Pub Date : 2025-01-10eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1532018
Ye-Xuan Zhen, Gong Wang, Yun-Fei Li, Yu Yu
Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection. The paper thoroughly examines the advancements made in the field of NG-based self-powered gas sensor research in recent years. A systematic description is given of the two main types of NG-based self-powered gas sensors. Lastly, the evolution of sensor use in a few typical gas sensing applications is highlighted, and the field's future development trend is anticipated.
{"title":"Nanogenerators for gas sensing applications.","authors":"Ye-Xuan Zhen, Gong Wang, Yun-Fei Li, Yu Yu","doi":"10.3389/fchem.2024.1532018","DOIUrl":"10.3389/fchem.2024.1532018","url":null,"abstract":"<p><p>Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection. The paper thoroughly examines the advancements made in the field of NG-based self-powered gas sensor research in recent years. A systematic description is given of the two main types of NG-based self-powered gas sensors. Lastly, the evolution of sensor use in a few typical gas sensing applications is highlighted, and the field's future development trend is anticipated.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1532018"},"PeriodicalIF":3.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triboelectric nanogenerators (TENGs) have attracted great attention due to the simple manufacturing process, low cost, and diverse forms of energy harvesting. However, the energy collected by individual TENG is relatively limited, making it necessary to develop new method to enhance the energy harvesting capability of TENG. Here, we design a hybridized TENG that integrates a droplet-driven TENG and a wind-driven TENG, which exhibits excellent electrical performance. Under the simulated environment of medium rain with medium breeze, the hybridized TENG generates an output voltage of 95.10 V, a maximum average power of 18.15 μW, an energy of 181.54 μJ in 10 s, and charges a 1 μF capacitor to 43.29 V in 120 s. This work enables the harvesting of dispersed wind and droplet energy from the environment, providing new ideas and possibilities for online monitoring in remote areas and the construction of Internet of Things systems.
{"title":"Hybridized triboelectric nanogenerators for simultaneously scavenging droplet and wind energies.","authors":"Chaosheng Hu, Chengmin Bao, Yang Liu, Yingzhan Yan, Yanan Bai, Qian Xu","doi":"10.3389/fchem.2024.1538660","DOIUrl":"10.3389/fchem.2024.1538660","url":null,"abstract":"<p><p>Triboelectric nanogenerators (TENGs) have attracted great attention due to the simple manufacturing process, low cost, and diverse forms of energy harvesting. However, the energy collected by individual TENG is relatively limited, making it necessary to develop new method to enhance the energy harvesting capability of TENG. Here, we design a hybridized TENG that integrates a droplet-driven TENG and a wind-driven TENG, which exhibits excellent electrical performance. Under the simulated environment of medium rain with medium breeze, the hybridized TENG generates an output voltage of 95.10 V, a maximum average power of 18.15 μW, an energy of 181.54 μJ in 10 s, and charges a 1 μF capacitor to 43.29 V in 120 s. This work enables the harvesting of dispersed wind and droplet energy from the environment, providing new ideas and possibilities for online monitoring in remote areas and the construction of Internet of Things systems.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1538660"},"PeriodicalIF":3.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1503593
Ojochenemi A Enejoh, Chinelo H Okonkwo, Hector Nortey, Olalekan A Kemiki, Ainembabazi Moses, Florence N Mbaoji, Abdulrazak S Yusuf, Olaitan I Awe
Introduction: Treatment of type 2 diabetes (T2D) remains a significant challenge because of its multifactorial nature and complex metabolic pathways. There is growing interest in finding new therapeutic targets that could lead to safer and more effective treatment options. Takeda G protein-coupled receptor 5 (TGR5) is a promising antidiabetic target that plays a key role in metabolic regulation, especially in glucose homeostasis and energy expenditure. TGR5 agonists are attractive candidates for T2D therapy because of their ability to improve glycemic control. This study used machine learning-based models (ML), molecular docking (MD), and molecular dynamics simulations (MDS) to explore novel small molecules as potential TGR5 agonists.
Methods: Bioactivity data for known TGR5 agonists were obtained from the ChEMBL database. The dataset was cleaned and molecular descriptors based on Lipinski's rule of five were selected as input features for the ML model, which was built using the Random Forest algorithm. The optimized ML model was used to screen the COCONUT database and predict potential TGR5 agonists based on their molecular features. 6,656 compounds predicted from the COCONUT database were docked within the active site of TGR5 to calculate their binding energies. The four top-scoring compounds with the lowest binding energies were selected and their activities were compared to those of the co-crystallized ligand. A 100 ns MDS was used to assess the binding stability of the compounds to TGR5.
Results: Molecular docking results showed that the lead compounds had a stronger affinity for TGR5 than the cocrystallized ligand. MDS revealed that the lead compounds were stable within the TGR5 binding pocket.
Discussion: The combination of ML, MD, and MDS provides a powerful approach for predicting new TGR5 agonists that can be optimised for T2D treatment.
{"title":"Machine learning and molecular dynamics simulations predict potential TGR5 agonists for type 2 diabetes treatment.","authors":"Ojochenemi A Enejoh, Chinelo H Okonkwo, Hector Nortey, Olalekan A Kemiki, Ainembabazi Moses, Florence N Mbaoji, Abdulrazak S Yusuf, Olaitan I Awe","doi":"10.3389/fchem.2024.1503593","DOIUrl":"10.3389/fchem.2024.1503593","url":null,"abstract":"<p><strong>Introduction: </strong>Treatment of type 2 diabetes (T2D) remains a significant challenge because of its multifactorial nature and complex metabolic pathways. There is growing interest in finding new therapeutic targets that could lead to safer and more effective treatment options. Takeda G protein-coupled receptor 5 (TGR5) is a promising antidiabetic target that plays a key role in metabolic regulation, especially in glucose homeostasis and energy expenditure. TGR5 agonists are attractive candidates for T2D therapy because of their ability to improve glycemic control. This study used machine learning-based models (ML), molecular docking (MD), and molecular dynamics simulations (MDS) to explore novel small molecules as potential TGR5 agonists.</p><p><strong>Methods: </strong>Bioactivity data for known TGR5 agonists were obtained from the ChEMBL database. The dataset was cleaned and molecular descriptors based on Lipinski's rule of five were selected as input features for the ML model, which was built using the Random Forest algorithm. The optimized ML model was used to screen the COCONUT database and predict potential TGR5 agonists based on their molecular features. 6,656 compounds predicted from the COCONUT database were docked within the active site of TGR5 to calculate their binding energies. The four top-scoring compounds with the lowest binding energies were selected and their activities were compared to those of the co-crystallized ligand. A 100 ns MDS was used to assess the binding stability of the compounds to TGR5.</p><p><strong>Results: </strong>Molecular docking results showed that the lead compounds had a stronger affinity for TGR5 than the cocrystallized ligand. MDS revealed that the lead compounds were stable within the TGR5 binding pocket.</p><p><strong>Discussion: </strong>The combination of ML, MD, and MDS provides a powerful approach for predicting new TGR5 agonists that can be optimised for T2D treatment.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1503593"},"PeriodicalIF":3.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C. Spanion B (1-2) and seven known saponins (3-9). The cytotoxicity of these compounds on human cancer cell lines was analyzed using MTT method. Compounds 6 and 9 exhibit cytotoxicity towards these three types of human cancer cells (<10 μM). By utilizing the SEA platform for target prediction, a common tumor related target CD81 was identified. The molecular docking of saponins 1, 2, 6, and 9 with CD81 protein showed strong binding affinities ranging from -4.5 to -7.1 kcal/mol. Research has shown that these compounds can become potential anti-tumor drugs. Further research is still recommended to understand its exact molecular mechanism and toxicological effects.
{"title":"Two previously undescribed triterpenoid saponins from the roots and rhizomes of <i>Caulophyllum robustum</i> Maxim.","authors":"Cong-Yu Zhang, Yu-Mei Wang, Peng-Cheng Qiu, Jia-Yu Feng, Bing-Wen Wang, Yu Cao, Yi-Sha Wei, Yi-Tong Zhou, Hai-Feng Tang, Yun-Yang Lu, Qian Zhang","doi":"10.3389/fchem.2024.1507891","DOIUrl":"10.3389/fchem.2024.1507891","url":null,"abstract":"<p><p>Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C. Spanion B (1-2) and seven known saponins (3-9). The cytotoxicity of these compounds on human cancer cell lines was analyzed using MTT method. Compounds 6 and 9 exhibit cytotoxicity towards these three types of human cancer cells (<10 μM). By utilizing the SEA platform for target prediction, a common tumor related target CD81 was identified. The molecular docking of saponins 1, 2, 6, and 9 with CD81 protein showed strong binding affinities ranging from -4.5 to -7.1 kcal/mol. Research has shown that these compounds can become potential anti-tumor drugs. Further research is still recommended to understand its exact molecular mechanism and toxicological effects.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1507891"},"PeriodicalIF":3.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1548415
Yong-Ho Choa
{"title":"Editorial: Energy and environmental sustainability through electrochemistry in South Korea.","authors":"Yong-Ho Choa","doi":"10.3389/fchem.2024.1548415","DOIUrl":"https://doi.org/10.3389/fchem.2024.1548415","url":null,"abstract":"","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1548415"},"PeriodicalIF":3.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noninvasive diagnosis of human diseases relies on the detection of molecular markers (probes) in a painless manner. Although extrinsic and intrinsic molecular markers are often used, intrinsic disease probes (molecular markers) are preferable because they are naturally present in our body, and deviation in their concentration from normal levels clearly indicates anomalies in human bodies, that is, diseases. In this study, we report noninvasive spectroscopic measurements of total haemoglobin (Hb), bilirubin, and the ratio of oxy- and deoxyhaemoglobin as disease markers for anaemia, jaundice, and oxygen deficiency, respectively, using a meticulously designed optical fibre probe. The challenges in designing the fibre probe for simultaneous noninvasive detection, including optical power, spectral density of the probing light, and resolution of the spectrometer, were found to be critical to accurate measurements. Finally, a fibre-less, highly portable, and low-cost prototype was developed and tested in human clinical trials for the diagnosis of diseases, and these results were compared with conventional techniques (blood tests).
{"title":"Challenges in \"probing spectroscopic probes\" for noninvasive simultaneous disease diagnosis.","authors":"Lopamudra Roy, Shweta Paul, Amrita Banerjee, Ria Ghosh, Susmita Mondal, Monojit Das, Nivedita Pan, Ishitri Das, Soumendra Singh, Debasish Bhattacharya, Asim Kumar Mallick, Samir Kumar Pal","doi":"10.3389/fchem.2024.1463273","DOIUrl":"10.3389/fchem.2024.1463273","url":null,"abstract":"<p><p>Noninvasive diagnosis of human diseases relies on the detection of molecular markers (probes) in a painless manner. Although extrinsic and intrinsic molecular markers are often used, intrinsic disease probes (molecular markers) are preferable because they are naturally present in our body, and deviation in their concentration from normal levels clearly indicates anomalies in human bodies, that is, diseases. In this study, we report noninvasive spectroscopic measurements of total haemoglobin (Hb), bilirubin, and the ratio of oxy- and deoxyhaemoglobin as disease markers for anaemia, jaundice, and oxygen deficiency, respectively, using a meticulously designed optical fibre probe. The challenges in designing the fibre probe for simultaneous noninvasive detection, including optical power, spectral density of the probing light, and resolution of the spectrometer, were found to be critical to accurate measurements. Finally, a fibre-less, highly portable, and low-cost prototype was developed and tested in human clinical trials for the diagnosis of diseases, and these results were compared with conventional techniques (blood tests).</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1463273"},"PeriodicalIF":3.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1546987
James Clark
{"title":"Editorial: Green chemistry and the consumer: towards greener consumer products.","authors":"James Clark","doi":"10.3389/fchem.2024.1546987","DOIUrl":"https://doi.org/10.3389/fchem.2024.1546987","url":null,"abstract":"","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1546987"},"PeriodicalIF":3.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1546377
James Clark
{"title":"Editorial: Green and sustainable chemistry editor's pick 2024.","authors":"James Clark","doi":"10.3389/fchem.2024.1546377","DOIUrl":"https://doi.org/10.3389/fchem.2024.1546377","url":null,"abstract":"","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1546377"},"PeriodicalIF":3.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1484610
Maoping Kang, Yongli Pei, Ying Zhang, Lihong Su, Yuxiang Li, Hongyu Wang
A highly efficient and widely applicable adsorbent for the removal of methylene blue (MB) was created using nitrogen-doped and reduced graphene oxide (NRGO). The effects of NRGO mass, pH, contact time, and the initial MB concentration on the adsorption properties of MB onto NRGO were investigated. The results showed that the adsorption behavior remained stable within the pH range of 2.0-10.0, and the adsorption process gradually reached equilibrium after 24 h. Additionally, the adsorption kinetics and adsorption isotherms were discussed to propose a theoretical adsorption mechanism. Meanwhile, some characterizations including Scanning Electron Microscopy, Energy Disperse X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Powder Diffraction, Fourier Transform Infrared Spectroscopy, etc. were used to explore potential adsorption mechanism, which indicated the physisorption caused by π-π bonds was the main adsorption mechanism. NRGO exhibits efficient MB absorption and holds significant potential application for the wastewater treatment.
{"title":"Nitrogen-doped reduced graphene oxide for high efficient adsorption of methylene blue.","authors":"Maoping Kang, Yongli Pei, Ying Zhang, Lihong Su, Yuxiang Li, Hongyu Wang","doi":"10.3389/fchem.2024.1484610","DOIUrl":"https://doi.org/10.3389/fchem.2024.1484610","url":null,"abstract":"<p><p>A highly efficient and widely applicable adsorbent for the removal of methylene blue (MB) was created using nitrogen-doped and reduced graphene oxide (NRGO). The effects of NRGO mass, pH, contact time, and the initial MB concentration on the adsorption properties of MB onto NRGO were investigated. The results showed that the adsorption behavior remained stable within the pH range of 2.0-10.0, and the adsorption process gradually reached equilibrium after 24 h. Additionally, the adsorption kinetics and adsorption isotherms were discussed to propose a theoretical adsorption mechanism. Meanwhile, some characterizations including Scanning Electron Microscopy, Energy Disperse X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Powder Diffraction, Fourier Transform Infrared Spectroscopy, etc. were used to explore potential adsorption mechanism, which indicated the physisorption caused by π-π bonds was the main adsorption mechanism. NRGO exhibits efficient MB absorption and holds significant potential application for the wastewater treatment.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1484610"},"PeriodicalIF":3.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06eCollection Date: 2024-01-01DOI: 10.3389/fchem.2024.1493571
Tiefeng Peng, Yangyang Huai
Introduction: Whether in industrial production or daily life, froth plays an important role in many processes. Sometimes, froth exists as a necessity and is also regarded as the typical characteristic of products, e.g., froth on shampoo. Froth often makes an important contribution to product performance, such as in cleaning operations. On the other hand, froth may destroy the production process, such as in the textile and paper industry. Another example, ultra-stable froth accumulates on the thickener from flotation brings a series of difficulties to pumping, settling and dewatering operations, and would lead to pollution to the industrial circulating water treatment, thus it must be prevented.
Methods: In this work, the factors affecting the stability of froth, and relationship of bubble coalescence and film rupture was investigated, and molecular simulations (MD) were performed to study the aqueous molecular formation and surface characteristics of thin films between bubbles that contribute to the froth stability.
Results: The detailed interfacial structure, molecular formation along Z-axis, angle distribution within the first and second layer, and also critical thickness were studied and discussed. The film rupture was validated and interpreted by the water-water interactions within the thin film, and these surface interactions were also examined using binding energy, dipole autocorrelation function (DAF). These simulations explicitly utilize polarizable potential model, incorporating many-body interactions, in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior.
Discussion: The results provide beneficial insight for ultra-stable removal from microscopic view, and have direct benefits in dissolved air flotation used in mining industry, to develop efficient and sustainable processes for industries to minimize water and chemical usage.
{"title":"Surface characteristics and molecular interactions of thin films between bubbles by molecular simulations.","authors":"Tiefeng Peng, Yangyang Huai","doi":"10.3389/fchem.2024.1493571","DOIUrl":"https://doi.org/10.3389/fchem.2024.1493571","url":null,"abstract":"<p><strong>Introduction: </strong>Whether in industrial production or daily life, froth plays an important role in many processes. Sometimes, froth exists as a necessity and is also regarded as the typical characteristic of products, e.g., froth on shampoo. Froth often makes an important contribution to product performance, such as in cleaning operations. On the other hand, froth may destroy the production process, such as in the textile and paper industry. Another example, ultra-stable froth accumulates on the thickener from flotation brings a series of difficulties to pumping, settling and dewatering operations, and would lead to pollution to the industrial circulating water treatment, thus it must be prevented.</p><p><strong>Methods: </strong>In this work, the factors affecting the stability of froth, and relationship of bubble coalescence and film rupture was investigated, and molecular simulations (MD) were performed to study the aqueous molecular formation and surface characteristics of thin films between bubbles that contribute to the froth stability.</p><p><strong>Results: </strong>The detailed interfacial structure, molecular formation along <i>Z</i>-axis, angle distribution within the first and second layer, and also critical thickness were studied and discussed. The film rupture was validated and interpreted by the water-water interactions within the thin film, and these surface interactions were also examined using binding energy, dipole autocorrelation function (DAF). These simulations explicitly utilize polarizable potential model, incorporating many-body interactions, in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior.</p><p><strong>Discussion: </strong>The results provide beneficial insight for ultra-stable removal from microscopic view, and have direct benefits in dissolved air flotation used in mining industry, to develop efficient and sustainable processes for industries to minimize water and chemical usage.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1493571"},"PeriodicalIF":3.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}