Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Here, a macrophage infection model was used to unravel the role of the histone deacetylase sirtuin 6 (SIRT6) in Mtb-triggered regulation of the innate immune response. Mtb infection downregulated microRNA-26a and upregulated its target SIRT6. SIRT6 suppressed glycolysis and expression of HIF-1α-dependent glycolytic genes during infection. In addition, SIRT6 regulated the levels of intracellular succinate which controls stabilization of HIF-1α, as well as the release of interleukin (IL)-1β. Furthermore, SIRT6 inhibited inducible nitric oxide synthase (iNOS) and proinflammatory IL-6 but augmented anti-inflammatory arginase expression. The miR-26a/SIRT6/HIF-1α axis therefore regulates glycolysis and macrophage immune responses during Mtb infection. Our findings link SIRT6 to rewiring of macrophage signaling pathways facilitating dampening of the antibacterial immune response.
{"title":"The miR-26a/SIRT6/HIF-1α axis regulates glycolysis and inflammatory responses in host macrophages during Mycobacterium tuberculosis infection","authors":"Soumya Mal, Debayan Majumder, Pankaj Birari, Arun Kumar Sharma, Umesh Gupta, Kuladip Jana, Manikuntala Kundu, Joyoti Basu","doi":"10.1002/1873-3468.15001","DOIUrl":"10.1002/1873-3468.15001","url":null,"abstract":"<p><i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) is the causative agent of tuberculosis. Here, a macrophage infection model was used to unravel the role of the histone deacetylase sirtuin 6 (SIRT6) in <i>Mtb</i>-triggered regulation of the innate immune response. <i>Mtb</i> infection downregulated microRNA-26a and upregulated its target SIRT6. SIRT6 suppressed glycolysis and expression of HIF-1α-dependent glycolytic genes during infection. In addition, SIRT6 regulated the levels of intracellular succinate which controls stabilization of HIF-1α, as well as the release of interleukin (IL)-1β. Furthermore, SIRT6 inhibited inducible nitric oxide synthase (iNOS) and proinflammatory IL-6 but augmented anti-inflammatory arginase expression. The miR-26a/SIRT6/HIF-1α axis therefore regulates glycolysis and macrophage immune responses during <i>Mtb</i> infection. Our findings link SIRT6 to rewiring of macrophage signaling pathways facilitating dampening of the antibacterial immune response.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 20","pages":"2592-2614"},"PeriodicalIF":3.5,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Cotino-Nájera, Enrique García-Villa, Samantha Cruz-Rosales, Patricio Gariglio, José Díaz-Chávez
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.
{"title":"The role of Lin28A and Lin28B in cancer beyond Let-7.","authors":"Sandra Cotino-Nájera, Enrique García-Villa, Samantha Cruz-Rosales, Patricio Gariglio, José Díaz-Chávez","doi":"10.1002/1873-3468.15004","DOIUrl":"https://doi.org/10.1002/1873-3468.15004","url":null,"abstract":"<p><p>Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateo N. Diaz Appella, Adriana Kolender, Oscar J. Oppezzo, Nancy I. López, Paula M. Tribelli
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
{"title":"The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles","authors":"Mateo N. Diaz Appella, Adriana Kolender, Oscar J. Oppezzo, Nancy I. López, Paula M. Tribelli","doi":"10.1002/1873-3468.15000","DOIUrl":"10.1002/1873-3468.15000","url":null,"abstract":"<p>Pyomelanin, a polymeric pigment in <i>Pseudomonas</i>, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across <i>Pseudomonas</i> using PAO1 and PA14 reference strains carrying mutations in <i>hmgA</i> (a gene involved in pyomelanin synthesis), a melanogenic <i>P. aeruginosa</i> clinical isolate (PAM), and a melanogenic <i>P. extremaustralis</i> (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. <i>P. extremaustralis</i> UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 21","pages":"2702-2716"},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Khoonkari, Dong Liang, Marleen Kamperman, Patrick van Rijn, Frank A E Kruyt
Stiffening of the brain extracellular matrix (ECM) in glioblastoma promotes tumor progression. Previously, we discovered that protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) plays a role in glioblastoma stem cell (GSC) adaptation to matrix stiffness through PERK/FLNA-dependent F-actin remodeling. Here, we examined the involvement of PERK in detecting stiffness changes via focal adhesion complex (FAC) formation. Compared to control GSCs, PERK-deficient GSCs show decreased vinculin and tensin expression, while talin and integrin-β1 remain constant. Furthermore, vimentin was also reduced while tubulin increased, and a stiffness-dependent increase of the differentiation marker GFAP expression was absent in PERK-deficient GSCs. In conclusion, our study reveals a novel role for PERK in FAC formation during matrix stiffening, which is likely linked to its regulation of F-actin remodeling.
{"title":"The unfolded protein response sensor PERK mediates mechanical stress-induced maturation of focal adhesion complexes in glioblastoma cells.","authors":"Mohammad Khoonkari, Dong Liang, Marleen Kamperman, Patrick van Rijn, Frank A E Kruyt","doi":"10.1002/1873-3468.14996","DOIUrl":"https://doi.org/10.1002/1873-3468.14996","url":null,"abstract":"<p><p>Stiffening of the brain extracellular matrix (ECM) in glioblastoma promotes tumor progression. Previously, we discovered that protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) plays a role in glioblastoma stem cell (GSC) adaptation to matrix stiffness through PERK/FLNA-dependent F-actin remodeling. Here, we examined the involvement of PERK in detecting stiffness changes via focal adhesion complex (FAC) formation. Compared to control GSCs, PERK-deficient GSCs show decreased vinculin and tensin expression, while talin and integrin-β1 remain constant. Furthermore, vimentin was also reduced while tubulin increased, and a stiffness-dependent increase of the differentiation marker GFAP expression was absent in PERK-deficient GSCs. In conclusion, our study reveals a novel role for PERK in FAC formation during matrix stiffening, which is likely linked to its regulation of F-actin remodeling.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Koopmeiners, Dominic Gilzer, Christiane Widmann, Nils Berelsmann, Jens Sproß, Hartmut H. Niemann, Gabriele Fischer von Mollard
l-Amino acid oxidases (LAAOs) catalyze the oxidative deamination of l-amino acids to α-keto acids. Recombinant production of LAAOs with broad substrate spectrum remains a formidable challenge. We previously achieved this for the highly active and thermostable LAAO4 of Hebeloma cylindrosporum (HcLAAO4). Here, we crystallized a proteolytically truncated surface entropy reduction variant of HcLAAO4 and solved its structure in substrate-free form and in complex with diverse substrates. The ability to support the aliphatic portion of a substrate's side chain by an overall hydrophobic active site is responsible for the broad substrate spectrum of HcLAAO4, including l-amino acids with big aromatic, acidic and basic side chains. Based on the structural findings, we generated an E288H variant with increased activity toward pharmaceutical building blocks of high interest.
{"title":"Crystal structure and enzyme engineering of the broad substrate spectrum l-amino acid oxidase 4 from the fungus Hebeloma cylindrosporum","authors":"Simon Koopmeiners, Dominic Gilzer, Christiane Widmann, Nils Berelsmann, Jens Sproß, Hartmut H. Niemann, Gabriele Fischer von Mollard","doi":"10.1002/1873-3468.15002","DOIUrl":"10.1002/1873-3468.15002","url":null,"abstract":"<p><span>l</span>-Amino acid oxidases (LAAOs) catalyze the oxidative deamination of <span>l</span>-amino acids to α-keto acids. Recombinant production of LAAOs with broad substrate spectrum remains a formidable challenge. We previously achieved this for the highly active and thermostable LAAO4 of <i>Hebeloma cylindrosporum</i> (<i>Hc</i>LAAO4). Here, we crystallized a proteolytically truncated surface entropy reduction variant of <i>Hc</i>LAAO4 and solved its structure in substrate-free form and in complex with diverse substrates. The ability to support the aliphatic portion of a substrate's side chain by an overall hydrophobic active site is responsible for the broad substrate spectrum of <i>Hc</i>LAAO4, including <span>l</span>-amino acids with big aromatic, acidic and basic side chains. Based on the structural findings, we generated an E288H variant with increased activity toward pharmaceutical building blocks of high interest.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 18","pages":"2306-2320"},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.15002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumika Osa, Yuki Enoki, Daisuke Takahashi, Victor Tuan Giam Chuang, Kazuaki Taguchi, Kazuaki Matsumoto
Skeletal muscle atrophy is a known risk factor for immunosuppressive conditions and for a poor prognosis in sepsis. However, its immunopathology has not been experimentally elucidated. This study investigated the effects of skeletal muscle atrophy on the immunopathology of sepsis. Male C57BL/6J mice were subjected to sciatic denervation (DN) and caecal ligation and puncture (CLP) to induce muscle atrophy or sepsis. The macrophages, myeloid-derived suppressor cells (MDSC), and T-cells in peritoneal and spleen were analysed using flow cytometry. DN-induced muscle atrophy did not affect macrophage and MDSC populations. In contrast, the percentage of cytotoxic T-lymphocyte-associated antigen (CTLA)-4+ CD4+ T-cells, programmed death (PD)-1+ CD8+ T-cells, regulatory T-cells, and the CTLA-4+ regulatory T-cells was statistically significantly higher in DN-CLP mice than in sham-CLP mice. Skeletal muscle atrophy before sepsis triggers excessive T cell immunosuppression, which may contribute to the exacerbation of sepsis under skeletal muscle atrophy.
{"title":"T-cell immunosuppression in sepsis is augmented by sciatic denervation-induced skeletal muscle atrophy","authors":"Sumika Osa, Yuki Enoki, Daisuke Takahashi, Victor Tuan Giam Chuang, Kazuaki Taguchi, Kazuaki Matsumoto","doi":"10.1002/1873-3468.14999","DOIUrl":"10.1002/1873-3468.14999","url":null,"abstract":"<p>Skeletal muscle atrophy is a known risk factor for immunosuppressive conditions and for a poor prognosis in sepsis. However, its immunopathology has not been experimentally elucidated. This study investigated the effects of skeletal muscle atrophy on the immunopathology of sepsis. Male C57BL/6J mice were subjected to sciatic denervation (DN) and caecal ligation and puncture (CLP) to induce muscle atrophy or sepsis. The macrophages, myeloid-derived suppressor cells (MDSC), and T-cells in peritoneal and spleen were analysed using flow cytometry. DN-induced muscle atrophy did not affect macrophage and MDSC populations. In contrast, the percentage of cytotoxic T-lymphocyte-associated antigen (CTLA)-4<sup>+</sup> CD4<sup>+</sup> T-cells, programmed death (PD)-1<sup>+</sup> CD8<sup>+</sup> T-cells, regulatory T-cells, and the CTLA-4<sup>+</sup> regulatory T-cells was statistically significantly higher in DN-CLP mice than in sham-CLP mice. Skeletal muscle atrophy before sepsis triggers excessive T cell immunosuppression, which may contribute to the exacerbation of sepsis under skeletal muscle atrophy.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 20","pages":"2581-2591"},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear factor erythroid-2-related factor 2 (Nrf2) is essential for the control of cellular redox homeostasis. When activated, Nrf2 elicits cytoprotective effects through the expression of several genes encoding antioxidant and detoxifying enzymes. Nrf2 can also improve antioxidant defense via the pentose phosphate pathway by increasing NADPH availability to regenerate glutathione. Microarray and genome-wide localization analyses have identified many Nrf2 target genes beyond those linked to its redox-regulatory capacity. Nrf2 regulates several intermediary metabolic pathways and is involved in cancer cell metabolic reprogramming, contributing to malignant phenotypes. Nrf2 also modulates substrate utilization for mitochondrial respiration. Here we review the experimental evidence supporting the essential role of Nrf2 in the regulation of energy metabolism and mitochondrial function.
{"title":"Nrf2 as a regulator of energy metabolism and mitochondrial function","authors":"Alina Luchkova, Ana Mata, Susana Cadenas","doi":"10.1002/1873-3468.14993","DOIUrl":"10.1002/1873-3468.14993","url":null,"abstract":"<p>Nuclear factor erythroid-2-related factor 2 (Nrf2) is essential for the control of cellular redox homeostasis. When activated, Nrf2 elicits cytoprotective effects through the expression of several genes encoding antioxidant and detoxifying enzymes. Nrf2 can also improve antioxidant defense via the pentose phosphate pathway by increasing NADPH availability to regenerate glutathione. Microarray and genome-wide localization analyses have identified many Nrf2 target genes beyond those linked to its redox-regulatory capacity. Nrf2 regulates several intermediary metabolic pathways and is involved in cancer cell metabolic reprogramming, contributing to malignant phenotypes. Nrf2 also modulates substrate utilization for mitochondrial respiration. Here we review the experimental evidence supporting the essential role of Nrf2 in the regulation of energy metabolism and mitochondrial function.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 17","pages":"2092-2105"},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TDC are hematopoietic cells with unique features that provide intriguing insights into the interplay between innate and adaptive immunity. They express a combination of conventional dendritic cell (DC) and T-cell markers and are found in secondary lymphoid organs (SLOs), lungs and liver of naïve mice, as well as in human blood. When analyzed ex vivo, TDC can behave either as DCs or as T cells, depending on the provided stimuli. Notably, TDC numbers and activation significantly increase in SLOs following viral infection, suggesting a potential role for TDC in antiviral immune responses. In this review, we discuss the properties of these fascinating cells, which call for more investigation on their physiological role during immune responses to both pathogens and tumors.
TDC是一种造血细胞,具有独特的特征,为先天性免疫和适应性免疫之间的相互作用提供了引人入胜的见解。它们表达传统树突状细胞(DC)和 T 细胞标记的组合,存在于幼稚小鼠的次级淋巴器官(SLO)、肺和肝脏以及人类血液中。在体外分析时,TDC 可表现为 DC 或 T 细胞,具体取决于所提供的刺激。值得注意的是,病毒感染后,SLO 中的 TDC 数量和活化程度显著增加,这表明 TDC 在抗病毒免疫反应中可能发挥作用。在这篇综述中,我们讨论了这些迷人细胞的特性,这些特性要求对它们在病原体和肿瘤免疫反应中的生理作用进行更多的研究。
{"title":"The dual nature of T<sub>DC</sub> - bridging dendritic and T cells in immunity.","authors":"Maria Nelli, Mirela Kuka","doi":"10.1002/1873-3468.14998","DOIUrl":"https://doi.org/10.1002/1873-3468.14998","url":null,"abstract":"<p><p>T<sub>DC</sub> are hematopoietic cells with unique features that provide intriguing insights into the interplay between innate and adaptive immunity. They express a combination of conventional dendritic cell (DC) and T-cell markers and are found in secondary lymphoid organs (SLOs), lungs and liver of naïve mice, as well as in human blood. When analyzed ex vivo, T<sub>DC</sub> can behave either as DCs or as T cells, depending on the provided stimuli. Notably, T<sub>DC</sub> numbers and activation significantly increase in SLOs following viral infection, suggesting a potential role for T<sub>DC</sub> in antiviral immune responses. In this review, we discuss the properties of these fascinating cells, which call for more investigation on their physiological role during immune responses to both pathogens and tumors.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela F. Santos, Sónia Simão, Clévio Nóbrega, José Bragança, Pedro Castelo-Branco, Inês M. Araújo, ALFA Score Consortium
Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.
{"title":"Oxidative stress and aging: synergies for age related diseases","authors":"Daniela F. Santos, Sónia Simão, Clévio Nóbrega, José Bragança, Pedro Castelo-Branco, Inês M. Araújo, ALFA Score Consortium","doi":"10.1002/1873-3468.14995","DOIUrl":"10.1002/1873-3468.14995","url":null,"abstract":"<p>Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 17","pages":"2074-2091"},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14995","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
细胞内分子由运动蛋白运输,或通过分子随机运动产生的扩散进行移动。心肌细胞内充满了对功能至关重要的结构,但同时也限制了扩散空间,为细胞提供了控制扩散的手段。它们形成了局部浓度不同于整体平均浓度的区室。例如,钙和环磷酸腺苷被高度区隔,使这些多功能的第二信使能够根据不同的位置发出不同的信号。在能量分区中,AMP 和 ADP 与 ATP 的比例与平均比例不同。这对促进心脏兴奋-收缩耦合和机械功的 ATP 酶的性能非常重要。最近的一项研究表明,分区可在原位调节肌酸激酶和腺苷酸激酶的活性。这可能会对通过 AMP 激活激酶等传递能量信号产生影响。这凸显了我们在解释细胞生理学时考虑区隔的重要性,并开发了评估 AMP 和 ADP 局部浓度的方法,以加深我们对不同类型细胞中区隔的理解。
{"title":"Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities","authors":"Rikke Birkedal, Jelena Branovets, Marko Vendelin","doi":"10.1002/1873-3468.14994","DOIUrl":"10.1002/1873-3468.14994","url":null,"abstract":"<p>Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase <i>in situ</i>. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 21","pages":"2623-2640"},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}