Dipeptidyl peptidase IV (DPPIV) family proteases are classically defined by their strict removal of N-terminal dipeptides from substrates bearing a proline or alanine at the P1 position. Here, we report that both Caenorhabditis elegans DPF-3 and human DPP4 (hDPP4) possess previously unrecognized tripeptidyl peptidase activity in addition to dipeptidyl peptidase activity. This activity plays a key role in the processing of the WAGO-1 protein N-terminus, which is essential for proper small-RNA loading, germline genome defense, and fertility. Kinetic analyses using the fluorogenic substrate H-Met-Gly-Pro-AMC further demonstrated that, in vitro, DPF-3 and hDPP4 can liberate AMC. These findings potentially expand the substrate repertoire of DPPIV proteases, suggesting that these proteases could function as versatile N-terminal processors, with important implications for nascent protein maturation.
{"title":"The Caenorhabditis elegans DPF-3 and human DPP4 have tripeptidyl peptidase activity.","authors":"Aditya Trivedi, Rajani Kanth Gudipati","doi":"10.1002/1873-3468.70219","DOIUrl":"https://doi.org/10.1002/1873-3468.70219","url":null,"abstract":"<p><p>Dipeptidyl peptidase IV (DPPIV) family proteases are classically defined by their strict removal of N-terminal dipeptides from substrates bearing a proline or alanine at the P<sub>1</sub> position. Here, we report that both Caenorhabditis elegans DPF-3 and human DPP4 (hDPP4) possess previously unrecognized tripeptidyl peptidase activity in addition to dipeptidyl peptidase activity. This activity plays a key role in the processing of the WAGO-1 protein N-terminus, which is essential for proper small-RNA loading, germline genome defense, and fertility. Kinetic analyses using the fluorogenic substrate H-Met-Gly-Pro-AMC further demonstrated that, in vitro, DPF-3 and hDPP4 can liberate AMC. These findings potentially expand the substrate repertoire of DPPIV proteases, suggesting that these proteases could function as versatile N-terminal processors, with important implications for nascent protein maturation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145523189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urszula Zarzecka, Chunlin Pu, Gernot Posselt, Silja Wessler
The HtrA family of proteins is known for its dual role as chaperones and proteases. In Helicobacter pylori (H. pylori), HtrA's chaperone and proteolytic activities are crucial for the bacterium's survival and successful host infection. Compared to other HtrA homologs in Gram-negative bacteria, HtrA of H. pylori (HtrAHp) is rather well-understood. HtrA is localized in two cellular compartments, performing critical functions within the bacterial periplasm as well as in the extracellular milieu. This review aimed to summarize the current knowledge on HtrAHp and provide comprehensive information about (i) the structure, oligomerization, and general properties of HtrAHp, (ii) its chaperone and proteolytic activity in the stress response and the protein quality control system in the periplasm, and (iii) the functional role of HtrAHp in opening lateral cell junction complexes of epithelial cells as an important step in infectivity. Due to its essential physiological role and its contribution to the pathologic consequences of infection, HtrA represents a highly attractive target for novel therapeutic strategies.
{"title":"The multifunctional role of the protease HtrA in Helicobacter pylori pathogenesis.","authors":"Urszula Zarzecka, Chunlin Pu, Gernot Posselt, Silja Wessler","doi":"10.1002/1873-3468.70226","DOIUrl":"https://doi.org/10.1002/1873-3468.70226","url":null,"abstract":"<p><p>The HtrA family of proteins is known for its dual role as chaperones and proteases. In Helicobacter pylori (H. pylori), HtrA's chaperone and proteolytic activities are crucial for the bacterium's survival and successful host infection. Compared to other HtrA homologs in Gram-negative bacteria, HtrA of H. pylori (HtrA<sub>Hp</sub>) is rather well-understood. HtrA is localized in two cellular compartments, performing critical functions within the bacterial periplasm as well as in the extracellular milieu. This review aimed to summarize the current knowledge on HtrA<sub>Hp</sub> and provide comprehensive information about (i) the structure, oligomerization, and general properties of HtrA<sub>Hp</sub>, (ii) its chaperone and proteolytic activity in the stress response and the protein quality control system in the periplasm, and (iii) the functional role of HtrA<sub>Hp</sub> in opening lateral cell junction complexes of epithelial cells as an important step in infectivity. Due to its essential physiological role and its contribution to the pathologic consequences of infection, HtrA represents a highly attractive target for novel therapeutic strategies.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145523182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wound healing in the skin is a coordinated process in which the extracellular matrix (ECM) plays a central regulatory role. While the structural constituents of the ECM, such as collagens and elastin, are responsible for the shape and mechanical strength of the tissue, the modulatory functions of the ECM are largely mediated by nonstructural matricellular proteins. These proteins bind to structural ECM components, cell surface receptors and other extracellular molecules to fine-tune cellular behaviour throughout the different phases of wound healing. The signalling cascades evoked by matricellular proteins modulate key cellular processes, including proliferation, migration and differentiation-functions essential for effective tissue regeneration. This review provides an update about the mechanisms by which matricellular proteins orchestrate the wound healing process.
{"title":"Cutaneous wound healing-insights from the matricellular perspective.","authors":"Mariliis Klaas, Kristina Mäemets-Allas, Claudia Griselda Cárdenas-León, Viljar Jaks","doi":"10.1002/1873-3468.70220","DOIUrl":"https://doi.org/10.1002/1873-3468.70220","url":null,"abstract":"<p><p>Wound healing in the skin is a coordinated process in which the extracellular matrix (ECM) plays a central regulatory role. While the structural constituents of the ECM, such as collagens and elastin, are responsible for the shape and mechanical strength of the tissue, the modulatory functions of the ECM are largely mediated by nonstructural matricellular proteins. These proteins bind to structural ECM components, cell surface receptors and other extracellular molecules to fine-tune cellular behaviour throughout the different phases of wound healing. The signalling cascades evoked by matricellular proteins modulate key cellular processes, including proliferation, migration and differentiation-functions essential for effective tissue regeneration. This review provides an update about the mechanisms by which matricellular proteins orchestrate the wound healing process.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145502929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Poly(ADP-ribose) polymerase-1 (PARP-1) is a multidomain enzyme essential for the DNA damage response; its inhibition can lead to cancer cell death. Recruitment of PARP-1 to sites of genomic damage is mediated by its zinc finger domains. In this study, we investigated the inhibition of PARP-1's DNA-dependent activation by three Au(I)-based drugs, presumable zinc-ejectors. We found that aurothioglucose and sodium aurothiomalate selectively inhibited PARP-1's DNA-dependent activity, with IC50 values in the nanomolar range, while preserving its DNA-independent activity. Furthermore, in a BRCA-mutated cell line, both compounds effectively suppressed DNA replication, with half-maximal effective concentrations (EC50) also in the nanomolar range. These findings highlight the potential of selective, zinc finger–targeting PARP-1 inhibitors as promising candidates for anticancer drug testing.