Pub Date : 2023-06-01DOI: 10.17113/ftb.61.02.23.7762
Isabela Rezende Ferreira, Valfredo de Almeida Santos Junior, Édina Caroline Ferreira Almeida, Felipe Francisco Bittencourt Junior, Ariany Carvalho Dos Santos, Virginia Demarchi Kappel Trichez, Elisvania Freitas Dos Santos, Mariana Manfroi Fuzinatto, Priscila Neder Morato
Research background: The extensive cultivation of bananas (Musa sp.) is related to producing tons of residues, such as leaves, pseudostems and bracts (inflorescences). The banana bract is a commercially interesting residue due to its dietary fibre content and high antioxidant potential. With this in mind, this study evaluates the effects of administering banana bract flour in animal models fed a cafeteria diet.
Experimental approach: Thirty-two male rats were divided into 4 groups: (i) control diet, (ii) control diet with 10 % banana bract flour, (iii) hypercaloric diet, and (iv) hypercaloric diet with 10 % bract banana flour. The study was conducted for 12 weeks and included analysis of phenolic compounds, assessment of the antioxidant effect of banana bract flour, determination of serum biochemical parameters (glucose, total cholesterol, triglycerides, aspartate aminotransferase (AST), alanine transaminase (ALT), amylase, albumin, uric acid, creatine, total protein, and oral glucose), determination of faecal fat content, and histomorphological analysis of the liver, pancreas and adipose tissue. In addition, molecular parameters such as IL6, total and phosphorylated JNK, total and phosphorylated IKKβ, TNFα, TLR4 and HSP70 were determined.
Results and conclusions: The banana bract flour showed a high content of phenolic compounds and an antioxidant effect. The in vivo results suggest that the supplementation of a hypercaloric diet with banana bract flour prevented pathological damage by reducing total cholesterol and glucose amounts, which may imply a hepatoprotective effect of this supplement. Thus, using banana bract flour as a supplement can increase the consumption of fibre, antioxidants and bioactive compounds.
Novelty and scientific contribution: The development of flour from banana waste and its inclusion in the diet can prevent and/or help treat obesity. In addition, the use of banana bracts can help protect the environment, as they are considered a source of waste by the food industry.
{"title":"Effects of Banana (<i>Musa</i> spp.) Bract Flour on Rats Fed High-Calorie Diet.","authors":"Isabela Rezende Ferreira, Valfredo de Almeida Santos Junior, Édina Caroline Ferreira Almeida, Felipe Francisco Bittencourt Junior, Ariany Carvalho Dos Santos, Virginia Demarchi Kappel Trichez, Elisvania Freitas Dos Santos, Mariana Manfroi Fuzinatto, Priscila Neder Morato","doi":"10.17113/ftb.61.02.23.7762","DOIUrl":"10.17113/ftb.61.02.23.7762","url":null,"abstract":"<p><strong>Research background: </strong>The extensive cultivation of bananas (<i>Musa</i> sp.) is related to producing tons of residues, such as leaves, pseudostems and bracts (inflorescences). The banana bract is a commercially interesting residue due to its dietary fibre content and high antioxidant potential. With this in mind, this study evaluates the effects of administering banana bract flour in animal models fed a cafeteria diet.</p><p><strong>Experimental approach: </strong>Thirty-two male rats were divided into 4 groups: (<i>i</i>) control diet, (<i>ii</i>) control diet with 10 % banana bract flour, (<i>iii</i>) hypercaloric diet, and (<i>iv</i>) hypercaloric diet with 10 % bract banana flour. The study was conducted for 12 weeks and included analysis of phenolic compounds, assessment of the antioxidant effect of banana bract flour, determination of serum biochemical parameters (glucose, total cholesterol, triglycerides, aspartate aminotransferase (AST), alanine transaminase (ALT), amylase, albumin, uric acid, creatine, total protein, and oral glucose), determination of faecal fat content, and histomorphological analysis of the liver, pancreas and adipose tissue. In addition, molecular parameters such as IL6, total and phosphorylated JNK, total and phosphorylated IKKβ, TNFα, TLR4 and HSP70 were determined.</p><p><strong>Results and conclusions: </strong>The banana bract flour showed a high content of phenolic compounds and an antioxidant effect. The <i>in vivo</i> results suggest that the supplementation of a hypercaloric diet with banana bract flour prevented pathological damage by reducing total cholesterol and glucose amounts, which may imply a hepatoprotective effect of this supplement. Thus, using banana bract flour as a supplement can increase the consumption of fibre, antioxidants and bioactive compounds.</p><p><strong>Novelty and scientific contribution: </strong>The development of flour from banana waste and its inclusion in the diet can prevent and/or help treat obesity. In addition, the use of banana bracts can help protect the environment, as they are considered a source of waste by the food industry.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 2","pages":"238-249"},"PeriodicalIF":2.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.17113/ftb.61.02.23.7622
Larissa Simão, Bruna Rafaela da Silva Monteiro Wanderley, Michelly Pontes Tavares Vieira, Isabel Cristina da Silva Haas, Renata Dias de Mello Castanho Amboni, Carlise Beddin Fritzen-Freire
Mead is a fermented alcoholic beverage that is made from honey diluted in water and commonly with the addition of other ingredients. The chemical characteristics of mead are closely related to the ingredients and additives that are used in its preparation, especially the type of honey, yeast strain and prefermentation nutrients, as well as herbs, spices and/or fruits. These additives can affect not only the fermentation process, in particular the yeast activity, the formation of metabolites and fermentation time, but also the bioactive potential of the mead, which mainly depends on phenolic compounds. Scientific studies have shown that the mead with added different plant species contains considerable amounts of different classes of polyphenols, which have important biological activities. Within this context, this review study seeks to investigate how different ingredients and additives can affect each of the stages of the preparation of mead, as well as its bioactive potential, in order to understand the effects on its chemical composition, and thus add greater commercial value to this beverage.
{"title":"How Do Different Ingredients and Additives Affect the Production Steps and the Bioactive Potential of Mead?","authors":"Larissa Simão, Bruna Rafaela da Silva Monteiro Wanderley, Michelly Pontes Tavares Vieira, Isabel Cristina da Silva Haas, Renata Dias de Mello Castanho Amboni, Carlise Beddin Fritzen-Freire","doi":"10.17113/ftb.61.02.23.7622","DOIUrl":"https://doi.org/10.17113/ftb.61.02.23.7622","url":null,"abstract":"<p><p>Mead is a fermented alcoholic beverage that is made from honey diluted in water and commonly with the addition of other ingredients. The chemical characteristics of mead are closely related to the ingredients and additives that are used in its preparation, especially the type of honey, yeast strain and prefermentation nutrients, as well as herbs, spices and/or fruits. These additives can affect not only the fermentation process, in particular the yeast activity, the formation of metabolites and fermentation time, but also the bioactive potential of the mead, which mainly depends on phenolic compounds. Scientific studies have shown that the mead with added different plant species contains considerable amounts of different classes of polyphenols, which have important biological activities. Within this context, this review study seeks to investigate how different ingredients and additives can affect each of the stages of the preparation of mead, as well as its bioactive potential, in order to understand the effects on its chemical composition, and thus add greater commercial value to this beverage.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 2","pages":"179-190"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9881519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.17113/ftb.61.02.23.7883
Gabriela Aguiar Campolina, Maria das Graças Cardoso, Alex Rodrigues-Silva-Caetano, David Lee Nelson, Eduardo Mendes Ramos
The meat and meat product industry has evolved according to the needs of the market. Consumers are increasingly seeking quality in food. Thus, the concern regarding the excessive use of additives such as preservatives and antioxidants has driven research towards natural, healthy and safe substitutes. Essential oils and plant extracts have been shown to be a good option for resolving this problem. They are completely natural with biological activity, which mainly includes prevention of oxidation and the proliferation of microorganisms, thus arousing the interest of the industry and consumers. This review will present studies published in the last five years regarding the potential of essential oils and plant extracts to act as preservatives and antioxidants in meat and meat products. The forms of application, innovations in the area, alternatives to the incorporation of essential oils and extracts in meat products, effects caused in food, and limitations of applications will be detailed and discussed.
{"title":"Essential Oil and Plant Extracts as Preservatives and Natural Antioxidants Applied to Meat and Meat Products: A Review.","authors":"Gabriela Aguiar Campolina, Maria das Graças Cardoso, Alex Rodrigues-Silva-Caetano, David Lee Nelson, Eduardo Mendes Ramos","doi":"10.17113/ftb.61.02.23.7883","DOIUrl":"https://doi.org/10.17113/ftb.61.02.23.7883","url":null,"abstract":"<p><p>The meat and meat product industry has evolved according to the needs of the market. Consumers are increasingly seeking quality in food. Thus, the concern regarding the excessive use of additives such as preservatives and antioxidants has driven research towards natural, healthy and safe substitutes. Essential oils and plant extracts have been shown to be a good option for resolving this problem. They are completely natural with biological activity, which mainly includes prevention of oxidation and the proliferation of microorganisms, thus arousing the interest of the industry and consumers. This review will present studies published in the last five years regarding the potential of essential oils and plant extracts to act as preservatives and antioxidants in meat and meat products. The forms of application, innovations in the area, alternatives to the incorporation of essential oils and extracts in meat products, effects caused in food, and limitations of applications will be detailed and discussed.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 2","pages":"212-225"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10185273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research background: While it is clear that SARS CoV-2 coronavirus is the primary respiratory virus, there are no entirely clarified ways of transmission. Foodborne transmission has remained an unexplained path. Therefore, the goals of this paper are to examine and present an assessment of the most appropriate of the four selected kits for RNA extraction for the testing and detection of SARS-CoV-2 on food packaging surfaces, food surfaces, and in food. This will enable to indicate the possibility of infection through contact or direct food consumption.
Experimental approach: Finding the best technique is vital as RNA extraction is one of the essential elements in detecting SARS-CoV-2. This was achieved through an experiment with four commercial kits following the original manufacturers' protocols, and with a modification of the original protocols that included the use of ethanol and isopropanol. The selected kit was used for RNA extraction from the swabs of packaging surfaces, food surface, and ready-to-eat food samples. The coronavirus was then identified using real-time reverse transcription-polymerase chain reaction (RT-PCR) assays to determine whether the SARS-CoV-2 virus or viral particles are present in the food chain with the overall purpose of demonstrating the possibility that food can contribute as a vehicle for the transmission of the virus.
Results and conclusions: The findings of this investigation made the most effective extraction kit and protocol stand out. The results of the applicability of the kit indicated a significant share of positive samples of viral SARS-CoV-2 virus particles on surfaces from the environment where infected persons with 'silent' COVID-19 infection, with mild symptoms or no symptoms, were present. However, according to the findings of the second part of the study, the virus was not detected on the examined samples of food packaging surfaces, food surfaces, and food.
Novelty and scientific contribution: The presented results distinguished one of the most suitable protocols for isolating RNA from environmental surface samples. The main contribution of the study is in the presentation of the results, that is, the examination of samples that are primarily related to the food chain, food packaging, food surfaces, and ready-to-eat food. The results of this study could also be helpful for further determination of the potential of food as a vector for the transmission of coronaviruses.
{"title":"Investigation of SARS-CoV-2 Detection Method Applicability and Virus Occurrence in Food and Food Packaging.","authors":"Zdenko Mlinar, Deni Kostelac, Ivančica Kovaček, Ana Klobučar, Vanja Tešić, Vedran Prahin, Jadranka Frece","doi":"10.17113/ftb.61.02.23.8018","DOIUrl":"https://doi.org/10.17113/ftb.61.02.23.8018","url":null,"abstract":"<p><strong>Research background: </strong>While it is clear that SARS CoV-2 coronavirus is the primary respiratory virus, there are no entirely clarified ways of transmission. Foodborne transmission has remained an unexplained path. Therefore, the goals of this paper are to examine and present an assessment of the most appropriate of the four selected kits for RNA extraction for the testing and detection of SARS-CoV-2 on food packaging surfaces, food surfaces, and in food. This will enable to indicate the possibility of infection through contact or direct food consumption.</p><p><strong>Experimental approach: </strong>Finding the best technique is vital as RNA extraction is one of the essential elements in detecting SARS-CoV-2. This was achieved through an experiment with four commercial kits following the original manufacturers' protocols, and with a modification of the original protocols that included the use of ethanol and isopropanol. The selected kit was used for RNA extraction from the swabs of packaging surfaces, food surface, and ready-to-eat food samples. The coronavirus was then identified using real-time reverse transcription-polymerase chain reaction (RT-PCR) assays to determine whether the SARS-CoV-2 virus or viral particles are present in the food chain with the overall purpose of demonstrating the possibility that food can contribute as a vehicle for the transmission of the virus.</p><p><strong>Results and conclusions: </strong>The findings of this investigation made the most effective extraction kit and protocol stand out. The results of the applicability of the kit indicated a significant share of positive samples of viral SARS-CoV-2 virus particles on surfaces from the environment where infected persons with 'silent' COVID-19 infection, with mild symptoms or no symptoms, were present. However, according to the findings of the second part of the study, the virus was not detected on the examined samples of food packaging surfaces, food surfaces, and food.</p><p><strong>Novelty and scientific contribution: </strong>The presented results distinguished one of the most suitable protocols for isolating RNA from environmental surface samples. The main contribution of the study is in the presentation of the results, that is, the examination of samples that are primarily related to the food chain, food packaging, food surfaces, and ready-to-eat food. The results of this study could also be helpful for further determination of the potential of food as a vector for the transmission of coronaviruses.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 2","pages":"250-258"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9881524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.17113/ftb.61.02.23.7802
Noor Nazirahanie Abrahim, Norhaniza Aminudin, Puteri Shafinaz Abdul-Rahman
Research background: Ficus deltoidea (mistletoe fig) is a shrub well known among locals in Malaysia primarily for its treatment of toothaches, colds and wounds. The aim of this study is to determine the potential of leaves, sourced from three different varieties of F. deltoidea, to exhibit antioxidant activity, a reduction of lipid concentration, and protein expression in steatosis-induced liver cell lines.
Experimental approach: The leaves of three F. deltoidea varieties, namely Ficus deltoidea var. angustifolia, Ficus deltoidea var. trengganuensis and Ficus deltoidea var. kunstleri, were subjected to water extraction. The resulting crude extracts were fractionated using water and ethyl acetate. Palmitic acid was used to induce lipid accumulation (steatosis) in human liver (WRL68) cells, before all the samples were tested for their lipid-reducing activity. Several proteomic approaches were incorporated. The changes in protein expression were determined using 2-dimensional gel electrophoresis separation, whereas identification of our protein spots of interest was carried out via matrix-assisted laser desorption/ionization time-of-flight.
Results and conclusions: Ficus deltoidea var. kunstleri alone demonstrated the ability to reduce lipids at the highest tested concentration (200 µg/mL) and was, therefore, used for subsequent experiments. Treatment with Ficus deltoidea var. kunstleri was found to restore redox status by increasing superoxide dismutase and glutathione peroxidase amounts and decreasing malondialdehyde formation. Six proteins were successfully identified; these were heat shock protein beta-1 (HSPB1), proteasome subunit alpha type 1 (PSMA1), glutathione S-transferase omega 1 (GSTO1), peroxiredoxin-1 (PRDX1), histone H2B (HIST1H2BD) and ubiquitin c-terminal hydrolase L3 (UCHL3). Through bioinformatics analysis, it was found that these proteins were significantly involved in specific pathways such as oxidative stress (PRDX1 and GSTO1), protein homeostasis (HSPB1) and degradation (UCHL3 and PSMA1).
Novelty and scientific contribution: F. deltoidea pretreatment was shown to reduce lipid accumulation, thus improving the redox status and protein homeostasis. This suggests the role of F. deltoidea as a preventive mechanism in non-alcohol fatty liver disease.
{"title":"<i>Ficus deltoidea</i> Leaf Alters Oxidative Stress, Protein Homeostasis and Ubiquitin-Proteasome Pathways in Fatty Acid-Induced Cell Line.","authors":"Noor Nazirahanie Abrahim, Norhaniza Aminudin, Puteri Shafinaz Abdul-Rahman","doi":"10.17113/ftb.61.02.23.7802","DOIUrl":"https://doi.org/10.17113/ftb.61.02.23.7802","url":null,"abstract":"<p><strong>Research background: </strong><i>Ficus deltoidea</i> (mistletoe fig) is a shrub well known among locals in Malaysia primarily for its treatment of toothaches, colds and wounds. The aim of this study is to determine the potential of leaves, sourced from three different varieties of <i>F. deltoidea</i>, to exhibit antioxidant activity, a reduction of lipid concentration, and protein expression in steatosis-induced liver cell lines.</p><p><strong>Experimental approach: </strong>The leaves of three <i>F. deltoidea varieties</i>, namely <i>Ficus deltoidea</i> var. <i>angustifolia</i>, <i>Ficus deltoidea</i> var. <i>trengganuensis</i> and <i>Ficus deltoidea</i> var. <i>kunstleri</i>, were subjected to water extraction. The resulting crude extracts were fractionated using water and ethyl acetate. Palmitic acid was used to induce lipid accumulation (steatosis) in human liver (WRL68) cells, before all the samples were tested for their lipid-reducing activity. Several proteomic approaches were incorporated. The changes in protein expression were determined using 2-dimensional gel electrophoresis separation, whereas identification of our protein spots of interest was carried out <i>via</i> matrix-assisted laser desorption/ionization time-of-flight.</p><p><strong>Results and conclusions: </strong><i>Ficus deltoidea</i> var. <i>kunstleri</i> alone demonstrated the ability to reduce lipids at the highest tested concentration (200 µg/mL) and was, therefore, used for subsequent experiments. Treatment with <i>Ficus deltoidea</i> var. <i>kunstleri</i> was found to restore redox status by increasing superoxide dismutase and glutathione peroxidase amounts and decreasing malondialdehyde formation. Six proteins were successfully identified; these were heat shock protein beta-1 (HSPB1), proteasome subunit alpha type 1 (PSMA1), glutathione S-transferase omega 1 (GSTO1), peroxiredoxin-1 (PRDX1), histone H2B (HIST1H2BD) and ubiquitin c-terminal hydrolase L3 (UCHL3). Through bioinformatics analysis, it was found that these proteins were significantly involved in specific pathways such as oxidative stress (PRDX1 and GSTO1), protein homeostasis (HSPB1) and degradation (UCHL3 and PSMA1).</p><p><strong>Novelty and scientific contribution: </strong><i>F. deltoidea</i> pretreatment was shown to reduce lipid accumulation, thus improving the redox status and protein homeostasis. This suggests the role of <i>F. deltoidea</i> as a preventive mechanism in non-alcohol fatty liver disease.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 2","pages":"191-201"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10185275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.17113/ftb.61.01.23.7783
Viral Sagar, MeiLan Hardin, Narendra Kumar, Joan G Lynam
Research background: Mayhaw jelly, made from mayhaw berries from the southern United States, is a popular food product that on processing produces a berry pomace waste. Little information is available in the literature about this waste or how to valorize it. This study investigated this food production waste and its possibilities for conversion to a biofuel.
Experimental approach: Dried mayhaw berry wastes were characterized with fiber analysis using the US National Renewable Energy Laboratory methods. After drying and grinding, hydrothermal carbonization was applied to the mayhaw berry wastes, the mayhaw waste without seeds, and mayhaw waste seeds. Fourier transform infrared spectroscopy (FTIR) was performed on mayhaw berry wastes, mayhaw waste without seeds, and mayhaw waste seeds. Calorimetry revealed the fuel value of each component of the waste and of the dried mayhaw berry wastes without any component separated. Friability testing on pellets of the biomass investigated their durability.
Results and conclusions: Fiber analysis indicated a high proportion of lignin compared to cellulose in the dried mayhaw waste. Hydrothermal carbonization did not enhance the fuel value of the seeds due to their tough outer coat that inhibited hydrothermal carbonization's high ionic-product water penetration. Other mayhaw berry waste samples had enhanced fuel value after treatment at 180 or 250 °C for 5 min, with a higher fuel value attained for 250 °C treatment. After hydrothermal carbonization, the wastes were easily pelletized into durable pellets. Fourier transform infrared spectroscopy characterization indicated raw seeds had high lignin content, as did the hydrothermal carbonization-treated mayhaw berry wastes.
Novelty and scientific contribution: Hydrothermal carbonization is a process not previously applied to mayhaw berry wastes. This study fills in the gaps of this waste biomass' potential to become a biofuel.
{"title":"Characterization and Energy Densification of Mayhaw Jelly Production Wastes Using Hydrothermal Carbonization.","authors":"Viral Sagar, MeiLan Hardin, Narendra Kumar, Joan G Lynam","doi":"10.17113/ftb.61.01.23.7783","DOIUrl":"https://doi.org/10.17113/ftb.61.01.23.7783","url":null,"abstract":"<p><strong>Research background: </strong>Mayhaw jelly, made from mayhaw berries from the southern United States, is a popular food product that on processing produces a berry pomace waste. Little information is available in the literature about this waste or how to valorize it. This study investigated this food production waste and its possibilities for conversion to a biofuel.</p><p><strong>Experimental approach: </strong>Dried mayhaw berry wastes were characterized with fiber analysis using the US National Renewable Energy Laboratory methods. After drying and grinding, hydrothermal carbonization was applied to the mayhaw berry wastes, the mayhaw waste without seeds, and mayhaw waste seeds. Fourier transform infrared spectroscopy (FTIR) was performed on mayhaw berry wastes, mayhaw waste without seeds, and mayhaw waste seeds. Calorimetry revealed the fuel value of each component of the waste and of the dried mayhaw berry wastes without any component separated. Friability testing on pellets of the biomass investigated their durability.</p><p><strong>Results and conclusions: </strong>Fiber analysis indicated a high proportion of lignin compared to cellulose in the dried mayhaw waste. Hydrothermal carbonization did not enhance the fuel value of the seeds due to their tough outer coat that inhibited hydrothermal carbonization's high ionic-product water penetration. Other mayhaw berry waste samples had enhanced fuel value after treatment at 180 or 250 °C for 5 min, with a higher fuel value attained for 250 °C treatment. After hydrothermal carbonization, the wastes were easily pelletized into durable pellets. Fourier transform infrared spectroscopy characterization indicated raw seeds had high lignin content, as did the hydrothermal carbonization-treated mayhaw berry wastes.</p><p><strong>Novelty and scientific contribution: </strong>Hydrothermal carbonization is a process not previously applied to mayhaw berry wastes. This study fills in the gaps of this waste biomass' potential to become a biofuel.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 1","pages":"118-126"},"PeriodicalIF":2.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Road to Sustainability: How Can An Academic Journal Contribute to Sustainable Development Goals.","authors":"Iva Grabarić Andonovski","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 1","pages":"2-3"},"PeriodicalIF":2.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.17113/ftb.61.01.23.7538
Nor Shariffa Yussof, Tan Chin Ping, Tan Tai Boon, Uthumporn Utra, Muhammad Ezzudin Ramli
<p><strong>Research background: </strong>Various approaches have been used to present functional lipids including lycopene in a palatable food form to consumers. However, being highly hydrophobic, lycopene is insoluble in aqueous systems and has a limited bioavailability in the body. Lycopene nanodispersion is expected to improve the properties of lycopene, but its stability and bioaccessibility are also affected by emulsifier type and environmental conditions such as pH, ionic strength and temperature.</p><p><strong>Experimental approach: </strong>The influence of soy lecithin, sodium caseinate and soy lecithin/sodium caseinate at 1:1 ratio on the physicochemical properties and stability of lycopene nanodispersion prepared using the emulsification-evaporation methods before and after treatment at different pH, ionic strength and temperature were investigated. The <i>in vitro</i> bioaccessibility of the nanodispersions was also studied.</p><p><strong>Results and conclusion: </strong>Under neutral pH conditions, nanodispersion stabilized with soy lecithin had the highest physical stability and the smallest particle size (78 nm), the lowest polydispersity index (PDI) value (0.180) and highest zeta potential (-64 mV) but the lowest lycopene concentration (1.826 mg/100 mL). Conversely, nanodispersion stabilized with sodium caseinate had the lowest physical stability. Combining the soy lecithin with sodium caseinate at 1:1 ratio resulted in a physically stable lycopene nanodispersion with the highest lycopene concentration (2.656 mg/100 mL). The lycopene nanodispersion produced by soy lecithin also had high physical stability under different pH range (pH=2-8) where the particle size, PDI and zeta potential remained fairly consistent. The nanodispersion containing sodium caseinate was unstable and droplet aggregation occurred when the pH was reduced close to the isoelectric point of sodium caseinate (pH=4-5). The particle size and PDI value of nanodispersion stabilized with soy lecithin and sodium caseinate mixture increased sharply when the NaCl concentration increased above 100 mM, while the soy lecithin and sodium caseinate counterparts were more stable. All of the nanodispersions showed good stability with respect to temperature changes (30-100 °C) except for the one stabilized by sodium caseinate, which exhibited an increased particle size when heated to above 60 °C. The combination of soy lecithin and sodium caseinate was found to increase the bioaccessibility of the lycopene nanodispersion. The physicochemical properties, stability and extent of the lycopene nanodispersion digestion highly depend on the emulsifier type.</p><p><strong>Novelty and scientific contribution: </strong>Producing a nanodispersion is considered one of the best ways to overcome the poor water solubility, stability and bioavailability issues of lycopene. Currently, studies related to lycopene-fortified delivery systems, particularly in the form of nanodispersion, are still
{"title":"Influence of Soy Lecithin and Sodium Caseinate on The Stability and <i>in vitro</i> Bioaccessibility of Lycopene Nanodispersion.","authors":"Nor Shariffa Yussof, Tan Chin Ping, Tan Tai Boon, Uthumporn Utra, Muhammad Ezzudin Ramli","doi":"10.17113/ftb.61.01.23.7538","DOIUrl":"https://doi.org/10.17113/ftb.61.01.23.7538","url":null,"abstract":"<p><strong>Research background: </strong>Various approaches have been used to present functional lipids including lycopene in a palatable food form to consumers. However, being highly hydrophobic, lycopene is insoluble in aqueous systems and has a limited bioavailability in the body. Lycopene nanodispersion is expected to improve the properties of lycopene, but its stability and bioaccessibility are also affected by emulsifier type and environmental conditions such as pH, ionic strength and temperature.</p><p><strong>Experimental approach: </strong>The influence of soy lecithin, sodium caseinate and soy lecithin/sodium caseinate at 1:1 ratio on the physicochemical properties and stability of lycopene nanodispersion prepared using the emulsification-evaporation methods before and after treatment at different pH, ionic strength and temperature were investigated. The <i>in vitro</i> bioaccessibility of the nanodispersions was also studied.</p><p><strong>Results and conclusion: </strong>Under neutral pH conditions, nanodispersion stabilized with soy lecithin had the highest physical stability and the smallest particle size (78 nm), the lowest polydispersity index (PDI) value (0.180) and highest zeta potential (-64 mV) but the lowest lycopene concentration (1.826 mg/100 mL). Conversely, nanodispersion stabilized with sodium caseinate had the lowest physical stability. Combining the soy lecithin with sodium caseinate at 1:1 ratio resulted in a physically stable lycopene nanodispersion with the highest lycopene concentration (2.656 mg/100 mL). The lycopene nanodispersion produced by soy lecithin also had high physical stability under different pH range (pH=2-8) where the particle size, PDI and zeta potential remained fairly consistent. The nanodispersion containing sodium caseinate was unstable and droplet aggregation occurred when the pH was reduced close to the isoelectric point of sodium caseinate (pH=4-5). The particle size and PDI value of nanodispersion stabilized with soy lecithin and sodium caseinate mixture increased sharply when the NaCl concentration increased above 100 mM, while the soy lecithin and sodium caseinate counterparts were more stable. All of the nanodispersions showed good stability with respect to temperature changes (30-100 °C) except for the one stabilized by sodium caseinate, which exhibited an increased particle size when heated to above 60 °C. The combination of soy lecithin and sodium caseinate was found to increase the bioaccessibility of the lycopene nanodispersion. The physicochemical properties, stability and extent of the lycopene nanodispersion digestion highly depend on the emulsifier type.</p><p><strong>Novelty and scientific contribution: </strong>Producing a nanodispersion is considered one of the best ways to overcome the poor water solubility, stability and bioavailability issues of lycopene. Currently, studies related to lycopene-fortified delivery systems, particularly in the form of nanodispersion, are still","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 1","pages":"39-50"},"PeriodicalIF":2.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9490136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research background: Sourdough is a spontaneously formed, complex microbial ecosystem of various lactic acid bacteria (LAB) and yeast which, by producing specific metabolites, determines the quality of the baked products. In order to design and control the sourdough with preferred nutritional characteristics, it is crucial that the LAB diversity of the product of interest be elucidated.
Experimental approach: Using the opportunities of next-generation sequencing (NGS) of the V1-V3 hypervariable gene region of 16S rRNA, we studied the microbial ecosystem of a whole grain sourdough made of Triticum monococcum, originating from Southwestern Bulgaria. Since the DNA extraction method is considered crucial for the accuracy of the sequencing results, as it can introduce significant differences in the examined microbiota, we used three different commercial kits for DNA isolation and analyzed their impact on the observed bacterial diversity.
Results and conclusions: All three DNA extraction kits provided bacterial DNA which passed quality control and was successfully sequenced on Illumina MiSeq platform. The results received from the different DNA protocols showed variations in the microbial profiles. Alpha diversity indices (ACE, Chao1, Shannon, and Simpson) were also different among the three groups of results. Nevertheless, a strong dominance of phylum Firmicutes, class Bacilli, order Lactobacillales, represented mostly by family Lactobacillaceae, genus Lactobacillus (relative abundance of 63.11-82.28%) and family Leuconostocaceae, genus Weissella (relative abundance of 3.67-36.31%) was observed. Lactiplantibacillus plantarum and Levilactobacillus brevis with relative abundance of 16.15-31.24% and 6.21-16.29% respectively, were the two dominant species identified in all three DNA isolates.
Novelty and scientific contribution: The presented results give insight into the taxonomic composition of bacterial community of a specific Bulgarian sourdough. Having in mind that the sourdough is a difficult matrix for DNA isolation on the one hand, and that there is no standardized DNA extraction protocol for this matrix on the other hand, this pilot study aims to give a small contribution to the future establishment and validation of such a protocol, which will allow accurate assessment of the specific microbiota of sourdough samples.
{"title":"Identification of Bulgarian Sourdough Microbiota by Metagenomic Approach Using Three Commercially Available DNA Extraction Protocols.","authors":"Ivelina Vassileva, Vesselin Baev, Galina Yahubyan, Elena Apostolova-Kuzova, Angel Angelov, Miglena Koprinarova","doi":"10.17113/ftb.61.01.23.7796","DOIUrl":"https://doi.org/10.17113/ftb.61.01.23.7796","url":null,"abstract":"<p><strong>Research background: </strong>Sourdough is a spontaneously formed, complex microbial ecosystem of various lactic acid bacteria (LAB) and yeast which, by producing specific metabolites, determines the quality of the baked products. In order to design and control the sourdough with preferred nutritional characteristics, it is crucial that the LAB diversity of the product of interest be elucidated.</p><p><strong>Experimental approach: </strong>Using the opportunities of next-generation sequencing (NGS) of the V1-V3 hypervariable gene region of 16S rRNA, we studied the microbial ecosystem of a whole grain sourdough made of <i>Triticum monococcum</i>, originating from Southwestern Bulgaria. Since the DNA extraction method is considered crucial for the accuracy of the sequencing results, as it can introduce significant differences in the examined microbiota, we used three different commercial kits for DNA isolation and analyzed their impact on the observed bacterial diversity.</p><p><strong>Results and conclusions: </strong>All three DNA extraction kits provided bacterial DNA which passed quality control and was successfully sequenced on Illumina MiSeq platform. The results received from the different DNA protocols showed variations in the microbial profiles. Alpha diversity indices (ACE, Chao1, Shannon, and Simpson) were also different among the three groups of results. Nevertheless, a strong dominance of phylum Firmicutes, class Bacilli, order Lactobacillales, represented mostly by family Lactobacillaceae, genus <i>Lactobacillus</i> (relative abundance of 63.11-82.28%) and family Leuconostocaceae, genus <i>Weissella</i> (relative abundance of 3.67-36.31%) was observed. <i>Lactiplantibacillus plantarum</i> and <i>Levilactobacillus brevis</i> with relative abundance of 16.15-31.24% and 6.21-16.29% respectively, were the two dominant species identified in all three DNA isolates.</p><p><strong>Novelty and scientific contribution: </strong>The presented results give insight into the taxonomic composition of bacterial community of a specific Bulgarian sourdough. Having in mind that the sourdough is a difficult matrix for DNA isolation on the one hand, and that there is no standardized DNA extraction protocol for this matrix on the other hand, this pilot study aims to give a small contribution to the future establishment and validation of such a protocol, which will allow accurate assessment of the specific microbiota of sourdough samples.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 1","pages":"138-147"},"PeriodicalIF":2.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9492881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acetic acid bacteria (AAB) are microorganisms widely distributed in nature. Although this group is involved in the spoilage of some foods, AAB are of great industrial interest, and their functionality is still poorly understood. AAB convert ethanol, sugars and polyols into various organic acids, aldehydes and ketones via oxidative fermentation. These metabolites are produced during a succession of biochemical reactions in various fermented foods and beverages, such as vinegar, kombucha, water kefir, lambic and cocoa. Furthermore, important products such as gluconic acid and ascorbic acid precursors can be produced industrially from their metabolism. The development of new AAB-fermented fruit drinks with healthy and functional properties is an interesting niche for research and the food industry to explore, as it can meet the needs of a wide range of consumers. Exopolysaccharides such as levan and bacterial cellulose have unique properties, but they need to be produced on a larger scale to expand their applications in this area. This work emphasizes the importance and applications of AAB during the fermentation of various foods, their role in the development of new beverages as well as numerous applications of levan and bacterial cellulose.
{"title":"Role of Acetic Acid Bacteria in Food and Beverages.","authors":"Natália Norika Yassunaka Hata, Monica Surek, Daniele Sartori, Rodrigo Vassoler Serrato, Wilma Aparecida Spinosa","doi":"10.17113/ftb.61.01.23.7811","DOIUrl":"https://doi.org/10.17113/ftb.61.01.23.7811","url":null,"abstract":"<p><p>Acetic acid bacteria (AAB) are microorganisms widely distributed in nature. Although this group is involved in the spoilage of some foods, AAB are of great industrial interest, and their functionality is still poorly understood. AAB convert ethanol, sugars and polyols into various organic acids, aldehydes and ketones <i>via</i> oxidative fermentation. These metabolites are produced during a succession of biochemical reactions in various fermented foods and beverages, such as vinegar, kombucha, water kefir, lambic and cocoa. Furthermore, important products such as gluconic acid and ascorbic acid precursors can be produced industrially from their metabolism. The development of new AAB-fermented fruit drinks with healthy and functional properties is an interesting niche for research and the food industry to explore, as it can meet the needs of a wide range of consumers. Exopolysaccharides such as levan and bacterial cellulose have unique properties, but they need to be produced on a larger scale to expand their applications in this area. This work emphasizes the importance and applications of AAB during the fermentation of various foods, their role in the development of new beverages as well as numerous applications of levan and bacterial cellulose.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"61 1","pages":"85-103"},"PeriodicalIF":2.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9490141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}