IntroductionRural domestic sewage treatment is an important starting point to improve the quality of the rural ecological environment, an important part of new rural construction, and an inherent requirement to promote rural economic development. The operation of rural sewage treatment facilities is not good, and there is a lack of long-term operation guarantees and supervision mechanisms. It is urgent to carry out research on the evaluation index system, evaluation method, and evaluation benchmark of the operational effectiveness of rural sewage treatment facilities.MethodsThis article used rural sewage treatment facilities in a city in northern China as the research object and constructed an evaluation method for the operational effectiveness of rural sewage treatment facilities. This study selected evaluation indexes from three perspectives, namely, economy, technology, and management, which are divided into two stages, namely, planning and operation. A judgment matrix was constructed using the analytic hierarchy process (AHP), and index weights were calculated using Yaahp10.3 software to determine the evaluation criteria. Fifteen rural sewage treatment plant stations were selected to evaluate their planning and operation effectiveness.ResultsThe results of the weight assignment show that the weight of the COD removal rate, operating load rate, and operating cost indexes are high, which is in line with the actual evaluation of the effectiveness of rural sewage treatment facilities at different stages. The empirical calculation results showed that the rural sewage treatment facilities have a comprehensive score of more than 80 points in 7 cases and 60–80 points in 8 cases, with an average score of 79.05 points; the overall performance of the score in the operation stage was better than that in the planning stage, and the overall operation effect was good.DiscussionThe calculation results were consistent with the actual operation, verifying the scientific nature and availability of the selected indices, the evaluation method constructed, and the evaluation benchmark determined. The research results can provide technical methods for evaluating the operational effectiveness of rural sewage treatment facilities in similar areas and provide technical support for the planning, design, optimization, upgrading, and transformation of rural sewage treatment plants.
{"title":"Construction of an evaluation system for the effectiveness of rural sewage treatment facilities and empirical research","authors":"Yuxiao He, Lu Yang, Huashan Xu, Xu Han, Changlei Sun, Yanming Di, Tongqian Zhao","doi":"10.3389/fenvs.2024.1430068","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1430068","url":null,"abstract":"IntroductionRural domestic sewage treatment is an important starting point to improve the quality of the rural ecological environment, an important part of new rural construction, and an inherent requirement to promote rural economic development. The operation of rural sewage treatment facilities is not good, and there is a lack of long-term operation guarantees and supervision mechanisms. It is urgent to carry out research on the evaluation index system, evaluation method, and evaluation benchmark of the operational effectiveness of rural sewage treatment facilities.MethodsThis article used rural sewage treatment facilities in a city in northern China as the research object and constructed an evaluation method for the operational effectiveness of rural sewage treatment facilities. This study selected evaluation indexes from three perspectives, namely, economy, technology, and management, which are divided into two stages, namely, planning and operation. A judgment matrix was constructed using the analytic hierarchy process (AHP), and index weights were calculated using Yaahp10.3 software to determine the evaluation criteria. Fifteen rural sewage treatment plant stations were selected to evaluate their planning and operation effectiveness.ResultsThe results of the weight assignment show that the weight of the COD removal rate, operating load rate, and operating cost indexes are high, which is in line with the actual evaluation of the effectiveness of rural sewage treatment facilities at different stages. The empirical calculation results showed that the rural sewage treatment facilities have a comprehensive score of more than 80 points in 7 cases and 60–80 points in 8 cases, with an average score of 79.05 points; the overall performance of the score in the operation stage was better than that in the planning stage, and the overall operation effect was good.DiscussionThe calculation results were consistent with the actual operation, verifying the scientific nature and availability of the selected indices, the evaluation method constructed, and the evaluation benchmark determined. The research results can provide technical methods for evaluating the operational effectiveness of rural sewage treatment facilities in similar areas and provide technical support for the planning, design, optimization, upgrading, and transformation of rural sewage treatment plants.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"6 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Field observations have confirmed that halide ions are widely distributed among aerosols from the marine boundary layer and on the surfaces of ice and snow in polar regions. Consequently, the coexistence of halide ions may play a more significant role in nitrate photolysis than previously thought. In this study, we simultaneously measured HONO, NO2, and NO2−in situ to gain a deeper understanding of the coexisting system, including the photogenerated nitrogen products and the effects on nitrate photolysis rates due to enhanced aqueous nitrite and HONO transfer rates by halides. The presence of halides significantly increased the photogenerated nitrogen products across various molar ratios ([X–]/[NO3−]) at pH 3.5. By eliminating oxygen flux, the transformation of the primary photogenerated products was affected, resulting in higher concentrations of N(III) as both HONO and NO2−. Experiments involving OH scavengers indicated that the attack from·OH initiated by halides leads to side reactions that enhance nitrate photolysis. Both theoretical calculations and nitrate actinometry were used to determine the photolysis rate of nitrate solutions, which together indicated that the presence of halides enhances nitrate photolysis. A newly developed model was used to determine the HONO transfer rate, finding that the presence of halides ([X–]/[NO3−] = 0.2) enhanced the evaporation of N(III) in solution by factors of 0.68, 0.95, and 1.27 for Cl−, Br−, and I−, respectively. To our knowledge, this is the first determination of halide effects on the mass transfer of HONO. The enhanced nitrate photolysis rate can be attributed to the differential surface effects of halides and parallel reactions initiated via ·OH stemming from nitrate photolysis, with varying rates leading to different quantities of nitrogenous products. Additionally, simultaneous measurements of photoproducts in both gas and condensed phases are recommended to better constrain the rate constants of NO3− photolysis.
{"title":"Enhanced photochemical formation of active nitrogen species from aqueous nitrate in the presence of halide ions","authors":"Yilong Zhao, Chengwei Liu, Xiang Tu, Wenkai Huang, Yu Liu, Hongbo Fu","doi":"10.3389/fenvs.2024.1466512","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1466512","url":null,"abstract":"Field observations have confirmed that halide ions are widely distributed among aerosols from the marine boundary layer and on the surfaces of ice and snow in polar regions. Consequently, the coexistence of halide ions may play a more significant role in nitrate photolysis than previously thought. In this study, we simultaneously measured HONO, NO<jats:sub>2</jats:sub>, and NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup><jats:italic>in situ</jats:italic> to gain a deeper understanding of the coexisting system, including the photogenerated nitrogen products and the effects on nitrate photolysis rates due to enhanced aqueous nitrite and HONO transfer rates by halides. The presence of halides significantly increased the photogenerated nitrogen products across various molar ratios ([X<jats:sup>–</jats:sup>]/[NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>]) at pH 3.5. By eliminating oxygen flux, the transformation of the primary photogenerated products was affected, resulting in higher concentrations of N(III) as both HONO and NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>. Experiments involving OH scavengers indicated that the attack from·OH initiated by halides leads to side reactions that enhance nitrate photolysis. Both theoretical calculations and nitrate actinometry were used to determine the photolysis rate of nitrate solutions, which together indicated that the presence of halides enhances nitrate photolysis. A newly developed model was used to determine the HONO transfer rate, finding that the presence of halides ([X<jats:sup>–</jats:sup>]/[NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>] = 0.2) enhanced the evaporation of N(III) in solution by factors of 0.68, 0.95, and 1.27 for Cl<jats:sup>−</jats:sup>, Br<jats:sup>−</jats:sup>, and I<jats:sup>−</jats:sup>, respectively. To our knowledge, this is the first determination of halide effects on the mass transfer of HONO. The enhanced nitrate photolysis rate can be attributed to the differential surface effects of halides and parallel reactions initiated via ·OH stemming from nitrate photolysis, with varying rates leading to different quantities of nitrogenous products. Additionally, simultaneous measurements of photoproducts in both gas and condensed phases are recommended to better constrain the rate constants of NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> photolysis.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"47 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.3389/fenvs.2024.1404230
Oscar Victor Cardenas-Alegria, Victor Benedito Costa Ferreira, Wylerson Guimarães Noguera, David Tavares Martins, Artur Pedro Martins Neto, Paulo Rógenes Monteiro Pontes, Rosane Barbosa Lopes Cavalcante, Sandy Ingrid Aguiar Alves, Artur Luiz da Costa da Silva, Rosilene Gomes Costa, Edian Franklin Franco de Los Santos, Vasco Ariston de Carvalho Azevedo, Rommel Thiago Juca Ramos
One of the primary challenges in the spread of infectious diseases is the consumption of poorly or untreated water, which is increasingly being used due to the growth of different human activities and the effect of urbanization on freshwater sources, which are often used for consumption purposes. The determination of pathogenic bacteria in freshwater rivers influenced by anthropogenic activities allows for the assessment of the impact these factors have on water quality. Thus, the purpose of this study was to identify the diversity of pathogenic bacteria and virulence genes in the Uraim River in the northern region of Brazil. For this purpose, surface water was collected from five points with varying degrees of anthropogenic impact along the Uraim River. In situ measurements of physicochemical components were conducted, and metagenomic analysis was used for the identification of pathogenic bacteria and virulence genes. Regarding the physicochemical parameters, variability was observed among the different analysis points, as well as diversity among bacteria and virulence genes. Notably, enterobacteria and the ESKAPE group were highlighted among the bacteria, with significant negative associations found between dissolved oxygen and the diversity of virulence genes and between deforestation and population density with the presence of ESKAPE group bacteria.
{"title":"Microbiome analyses of the Uraim River in the Amazon and georeferencing analyses to establish correlation with anthropogenic impacts of land use","authors":"Oscar Victor Cardenas-Alegria, Victor Benedito Costa Ferreira, Wylerson Guimarães Noguera, David Tavares Martins, Artur Pedro Martins Neto, Paulo Rógenes Monteiro Pontes, Rosane Barbosa Lopes Cavalcante, Sandy Ingrid Aguiar Alves, Artur Luiz da Costa da Silva, Rosilene Gomes Costa, Edian Franklin Franco de Los Santos, Vasco Ariston de Carvalho Azevedo, Rommel Thiago Juca Ramos","doi":"10.3389/fenvs.2024.1404230","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1404230","url":null,"abstract":"One of the primary challenges in the spread of infectious diseases is the consumption of poorly or untreated water, which is increasingly being used due to the growth of different human activities and the effect of urbanization on freshwater sources, which are often used for consumption purposes. The determination of pathogenic bacteria in freshwater rivers influenced by anthropogenic activities allows for the assessment of the impact these factors have on water quality. Thus, the purpose of this study was to identify the diversity of pathogenic bacteria and virulence genes in the Uraim River in the northern region of Brazil. For this purpose, surface water was collected from five points with varying degrees of anthropogenic impact along the Uraim River. <jats:italic>In situ</jats:italic> measurements of physicochemical components were conducted, and metagenomic analysis was used for the identification of pathogenic bacteria and virulence genes. Regarding the physicochemical parameters, variability was observed among the different analysis points, as well as diversity among bacteria and virulence genes. Notably, enterobacteria and the ESKAPE group were highlighted among the bacteria, with significant negative associations found between dissolved oxygen and the diversity of virulence genes and between deforestation and population density with the presence of ESKAPE group bacteria.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"213 6 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.3389/fenvs.2024.1411866
Ludan Zhang, Yanbin Qi, Xin Deng
IntroductionChina’s rural financial landscape has long been characterized by exclusion, leaving countless farmers without access to essential financial services. However, the advent of digital financial inclusion presents a promising solution, offering low-cost, high-penetration avenues to bolster agricultural sustainability. This paper unravels how “Byte-Sized Finance” can yield “Bushel-Sized Benefits” in China’s agricultural green development.MethodsMethodologically, we pioneer a novel system to gauge agricultural green development across 31 Chinese provinces spanning from 2013 to 2021. Empirically, employing fixed-effect, mediation effect, and spatial Durbin models.ResultsOur study reveals the intricate pathways through which digital financial inclusion influences agricultural green development. We find that it exerts its impact through the lenses of industrial structure and entrepreneurship, operating at both macro and micro levels. Furthermore, our analysis uncovers spatial spillover effects, shedding light on the differential roles played by these mechanisms across regions.DiscussionThis groundbreaking discovery underscores the transformative potential of leveraging digital financial inclusion to propel China toward agricultural green development. By shedding light on these crucial dynamics, our findings offer insights for policymakers, researchers, and practitioners striving to foster sustainability within China’s agricultural sector.
{"title":"Byte-Sized Finance, Bushel-Sized Benefits: unraveling digital financial inclusion impact on China’s agricultural green development","authors":"Ludan Zhang, Yanbin Qi, Xin Deng","doi":"10.3389/fenvs.2024.1411866","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1411866","url":null,"abstract":"IntroductionChina’s rural financial landscape has long been characterized by exclusion, leaving countless farmers without access to essential financial services. However, the advent of digital financial inclusion presents a promising solution, offering low-cost, high-penetration avenues to bolster agricultural sustainability. This paper unravels how “Byte-Sized Finance” can yield “Bushel-Sized Benefits” in China’s agricultural green development.MethodsMethodologically, we pioneer a novel system to gauge agricultural green development across 31 Chinese provinces spanning from 2013 to 2021. Empirically, employing fixed-effect, mediation effect, and spatial Durbin models.ResultsOur study reveals the intricate pathways through which digital financial inclusion influences agricultural green development. We find that it exerts its impact through the lenses of industrial structure and entrepreneurship, operating at both macro and micro levels. Furthermore, our analysis uncovers spatial spillover effects, shedding light on the differential roles played by these mechanisms across regions.DiscussionThis groundbreaking discovery underscores the transformative potential of leveraging digital financial inclusion to propel China toward agricultural green development. By shedding light on these crucial dynamics, our findings offer insights for policymakers, researchers, and practitioners striving to foster sustainability within China’s agricultural sector.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"41 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.3389/fenvs.2024.1411659
Michel Valette, Scott Newey, Kate Schreckenberg, Terence P. Dawson
Nature-based solutions are increasingly advocated to mitigate climate change and biodiversity loss, while improving ecosystem resilience and providing additional ecosystem services. In Scotland, woodland expansion and restoration of degraded peatlands are expected to play a major role in meeting net-zero emissions by 2045 and have prompted debates about the impact of increased woodland cover and prescribed fire on the biodiversity and ecosystem services provided by upland landscapes. In alignment with national policy, the Cairngorms National Park, the UK’s largest national park, has committed to an ambitious programme of woodland expansion and peatland restoration in a landscape dominated by heather moorlands that is predominantly managed through prescribed burning for game management. Using the Native Woodland Model and the InVest modelling platform, we assessed the effects of five land cover and land use change scenarios, with different levels of prescribed fire regulation and woodland expansion, to evaluate their benefits and costs on biodiversity and carbon sequestration. Results show that changing the extent and management of habitats will result in different carbon sequestration pathways, as well as biodiversity winners and losers. The scenario presenting greater benefits for the conservation of biodiversity also has lower above-ground carbon sequestration potential and a larger negative impact on red grouse habitats, thus being less profitable to sporting estates. Hence, trade-offs will be necessary to achieve optimal carbon sequestration and biodiversity gains, with a potential role played by the continuation of prescribed fires and traditional moorland management practices as well as complementary grants and support measures based on biodiversity benefits rather than carbon sequestration. The results from this study could support discussions regarding future management of the uplands, trade-offs between loss of carbon in soils, carbon sequestration in woodlands and conservation of biodiversity, as well as stakeholders likely to be affected.
人们越来越多地提倡以自然为基础的解决方案,以减缓气候变化和生物多样性的丧失,同时提高生态系统的恢复能力并提供额外的生态系统服务。在苏格兰,林地的扩大和退化泥炭地的恢复预计将在 2045 年实现净零排放方面发挥重要作用,这也引发了关于增加林地覆盖率和明火对高地景观所提供的生物多样性和生态系统服务的影响的讨论。为了与国家政策保持一致,英国最大的国家公园--凯恩戈姆国家公园(Cairngorms National Park)已承诺在以石楠荒地为主的地貌中实施一项雄心勃勃的林地扩展和泥炭地恢复计划,该地貌主要通过规定的焚烧进行野味管理。利用原生林地模型和 InVest 建模平台,我们评估了五种土地覆盖和土地利用变化情景的影响,以及不同程度的规定焚烧管理和林地扩展,以评估其对生物多样性和碳封存的效益和成本。结果表明,改变栖息地的范围和管理将导致不同的碳封存途径,以及生物多样性的赢家和输家。对保护生物多样性有更大益处的方案,其地面固碳潜力也较低,对红松鸡栖息地的负面影响也较大,因此对体育庄园来说利润较低。因此,为了实现最佳固碳效果和生物多样性收益,有必要进行权衡,而继续使用规定的火种和传统的荒地管理方法以及基于生物多样性收益而非固碳效果的补充补助和支持措施则有可能发挥作用。这项研究的结果将有助于讨论高地的未来管理、土壤碳损失、林地碳固存和生物多样性保护之间的权衡以及可能受到影响的利益相关者。
{"title":"Woodland expansion and upland management strategy dilemmas for biodiversity and carbon storage in the Cairngorms national park","authors":"Michel Valette, Scott Newey, Kate Schreckenberg, Terence P. Dawson","doi":"10.3389/fenvs.2024.1411659","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1411659","url":null,"abstract":"Nature-based solutions are increasingly advocated to mitigate climate change and biodiversity loss, while improving ecosystem resilience and providing additional ecosystem services. In Scotland, woodland expansion and restoration of degraded peatlands are expected to play a major role in meeting net-zero emissions by 2045 and have prompted debates about the impact of increased woodland cover and prescribed fire on the biodiversity and ecosystem services provided by upland landscapes. In alignment with national policy, the Cairngorms National Park, the UK’s largest national park, has committed to an ambitious programme of woodland expansion and peatland restoration in a landscape dominated by heather moorlands that is predominantly managed through prescribed burning for game management. Using the Native Woodland Model and the InVest modelling platform, we assessed the effects of five land cover and land use change scenarios, with different levels of prescribed fire regulation and woodland expansion, to evaluate their benefits and costs on biodiversity and carbon sequestration. Results show that changing the extent and management of habitats will result in different carbon sequestration pathways, as well as biodiversity winners and losers. The scenario presenting greater benefits for the conservation of biodiversity also has lower above-ground carbon sequestration potential and a larger negative impact on red grouse habitats, thus being less profitable to sporting estates. Hence, trade-offs will be necessary to achieve optimal carbon sequestration and biodiversity gains, with a potential role played by the continuation of prescribed fires and traditional moorland management practices as well as complementary grants and support measures based on biodiversity benefits rather than carbon sequestration. The results from this study could support discussions regarding future management of the uplands, trade-offs between loss of carbon in soils, carbon sequestration in woodlands and conservation of biodiversity, as well as stakeholders likely to be affected.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"57 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.3389/fenvs.2024.1362616
Yuchen Fan, Yaqi Yuan, Tao Li, Wen Lin, Xiwang Tang, Gaimei Liang, Nana Li
The implementation of unsuitable tillage practices has the potential to disrupt the structure integrity of the ploughed layer, as well as to influence the physical parameters of the soil. The application of a reasonable tillage method has been demonstrated to result in an improvement in the physical quality of the soil. Three autumn tillage practices have been implemented at the Dongyang Experimental Station of Shanxi Agricultural University since 2016: no-tillage with straw mulch (NTS), autumn rotary tillage with straw incorporation (RTS), and autumn plough tillage with straw incorporation (PTS). The impact of autumn tillage practices on soil physical quality in the 0–30 cm profile of spring corn fields was evaluated following the corn harvest in 2018 and 2019. The results showed that compared to the NTS treatment, the application of RTS was found to have decreased significantly by 9.6%–24.2% in soil bulk density, while it increased significantly by 12.8%–34.0% in total porosity and by 43.5%–146.4% in macroporosity at a depth of 5–10 cm. In comparison to the NTS treatment, the adoption of PTS was found to decrease significantly by 10.7%–30.5% soil bulk density, while it increased significantly by 9.9%–42.7% the total porosity and 23.1%–202.8% the macroporosity at a depth of 0–10 cm. Furthermore, the soil microporosity significantly increase of 7.5%–11.1% under the RTS treatment at the 0–5 cm soil depth and 7.7%–11.2% under the PTS treatment at the 10–20 cm soil depth. Soil physical quality index (SQI) significantly increase under the RTS and PTS treatments, with a 41.26% and 57.57% improvement, respectively, in comparison to the NTS treatment. In summary, the adoption of autumn tillage with straw return (RTS and PTS) demonstrated a reduction in soil bulk density, an increase in soil porosity, macroporosity, and a promotion of capillary porosity, and promoted the improvement of soil physical quality on the Eastern Loess Plateau when compared to no-tillage with straw mulch (NTS).
{"title":"Effects of autumn tillage with straw return on soil physical characteristics of corn fields in the eastern loess plateau","authors":"Yuchen Fan, Yaqi Yuan, Tao Li, Wen Lin, Xiwang Tang, Gaimei Liang, Nana Li","doi":"10.3389/fenvs.2024.1362616","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1362616","url":null,"abstract":"The implementation of unsuitable tillage practices has the potential to disrupt the structure integrity of the ploughed layer, as well as to influence the physical parameters of the soil. The application of a reasonable tillage method has been demonstrated to result in an improvement in the physical quality of the soil. Three autumn tillage practices have been implemented at the Dongyang Experimental Station of Shanxi Agricultural University since 2016: no-tillage with straw mulch (NTS), autumn rotary tillage with straw incorporation (RTS), and autumn plough tillage with straw incorporation (PTS). The impact of autumn tillage practices on soil physical quality in the 0–30 cm profile of spring corn fields was evaluated following the corn harvest in 2018 and 2019. The results showed that compared to the NTS treatment, the application of RTS was found to have decreased significantly by 9.6%–24.2% in soil bulk density, while it increased significantly by 12.8%–34.0% in total porosity and by 43.5%–146.4% in macroporosity at a depth of 5–10 cm. In comparison to the NTS treatment, the adoption of PTS was found to decrease significantly by 10.7%–30.5% soil bulk density, while it increased significantly by 9.9%–42.7% the total porosity and 23.1%–202.8% the macroporosity at a depth of 0–10 cm. Furthermore, the soil microporosity significantly increase of 7.5%–11.1% under the RTS treatment at the 0–5 cm soil depth and 7.7%–11.2% under the PTS treatment at the 10–20 cm soil depth. Soil physical quality index (SQI) significantly increase under the RTS and PTS treatments, with a 41.26% and 57.57% improvement, respectively, in comparison to the NTS treatment. In summary, the adoption of autumn tillage with straw return (RTS and PTS) demonstrated a reduction in soil bulk density, an increase in soil porosity, macroporosity, and a promotion of capillary porosity, and promoted the improvement of soil physical quality on the Eastern Loess Plateau when compared to no-tillage with straw mulch (NTS).","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"52 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Land degradation from gully erosion poses a significant threat to the Erer watershed in Eastern Ethiopia, particularly due to agricultural activities and resource exploitation. Identifying erosion-prone areas and underlying factors using advanced machine learning algorithms (MLAs) and geospatial analysis is crucial for addressing this problem and prioritizing adaptive and mitigating strategies. However, previous studies have not leveraged machine learning (ML) and GIS-based approaches to generate susceptibility maps identifying these areas and conditioning factors, hindering sustainable watershed management solutions. This study aimed to predict gully erosion susceptibility (GES) and identify underlying areas and factors in the Erer watershed. Four ML models, namely, XGBoost, random forest (RF), support vector machine (SVM), and artificial neural network (ANN), were integrated with geospatial analysis using 22 geoenvironmental predictors and 1,200 inventory points (70% used for training and 30% for testing). Model performance and robustness were validated through the area under the curve (AUC), accuracy, precision, sensitivity, specificity, kappa coefficient, F1 score, and logarithmic loss. The relative slope position is most influential, with 100% importance in SVM and RF and 95% importance in XGBoost, while annual rainfall (AR) dominated ANN (100% importance). Notably, XGBoost demonstrated robustness and superior prediction/mapping, achieving an AUC of 0.97, 91% accuracy, 92% precision, and 81% kappa while maintaining a low logloss (0.0394). However, SVM excelled in classifying gully resistant/susceptible areas (97% sensitivity, 98% specificity, and 91% F1 score). The ANN model predicted the most areas with very high gully susceptibility (13.74%), followed by the SVM (11.69%), XGBoost (10.65%), and RF (7.85%) models, while XGBoost identified the most areas with very low susceptibility (70.19%). The ensemble technique was employed to further enhance GES modeling, and it outperformed the individual models, achieving an AUC of 0.99, 93.5% accuracy, 92.5% precision, 97.5% sensitivity, 95.4% specificity, 85.8% kappa, and 94.9% F1 score. This technique also classified the GES of the watershed as 36.48% very low, 26.51% low, 16.24% moderate, 11.55% high, and 9.22% very high. Furthermore, district-level analyses revealed the most susceptible areas, including the Babile, Fedis, Harar, and Meyumuluke districts, with high GES areas of 32.4%, 21.3%, 14.3%, and 13.6%, respectively. This study offers robust and flexible ML models with comprehensive validation metrics to enhance GES modeling and identify gully prone areas and factors, thereby supporting decision-making for sustainable watershed conservation and land degradation prevention.
{"title":"Integrated machine learning and geospatial analysis enhanced gully erosion susceptibility modeling in the Erer watershed in Eastern Ethiopia","authors":"Tadele Bedo Gelete, Pernaidu Pasala, Nigus Gebremedhn Abay, Gezahegn Weldu Woldemariam, Kalid Hassen Yasin, Erana Kebede, Ibsa Aliyi","doi":"10.3389/fenvs.2024.1410741","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1410741","url":null,"abstract":"Land degradation from gully erosion poses a significant threat to the Erer watershed in Eastern Ethiopia, particularly due to agricultural activities and resource exploitation. Identifying erosion-prone areas and underlying factors using advanced machine learning algorithms (MLAs) and geospatial analysis is crucial for addressing this problem and prioritizing adaptive and mitigating strategies. However, previous studies have not leveraged machine learning (ML) and GIS-based approaches to generate susceptibility maps identifying these areas and conditioning factors, hindering sustainable watershed management solutions. This study aimed to predict gully erosion susceptibility (GES) and identify underlying areas and factors in the Erer watershed. Four ML models, namely, XGBoost, random forest (RF), support vector machine (SVM), and artificial neural network (ANN), were integrated with geospatial analysis using 22 geoenvironmental predictors and 1,200 inventory points (70% used for training and 30% for testing). Model performance and robustness were validated through the area under the curve (AUC), accuracy, precision, sensitivity, specificity, kappa coefficient, F1 score, and logarithmic loss. The relative slope position is most influential, with 100% importance in SVM and RF and 95% importance in XGBoost, while annual rainfall (AR) dominated ANN (100% importance). Notably, XGBoost demonstrated robustness and superior prediction/mapping, achieving an AUC of 0.97, 91% accuracy, 92% precision, and 81% kappa while maintaining a low logloss (0.0394). However, SVM excelled in classifying gully resistant/susceptible areas (97% sensitivity, 98% specificity, and 91% F1 score). The ANN model predicted the most areas with very high gully susceptibility (13.74%), followed by the SVM (11.69%), XGBoost (10.65%), and RF (7.85%) models, while XGBoost identified the most areas with very low susceptibility (70.19%). The ensemble technique was employed to further enhance GES modeling, and it outperformed the individual models, achieving an AUC of 0.99, 93.5% accuracy, 92.5% precision, 97.5% sensitivity, 95.4% specificity, 85.8% kappa, and 94.9% F1 score. This technique also classified the GES of the watershed as 36.48% very low, 26.51% low, 16.24% moderate, 11.55% high, and 9.22% very high. Furthermore, district-level analyses revealed the most susceptible areas, including the Babile, Fedis, Harar, and Meyumuluke districts, with high GES areas of 32.4%, 21.3%, 14.3%, and 13.6%, respectively. This study offers robust and flexible ML models with comprehensive validation metrics to enhance GES modeling and identify gully prone areas and factors, thereby supporting decision-making for sustainable watershed conservation and land degradation prevention.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"193 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.3389/fenvs.2024.1445068
Klaudia Halászová, Lenka Lackóová, Thomas Panagopoulos
Understanding long-term changes in topography and topsoil grain composition is crucial for the management of agricultural landscapes, especially in areas prone to wind erosion. This study investigates long-term changes in topography and topsoil grain composition within an agricultural landscape in south-western Slovakia. To analyse topographic changes over time, we used high-precision positioning measurements and airborne laser scanning to create digital terrain models (DTM) for the years 2011, 2017 and 2020. To assess changes in soil grain composition, we performed grain size analyses on soil samples collected during three different periods: M1 (1961–1970), M2 (2009–2015) and M3 (2015–2016). Changes in soil texture were evaluated to understand the impact of wind erosion on soil composition. The influence of windbreaks was also analysed by comparing the accumulation and deflation processes. The results showed significant changes in both topography and soil texture over the study period. The DTMs showed marked differences in the accumulation and deflation processes, highlighting areas affected by wind erosion. Comparisons of soil samples showed a shift in dominant soil types from loam and clay loam to silty loam, highlighting the effects of wind erosion. Analysis revealed a decrease in clay and silt content and an increase in sand content, indicating wind-induced soil degradation. The presence of windbreaks played a crucial role in reducing soil erosion by reducing wind speed, promoting soil accumulation and stabilising the landscape up to 80 m windward and 20 m leeward. The study highlights the complex interplay of climate and wind factors in shaping topography and soil properties and emphasises the protective role of windbreaks in agricultural landscapes over time. Our results show that wind erosion significantly alters soil texture, which can affect agricultural productivity. However, windbreaks have proven to be an effective measure in reducing soil erosion and maintaining soil quality.
{"title":"Long-term evaluation of surface topographic and topsoil grain composition changes in an agricultural landscape","authors":"Klaudia Halászová, Lenka Lackóová, Thomas Panagopoulos","doi":"10.3389/fenvs.2024.1445068","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1445068","url":null,"abstract":"Understanding long-term changes in topography and topsoil grain composition is crucial for the management of agricultural landscapes, especially in areas prone to wind erosion. This study investigates long-term changes in topography and topsoil grain composition within an agricultural landscape in south-western Slovakia. To analyse topographic changes over time, we used high-precision positioning measurements and airborne laser scanning to create digital terrain models (DTM) for the years 2011, 2017 and 2020. To assess changes in soil grain composition, we performed grain size analyses on soil samples collected during three different periods: M1 (1961–1970), M2 (2009–2015) and M3 (2015–2016). Changes in soil texture were evaluated to understand the impact of wind erosion on soil composition. The influence of windbreaks was also analysed by comparing the accumulation and deflation processes. The results showed significant changes in both topography and soil texture over the study period. The DTMs showed marked differences in the accumulation and deflation processes, highlighting areas affected by wind erosion. Comparisons of soil samples showed a shift in dominant soil types from loam and clay loam to silty loam, highlighting the effects of wind erosion. Analysis revealed a decrease in clay and silt content and an increase in sand content, indicating wind-induced soil degradation. The presence of windbreaks played a crucial role in reducing soil erosion by reducing wind speed, promoting soil accumulation and stabilising the landscape up to 80 m windward and 20 m leeward. The study highlights the complex interplay of climate and wind factors in shaping topography and soil properties and emphasises the protective role of windbreaks in agricultural landscapes over time. Our results show that wind erosion significantly alters soil texture, which can affect agricultural productivity. However, windbreaks have proven to be an effective measure in reducing soil erosion and maintaining soil quality.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"75 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.3389/fenvs.2024.1416765
Xu Wang, Kai Zhang, Peishan Han, Meijia Wang, Xianjun Li, Yaqiong Zhang, Qiong Pan
Introduction: Traditional statistical methods cannot find quantitative relationship from environmental data.Methods: We selected gene expression programming (GEP) to study the relationship between pollutant gas and PM2.5 (PM10). They were used to construct the relationship between pollutant gas and PM2.5 (PM10) with environmental monitoring data of Xi’an, China. GEP could construct a formula to express the relationship between pollutant gas and PM2.5 (PM10), which is more explainable. Back Propagation neural networks (BPNN) was used as the baseline method. Relevant data from January 1st 2021 to April 26th 2021 were used to train and validate the performance of the models from GEP and BPNN.Results: After the models of GEP and BPNN constructed, coefficient of determination and RMSE (Root Mean Squared Error) are used to evaluate the fitting degree and measure the effect power of pollutant gas on PM2.5 (PM10). GEP achieved RMSE of [8.7365–14.6438] for PM2.5; RMSE of [13.2739–45.8769] for PM10, and BP neural networks achieved average RMSE of [13.8741–34.7682] for PM2.5; RMSE of [29.7327–52.8653] for PM10. Additionally, experimental results show that the influence power of pollutant gas on PM2.5 (PM10) situates between −0.0704 and 0.6359 (between −0.3231 and 0.2242), and the formulas are obtained with GEP so that further analysis become possible. Then linear regression was employed to study which pollutant gas is more relevant to PM2.5 (PM10), the result demonstrates CO (SO2, NO2) are more related to PM2.5 (PM10).Discussion: The formulas produced by GEP can also provide a direct relationship between pollutant gas and PM2.5 (PM10). Besides, GEP could model the trend of PM2.5 and PM10 (increase and decrease). All results show that GEP can be applied smoothly in environmental modelling.
{"title":"Application of gene expression programing in predicting the concentration of PM2.5 and PM10 in Xi’an, China: a preliminary study","authors":"Xu Wang, Kai Zhang, Peishan Han, Meijia Wang, Xianjun Li, Yaqiong Zhang, Qiong Pan","doi":"10.3389/fenvs.2024.1416765","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1416765","url":null,"abstract":"Introduction: Traditional statistical methods cannot find quantitative relationship from environmental data.Methods: We selected gene expression programming (GEP) to study the relationship between pollutant gas and PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>). They were used to construct the relationship between pollutant gas and PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>) with environmental monitoring data of Xi’an, China. GEP could construct a formula to express the relationship between pollutant gas and PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>), which is more explainable. Back Propagation neural networks (BPNN) was used as the baseline method. Relevant data from January 1st 2021 to April 26th 2021 were used to train and validate the performance of the models from GEP and BPNN.Results: After the models of GEP and BPNN constructed, coefficient of determination and RMSE (Root Mean Squared Error) are used to evaluate the fitting degree and measure the effect power of pollutant gas on PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>). GEP achieved RMSE of [8.7365–14.6438] for PM<jats:sub>2.5</jats:sub>; RMSE of [13.2739–45.8769] for PM<jats:sub>10</jats:sub>, and BP neural networks achieved average RMSE of [13.8741–34.7682] for PM<jats:sub>2.5</jats:sub>; RMSE of [29.7327–52.8653] for PM<jats:sub>10</jats:sub>. Additionally, experimental results show that the influence power of pollutant gas on PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>) situates between −0.0704 and 0.6359 (between −0.3231 and 0.2242), and the formulas are obtained with GEP so that further analysis become possible. Then linear regression was employed to study which pollutant gas is more relevant to PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>), the result demonstrates CO (SO<jats:sub>2</jats:sub>, NO<jats:sub>2</jats:sub>) are more related to PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>).Discussion: The formulas produced by GEP can also provide a direct relationship between pollutant gas and PM<jats:sub>2.5</jats:sub> (PM<jats:sub>10</jats:sub>). Besides, GEP could model the trend of PM<jats:sub>2.5</jats:sub> and PM<jats:sub>10</jats:sub> (increase and decrease). All results show that GEP can be applied smoothly in environmental modelling.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"76 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: The game between socio-economic development and ecological development has always been the core issue in coal areas, but the internal mechanism of tradeoff and cooperative dynamic change of ecosystem services in mining areas under long-term mineral resources development is still lacking in in-depth research.Methods: Therefore, taking Shendong mining area as an example, this study used InVEST model to evaluate the changes of four major ecosystem service functions in Shendong mining area from 1990 to 2020, namely, water yield (WY), net primary productivity (NPP), soil conservation (SC) and habitat quality (HQ). Meanwhile, correlation analysis was used to explore the trade-off and synergistic relationship among these services. On this basis, the coupling effect between the four ecosystem services is further discussed by using the constraint line method. Finally, the key drivers of ecosystem service trade-offs/synergies in the region are explored by using geodetectors and the explanations of each influence factor for RMS errors are obtained.Results: The results show that 1) from 1990 to 2020, the water yield and soil retention in the mining area decrease first and then increase, and the net primary productivity and habitat quality increase slowly, mainly in the southeast of the mining area. 2) In terms of constraint relationship, all the four ecosystem services showed hump-like constraint relationship, that is, there was obvious constraint threshold effect. 3) In the Shendong mining area, the synergistic relationship is the dominant relationship between ecosystem services, and the tradeoff effect mainly occurs between water yield and habitat quality. 4) In terms of the driving mechanism of tradeoff/synergy, land use type, temperature, and rainfall are the main factors that cause the spatial differentiation of tradeoff synergy intensity among ecosystem services in Shendong mining area.Conclusions: The results of this study provide a scientific basis for the improvement of ecological environment and sustainable utilization of mineral resources under long-term exploitation.
{"title":"Study on spatio-temporal evolution of ecosystem services, spatio-temporal pattern of tradeoff/synergy relationship and its driving factors in Shendong mining area","authors":"Zhichao Chen, Zhenyao Zhu, Xufei Zhang, Yiheng Jiao, Yiqiang Cheng, Shidong Wang, Hebing Zhang","doi":"10.3389/fenvs.2024.1445833","DOIUrl":"https://doi.org/10.3389/fenvs.2024.1445833","url":null,"abstract":"Objectives: The game between socio-economic development and ecological development has always been the core issue in coal areas, but the internal mechanism of tradeoff and cooperative dynamic change of ecosystem services in mining areas under long-term mineral resources development is still lacking in in-depth research.Methods: Therefore, taking Shendong mining area as an example, this study used InVEST model to evaluate the changes of four major ecosystem service functions in Shendong mining area from 1990 to 2020, namely, water yield (WY), net primary productivity (NPP), soil conservation (SC) and habitat quality (HQ). Meanwhile, correlation analysis was used to explore the trade-off and synergistic relationship among these services. On this basis, the coupling effect between the four ecosystem services is further discussed by using the constraint line method. Finally, the key drivers of ecosystem service trade-offs/synergies in the region are explored by using geodetectors and the explanations of each influence factor for RMS errors are obtained.Results: The results show that 1) from 1990 to 2020, the water yield and soil retention in the mining area decrease first and then increase, and the net primary productivity and habitat quality increase slowly, mainly in the southeast of the mining area. 2) In terms of constraint relationship, all the four ecosystem services showed hump-like constraint relationship, that is, there was obvious constraint threshold effect. 3) In the Shendong mining area, the synergistic relationship is the dominant relationship between ecosystem services, and the tradeoff effect mainly occurs between water yield and habitat quality. 4) In terms of the driving mechanism of tradeoff/synergy, land use type, temperature, and rainfall are the main factors that cause the spatial differentiation of tradeoff synergy intensity among ecosystem services in Shendong mining area.Conclusions: The results of this study provide a scientific basis for the improvement of ecological environment and sustainable utilization of mineral resources under long-term exploitation.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"57 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}