Tiago Bertola Lobato, Richelieau Manoel, Ana Carolina Gomes Pereira, Ilana Souza Correa, Patrícia Nancy Iser-Bem, Elvirah Samantha de Sousa Santos, Joice Naiara Bertaglia Pereira, Maria Janaína Leite de Araújo, João Carlos de Oliveira Borges, Janaina Ribeiro Barbosa Pauferro, Vinicius Leonardo Sousa Diniz, Maria Vitória Martins Scervino, Tamires Duarte Serdan, Tania Cristina Pithon-Curi, Laureane Nunes Masi, Sandro Massao Hirabara, Rui Curi, Renata Gorjão
Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.
{"title":"Insulin resistance in nonobese type 2 diabetic Goto Kakizaki rats is associated with a proinflammatory T lymphocyte profile","authors":"Tiago Bertola Lobato, Richelieau Manoel, Ana Carolina Gomes Pereira, Ilana Souza Correa, Patrícia Nancy Iser-Bem, Elvirah Samantha de Sousa Santos, Joice Naiara Bertaglia Pereira, Maria Janaína Leite de Araújo, João Carlos de Oliveira Borges, Janaina Ribeiro Barbosa Pauferro, Vinicius Leonardo Sousa Diniz, Maria Vitória Martins Scervino, Tamires Duarte Serdan, Tania Cristina Pithon-Curi, Laureane Nunes Masi, Sandro Massao Hirabara, Rui Curi, Renata Gorjão","doi":"10.1002/1873-3468.14977","DOIUrl":"10.1002/1873-3468.14977","url":null,"abstract":"<p>Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 20","pages":"2566-2580"},"PeriodicalIF":3.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Torella, Nerea Santana-Gonzalez, Nerea Zabaleta, Gloria Gonzalez Aseguinolaza
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
{"title":"Gene editing in liver diseases","authors":"Laura Torella, Nerea Santana-Gonzalez, Nerea Zabaleta, Gloria Gonzalez Aseguinolaza","doi":"10.1002/1873-3468.14989","DOIUrl":"10.1002/1873-3468.14989","url":null,"abstract":"<p>The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling <i>in vivo</i> modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 19","pages":"2348-2371"},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14989","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianlong He, Cuicui Ji, Wenting Zhang, Xianghua Li, Yukun Liu, Xiaoli Wang, Haolin Zhang, Juan Wang
Macroautophagy involves the encapsulation of cellular components within double-membrane autophagosomes for subsequent degradation in vacuoles or lysosomes. Coat protein complex II (COPII) vesicles serve as a membrane source for autophagosome formation. However, the specific role of SEC24D, an isoform of the COPII coat protein SEC24, in the macroautophagy pathway remains unclear. In this study, we demonstrate that SEC24D is indispensable for macroautophagy and important for autophagosome closure. Depletion of SEC24D leads to the accumulation of unsealed isolation membranes. Furthermore, under conditions of starvation, SEC24D interacts with casein kinase1 delta (CK1δ), a member of the casein kinase 1 family, and autophagy-related 9A (ATG9A). Collectively, our findings unveil the indispensable role of SEC24D in starvation-induced autophagy in mammalian cells.
{"title":"The COPII coat protein SEC24D is required for autophagosome closure in mammals.","authors":"Tianlong He, Cuicui Ji, Wenting Zhang, Xianghua Li, Yukun Liu, Xiaoli Wang, Haolin Zhang, Juan Wang","doi":"10.1002/1873-3468.14983","DOIUrl":"https://doi.org/10.1002/1873-3468.14983","url":null,"abstract":"<p><p>Macroautophagy involves the encapsulation of cellular components within double-membrane autophagosomes for subsequent degradation in vacuoles or lysosomes. Coat protein complex II (COPII) vesicles serve as a membrane source for autophagosome formation. However, the specific role of SEC24D, an isoform of the COPII coat protein SEC24, in the macroautophagy pathway remains unclear. In this study, we demonstrate that SEC24D is indispensable for macroautophagy and important for autophagosome closure. Depletion of SEC24D leads to the accumulation of unsealed isolation membranes. Furthermore, under conditions of starvation, SEC24D interacts with casein kinase1 delta (CK1δ), a member of the casein kinase 1 family, and autophagy-related 9A (ATG9A). Collectively, our findings unveil the indispensable role of SEC24D in starvation-induced autophagy in mammalian cells.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rachel H Wyetzner, Ella X Segal, Anna R Jussila, Radhika P Atit
Skin fibrosis is characterized by fibroblast activation and intradermal fat loss, resulting in excess deposition and remodeling of dermal extracellular matrix (ECM). The topography of the dominant ECM proteins, such as collagens, can indicate skin stiffness and remains understudied in evaluating fibrotic skin. Here, we adapted two different unbiased image analysis algorithms to define collagen topography and alignment in a genetically inducible and reversible Wnt activation fibrosis model. We demonstrated that Wnt-activated fibrotic skin has altered collagen fiber characteristics and a loss of collagen alignment, which were restored in the reversible model. This study highlights how unbiased algorithms can be used to analyze ECM topography, providing novel avenues to evaluate fibrotic skin onset, recovery, and treatment.
{"title":"Topographical changes in extracellular matrix during skin fibrosis and recovery can be evaluated using automated image analysis algorithms.","authors":"Rachel H Wyetzner, Ella X Segal, Anna R Jussila, Radhika P Atit","doi":"10.1002/1873-3468.14987","DOIUrl":"10.1002/1873-3468.14987","url":null,"abstract":"<p><p>Skin fibrosis is characterized by fibroblast activation and intradermal fat loss, resulting in excess deposition and remodeling of dermal extracellular matrix (ECM). The topography of the dominant ECM proteins, such as collagens, can indicate skin stiffness and remains understudied in evaluating fibrotic skin. Here, we adapted two different unbiased image analysis algorithms to define collagen topography and alignment in a genetically inducible and reversible Wnt activation fibrosis model. We demonstrated that Wnt-activated fibrotic skin has altered collagen fiber characteristics and a loss of collagen alignment, which were restored in the reversible model. This study highlights how unbiased algorithms can be used to analyze ECM topography, providing novel avenues to evaluate fibrotic skin onset, recovery, and treatment.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
{"title":"Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia.","authors":"Eirini Sofia Fasouli, Eleni Katsantoni","doi":"10.1002/1873-3468.14985","DOIUrl":"https://doi.org/10.1002/1873-3468.14985","url":null,"abstract":"<p><p>In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
(Poly)phenols are a group of naturally occurring phytochemicals present in high amounts in plant food and beverages with various structures and activities. The impact of (poly)phenols on brain function has gained significant attention due to the growing interest in the potential benefits of these dietary bioactive molecules for cognitive health and neuroprotection. This review will therefore summarise the current knowledge related to the impact of (poly)phenols on brain health presenting evidence from both epidemiological and clinical studies. Cellular and molecular mechanisms in relation to the observed effects will also be described, including their impact on the gut microbiota through the modulation of the gut-brain axis. Although (poly)phenols have the potential to modulate the gut-brain axis regulation and influence cognitive function and decline through their interactions with gut microbiota, anti-inflammatory and antioxidant properties, further research, including randomised controlled trials and mechanistic studies, is needed to better understand the underlying mechanisms and establish causal relationships between (poly)phenol intake and brain health.
{"title":"(Poly)phenols and brain health - beyond their antioxidant capacity.","authors":"Thomas Hunt, Matthew G Pontifex, David Vauzour","doi":"10.1002/1873-3468.14988","DOIUrl":"https://doi.org/10.1002/1873-3468.14988","url":null,"abstract":"<p><p>(Poly)phenols are a group of naturally occurring phytochemicals present in high amounts in plant food and beverages with various structures and activities. The impact of (poly)phenols on brain function has gained significant attention due to the growing interest in the potential benefits of these dietary bioactive molecules for cognitive health and neuroprotection. This review will therefore summarise the current knowledge related to the impact of (poly)phenols on brain health presenting evidence from both epidemiological and clinical studies. Cellular and molecular mechanisms in relation to the observed effects will also be described, including their impact on the gut microbiota through the modulation of the gut-brain axis. Although (poly)phenols have the potential to modulate the gut-brain axis regulation and influence cognitive function and decline through their interactions with gut microbiota, anti-inflammatory and antioxidant properties, further research, including randomised controlled trials and mechanistic studies, is needed to better understand the underlying mechanisms and establish causal relationships between (poly)phenol intake and brain health.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.
{"title":"Mice deficient in the phosphatase activity of sEH show decreased levels of the endocannabinoid 2-AG in the olfactory bulb and depressive-like behavior.","authors":"Ami Oguro, Yurino Kaga, Hideaki Sato, Taichi Fujiyama, Shinji Fujimoto, Saki Nagai, Makoto Matsuyama, Masatsugu Miyara, Yasuhiro Ishihara, Takeshi Yamazaki, Susumu Imaoka, Yaichiro Kotake","doi":"10.1002/1873-3468.14984","DOIUrl":"https://doi.org/10.1002/1873-3468.14984","url":null,"abstract":"<p><p>Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inducible dimerization systems, such as rapamycin-induced dimerization of FK506 binding protein (FKBP) and FKBP–rapamycin binding (FRB) domain, are widely employed chemical biology tools to manipulate cellular functions. We previously advanced an inducible dimerization system into an inducible oligomerization system by developing a bivalent fusion protein, FRB–FKBP, which forms large oligomers upon rapamycin addition and can be used to manipulate cells. However, the oligomeric structure of FRB–FKBP remains unclear. Here, we report that FRB–FKBP forms a rotationally symmetric trimer in crystals, but a larger oligomer in solution, primarily tetramers and pentamers, which maintain similar inter-subunit contacts as in the crystal trimer. These findings expand the applications of the FRB–FKBP oligomerization system in diverse biological events.
{"title":"Structural insights into rapamycin-induced oligomerization of a FRB–FKBP fusion protein","authors":"Tomonao Inobe, Runa Sakaguchi, Takayuki Obita, Atushi Mukaiyama, Seiichi Koike, Takeshi Yokoyama, Mineyuki Mizuguchi, Shuji Akiyama","doi":"10.1002/1873-3468.14986","DOIUrl":"10.1002/1873-3468.14986","url":null,"abstract":"<p>Inducible dimerization systems, such as rapamycin-induced dimerization of FK506 binding protein (FKBP) and FKBP–rapamycin binding (FRB) domain, are widely employed chemical biology tools to manipulate cellular functions. We previously advanced an inducible dimerization system into an inducible oligomerization system by developing a bivalent fusion protein, FRB–FKBP, which forms large oligomers upon rapamycin addition and can be used to manipulate cells. However, the oligomeric structure of FRB–FKBP remains unclear. Here, we report that FRB–FKBP forms a rotationally symmetric trimer in crystals, but a larger oligomer in solution, primarily tetramers and pentamers, which maintain similar inter-subunit contacts as in the crystal trimer. These findings expand the applications of the FRB–FKBP oligomerization system in diverse biological events.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 18","pages":"2292-2305"},"PeriodicalIF":3.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoli Wei, Shuju Li, Zihuan Li, Lei Wang, Weiwei Fan, Ke Ruan, Jia Gao
The PWWP domain of hepatoma-derived growth factor-related protein 2 (HDGFRP2) recognizes methylated histones to initiate the recruitment of homologous recombination repair proteins to damaged silent genes. The combined depletion of HDGFRP2 and its paralog PSIP1 effectively impedes the onset and progression of diffuse intrinsic pontine glioma (DIPG). Here, we discovered varenicline and 4-(4-bromo-1H-pyrazol-3-yl) pyridine (BPP) as inhibitors of the HDGFRP2 PWWP domain through a fragment-based screening method. The complex crystal structures reveal that both Varenicline and BPP engage with the aromatic cage of the HDGFRP2 PWWP domain, albeit via unique binding mechanisms. Notably, BPP represents the first single-digit micromolar inhibitor of the HDGFRP2 PWWP domain with a high ligand efficiency. As a dual inhibitor targeting both HDGFRP2 and PSIP1 PWWP domains, BPP offers an exceptional foundation for further optimization into a chemical tool to dissect the synergetic function of HDGFRP2 and PSIP1 in DIPG pathogenesis.
{"title":"Fragment-based discovery of small molecule inhibitors of the HDGFRP2 PWWP domain","authors":"Xiaoli Wei, Shuju Li, Zihuan Li, Lei Wang, Weiwei Fan, Ke Ruan, Jia Gao","doi":"10.1002/1873-3468.14981","DOIUrl":"10.1002/1873-3468.14981","url":null,"abstract":"<p>The PWWP domain of hepatoma-derived growth factor-related protein 2 (HDGFRP2) recognizes methylated histones to initiate the recruitment of homologous recombination repair proteins to damaged silent genes. The combined depletion of HDGFRP2 and its paralog PSIP1 effectively impedes the onset and progression of diffuse intrinsic pontine glioma (DIPG). Here, we discovered varenicline and 4-(4-bromo-1H-pyrazol-3-yl) pyridine (BPP) as inhibitors of the HDGFRP2 PWWP domain through a fragment-based screening method. The complex crystal structures reveal that both Varenicline and BPP engage with the aromatic cage of the HDGFRP2 PWWP domain, albeit via unique binding mechanisms. Notably, BPP represents the first single-digit micromolar inhibitor of the HDGFRP2 PWWP domain with a high ligand efficiency. As a dual inhibitor targeting both HDGFRP2 and PSIP1 PWWP domains, BPP offers an exceptional foundation for further optimization into a chemical tool to dissect the synergetic function of HDGFRP2 and PSIP1 in DIPG pathogenesis.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 20","pages":"2533-2543"},"PeriodicalIF":3.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunyan Liao, Shuai Chen, Xuxu Chen, Wanying Yi, Yingying Fan, Yuewen Chen, Tao Ye, Yu Chen
Retinitis pigmentosa (RP) is an inherited eye disease that causes progressive vision loss. Microglial activation and inflammation play essential roles in photoreceptor degeneration in RP, although the underlying mechanisms remain unclear. Here, we examined the progressive degeneration of photoreceptors in rd1 mice, a mouse model of RP. We investigated the molecular changes in various retinal cells in rd1 mice using single-cell RNA sequencing and found that potentiation of JNK signaling is associated with photoreceptor degeneration in RP. Moreover, inflammation-related molecules, which function downstream of JNK, are elevated in RP. Furthermore, inhibiting JNK alleviates microglial activation and rescues photoreceptor degeneration in rd1 mice. Thus, our findings suggest that targeting JNK is a promising approach for slowing RP progression.
视网膜色素变性(RP)是一种遗传性眼病,会导致进行性视力丧失。小胶质细胞活化和炎症在视网膜色素变性的光感受器变性过程中起着至关重要的作用,但其潜在机制仍不清楚。在这里,我们研究了 RP 小鼠模型 rd1 小鼠光感受器的进行性退化。我们利用单细胞 RNA 测序技术研究了 rd1 小鼠各种视网膜细胞的分子变化,发现 JNK 信号的增强与 RP 中的光感受器退化有关。此外,JNK 下游的炎症相关分子在 RP 中升高。此外,抑制 JNK 可减轻小胶质细胞的活化,并挽救 rd1 小鼠的感光细胞变性。因此,我们的研究结果表明,以 JNK 为靶点是减缓 RP 进展的一种可行方法。
{"title":"Inhibition of JNK ameliorates rod photoreceptor degeneration in a mouse model of retinitis pigmentosa","authors":"Chunyan Liao, Shuai Chen, Xuxu Chen, Wanying Yi, Yingying Fan, Yuewen Chen, Tao Ye, Yu Chen","doi":"10.1002/1873-3468.14978","DOIUrl":"10.1002/1873-3468.14978","url":null,"abstract":"<p>Retinitis pigmentosa (RP) is an inherited eye disease that causes progressive vision loss. Microglial activation and inflammation play essential roles in photoreceptor degeneration in RP, although the underlying mechanisms remain unclear. Here, we examined the progressive degeneration of photoreceptors in <i>rd1</i> mice, a mouse model of RP. We investigated the molecular changes in various retinal cells in <i>rd1</i> mice using single-cell RNA sequencing and found that potentiation of JNK signaling is associated with photoreceptor degeneration in RP. Moreover, inflammation-related molecules, which function downstream of JNK, are elevated in RP. Furthermore, inhibiting JNK alleviates microglial activation and rescues photoreceptor degeneration in <i>rd1</i> mice. Thus, our findings suggest that targeting JNK is a promising approach for slowing RP progression.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 21","pages":"2683-2701"},"PeriodicalIF":3.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}