Intrinsically disordered protein regions (IDRs) are found across all domains of life and are characterized by a lack of stable 3D structure. Nevertheless, IDRs play critical roles in the most tightly regulated cellular processes, including in the core circadian clock. The molecular oscillator at the heart of circadian regulation leverages IDRs as dynamic interaction modules-for activation and repression, alike-to support robust timekeeping and expand clock output and regulation. Here, we cover the biophysical mechanisms conferred by IDRs and their modulators. We survey the IDRs in clock proteins that are widely prevalent from fungi to mammals and discuss the importance of IDRs to the core clock and beyond.
{"title":"Disordered but rhythmic-the role of intrinsic protein disorder in eukaryotic circadian timing.","authors":"Emery T Usher, Jacqueline F Pelham","doi":"10.1002/1873-3468.70238","DOIUrl":"https://doi.org/10.1002/1873-3468.70238","url":null,"abstract":"<p><p>Intrinsically disordered protein regions (IDRs) are found across all domains of life and are characterized by a lack of stable 3D structure. Nevertheless, IDRs play critical roles in the most tightly regulated cellular processes, including in the core circadian clock. The molecular oscillator at the heart of circadian regulation leverages IDRs as dynamic interaction modules-for activation and repression, alike-to support robust timekeeping and expand clock output and regulation. Here, we cover the biophysical mechanisms conferred by IDRs and their modulators. We survey the IDRs in clock proteins that are widely prevalent from fungi to mammals and discuss the importance of IDRs to the core clock and beyond.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145676958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Lampe, Tanmay Kumar Mohanty, Rashna Bhandari, Dorothea Fiedler
Protein pyrophosphorylation is an emerging, unusual posttranslational modification. This signaling mechanism can be driven by inositol pyrophosphate messengers, which can convert a prephosphorylated protein to the corresponding pyrophosphoprotein. Endogenous protein pyrophosphorylation influences various cellular processes and signaling pathways, including the regulation of rRNA synthesis and the modulation of vesicular trafficking. Herein, we will summarize the current detection and analysis methods that have established the occurrence of pyrophosphorylation. These methods have also been used to explore the effects of pyrophosphorylation on protein structure and function. Putative mechanisms for the regulation of this intriguing, understudied modification will be discussed. Finally, the future needs for this developing area of signal transduction research are highlighted.
{"title":"Protein pyrophosphorylation by inositol pyrophosphates - detection, function, and regulation.","authors":"Sarah Lampe, Tanmay Kumar Mohanty, Rashna Bhandari, Dorothea Fiedler","doi":"10.1002/1873-3468.70240","DOIUrl":"https://doi.org/10.1002/1873-3468.70240","url":null,"abstract":"<p><p>Protein pyrophosphorylation is an emerging, unusual posttranslational modification. This signaling mechanism can be driven by inositol pyrophosphate messengers, which can convert a prephosphorylated protein to the corresponding pyrophosphoprotein. Endogenous protein pyrophosphorylation influences various cellular processes and signaling pathways, including the regulation of rRNA synthesis and the modulation of vesicular trafficking. Herein, we will summarize the current detection and analysis methods that have established the occurrence of pyrophosphorylation. These methods have also been used to explore the effects of pyrophosphorylation on protein structure and function. Putative mechanisms for the regulation of this intriguing, understudied modification will be discussed. Finally, the future needs for this developing area of signal transduction research are highlighted.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145660794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adriana Chrenková, Payal Nashier, Cecilie L. Madsen, Marisha Singh, Janni Nielsen, Daniel E. Otzen, Jan J. Enghild, Boris Macek, Ragnhild B. Skjerning, Ditlev E. Brodersen