparison of SWRCs showed that the theoretical curves obtained from PTFs are not a good representation of the field SWRCs, especially for less conventional agricultural practices. The laboratory curves are closer with similar trends. However, these SWRCs are not optimal for investigating the temporal evolution of water retention properties. This research also shows that agricultural practices and crops can be levers for contributing to greater food resilience against future climatic conditions. Therefore, to assess the relevance of production systems for tomorrow's needs, studies should focus on the impact of multi-cropping systems on water retention dynamics in the field.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term effects of management practices on soil water, yield and water use of dryland wheat: A global meta-analysis 管理措施对旱地小麦土壤水分、产量和用水量的长期影响:全球荟萃分析
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-08-26 DOI: 10.1111/ejss.13541
Muhammad Adil, Fenglin Lv, Tingting Li, Yi Chen, Isma Gul, Heli Lu, Siqi Lu, Lin Qiu

Soil water conservation in dryland agriculture mainly depends on precipitation. We chose 35 long-term experiments and analysed the data by using meta-analysis to check how fallow management methods affect soil water storage of dryland winter wheat planting (SWS), precipitation storage efficiency (PSE), crop yield and water use efficiency (WUE). No-tillage (NT), compared to conventional tillage (CT) in the fallow period, increased PSE, SWS, grain yield and WUE by 32.9%, 27.1%, 30.5% and 22.6%, respectively. Reduced tillage (RT) and subsoil tillage (ST) increased PSE by 15.2% and 11.7%, SWS by 17.4% and 15.0% and grain yield by 15.5 and 13.8%, respectively, but these had a non-significant effect on WUE. The conservation tillage methods interacted significantly with the residue management and fallow mulching practices. Compared to CT, the conservation tillage methods with fallow mulching increased PSE, SWS, grain yield and WUE, but the growing of cover crops (designated as biological mulching) decreased PSE, SWS and grain yield by 17.3%, 13.0% and 32.0%, and had a non-significant impact on WUE. Under the condition of straw mulching, NT increased PSE, SWS, grain yield and WUE by 43.7%, 38.1%, 40.6% and 42.9%, respectively, compared to CT. NT and RT increased the PSE, SWS and WUE, under normal mean annual precipitation (MAP), however, ST increased these observations under wet MAP, compared to CT. The effects of tillage methods varied with soil texture, and they were highly interrelated with water conservation, wheat yield and water use. We conclude that compared to conventional tillage, the conservation tillage methods increased soil water conservation during the fallow period, which increased wheat yield and water use. Moreover, NT with or without residue retention increased the fallow water conservation and wheat yield. Crop residues should be retained while applying RT and ST to grow winter wheat in dryland regions.

旱地农业的土壤水分保持主要依赖降水。我们选择了 35 项长期实验,并通过荟萃分析法对数据进行了分析,以检验休耕管理方法如何影响旱地冬小麦种植的土壤蓄水量(SWS)、降水储存效率(PSE)、作物产量和水分利用效率(WUE)。与传统耕作(CT)相比,休耕期免耕(NT)的降水储存效率(PSE)、土壤水分储存效率(SWS)、谷物产量和水分利用效率(WUE)分别提高了 32.9%、27.1%、30.5% 和 22.6%。减少耕作(RT)和底土耕作(ST)分别增加了 15.2% 和 11.7%的 PSE、17.4% 和 15.0%的 SWS 以及 15.5% 和 13.8% 的谷物产量,但对 WUE 的影响不显著。保护性耕作方法与残留管理和休耕覆膜方法之间存在显著的相互作用。与 CT 相比,采用休耕覆盖的保护性耕作方法增加了 PSE、SWS、谷物产量和 WUE,但种植覆盖作物(称为生物覆盖)使 PSE、SWS 和谷物产量分别减少了 17.3%、13.0% 和 32.0%,对 WUE 的影响不显著。在秸秆覆盖条件下,与 CT 相比,NT 使 PSE、SWS、谷物产量和 WUE 分别增加了 43.7%、38.1%、40.6% 和 42.9%。与 CT 相比,NT 和 RT 在正常年平均降水量(MAP)条件下增加了 PSE、SWS 和 WUE,但 ST 在潮湿年平均降水量(MAP)条件下增加了这些观测值。耕作方法的影响因土壤质地而异,并且与节水、小麦产量和用水量密切相关。我们的结论是,与传统耕作相比,保护性耕作方法提高了休耕期的土壤保水性,从而提高了小麦产量和用水量。此外,无论是否保留作物残茬,保护性耕作都能提高休耕期的水分保持率和小麦产量。在干旱地区种植冬小麦时,应在施用 RT 和 ST 的同时保留作物残茬。
{"title":"Long-term effects of management practices on soil water, yield and water use of dryland wheat: A global meta-analysis","authors":"Muhammad Adil,&nbsp;Fenglin Lv,&nbsp;Tingting Li,&nbsp;Yi Chen,&nbsp;Isma Gul,&nbsp;Heli Lu,&nbsp;Siqi Lu,&nbsp;Lin Qiu","doi":"10.1111/ejss.13541","DOIUrl":"https://doi.org/10.1111/ejss.13541","url":null,"abstract":"<p>Soil water conservation in dryland agriculture mainly depends on precipitation. We chose 35 long-term experiments and analysed the data by using meta-analysis to check how fallow management methods affect soil water storage of dryland winter wheat planting (SWS), precipitation storage efficiency (PSE), crop yield and water use efficiency (WUE). No-tillage (NT), compared to conventional tillage (CT) in the fallow period, increased PSE, SWS, grain yield and WUE by 32.9%, 27.1%, 30.5% and 22.6%, respectively. Reduced tillage (RT) and subsoil tillage (ST) increased PSE by 15.2% and 11.7%, SWS by 17.4% and 15.0% and grain yield by 15.5 and 13.8%, respectively, but these had a non-significant effect on WUE. The conservation tillage methods interacted significantly with the residue management and fallow mulching practices. Compared to CT, the conservation tillage methods with fallow mulching increased PSE, SWS, grain yield and WUE, but the growing of cover crops (designated as biological mulching) decreased PSE, SWS and grain yield by 17.3%, 13.0% and 32.0%, and had a non-significant impact on WUE. Under the condition of straw mulching, NT increased PSE, SWS, grain yield and WUE by 43.7%, 38.1%, 40.6% and 42.9%, respectively, compared to CT. NT and RT increased the PSE, SWS and WUE, under normal mean annual precipitation (MAP), however, ST increased these observations under wet MAP, compared to CT. The effects of tillage methods varied with soil texture, and they were highly interrelated with water conservation, wheat yield and water use. We conclude that compared to conventional tillage, the conservation tillage methods increased soil water conservation during the fallow period, which increased wheat yield and water use. Moreover, NT with or without residue retention increased the fallow water conservation and wheat yield. Crop residues should be retained while applying RT and ST to grow winter wheat in dryland regions.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Soil Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1