首页 > 最新文献

Fungal Diversity最新文献

英文 中文
Phylogenomics, divergence times and notes of orders in Basidiomycota 基枝菌纲的系统发生组学、分化时间和各目注释
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-09 DOI: 10.1007/s13225-024-00535-w
Mao-Qiang He, Bin Cao, Fei Liu, Teun Boekhout, Teodor T. Denchev, Nathan Schoutteten, Cvetomir M. Denchev, Martin Kemler, Sergio P. Gorjón, Dominik Begerow, Ricardo Valenzuela, Naveed Davoodian, Tuula Niskanen, Alfredo Vizzini, Scott A. Redhead, Virginia Ramírez-Cruz, Viktor Papp, Vasiliy A. Dudka, Arun Kumar Dutta, Ricardo García-Sandoval, Xin-Zhan Liu, Teeratas Kijpornyongpan, Anton Savchenko, Leho Tedersoo, Bart Theelen, Larissa Trierveiler-Pereira, Fang Wu, Juan Carlos Zamora, Xiang-Yu Zeng, Li-Wei Zhou, Shi-Liang Liu, Masoomeh Ghobad-Nejhad, Admir J. Giachini, Guo-Jie Li, Makoto Kakishima, Ibai Olariaga, Danny Haelewaters, Bobby Sulistyo, Junta Sugiyama, Sten Svantesson, Andrey Yurkov, Pablo Alvarado, Vladimír Antonín, André Felipe da Silva, Irina Druzhinina, Tatiana B. Gibertoni, Laura Guzmán-Dávalos, Alfredo Justo, Samantha C. Karunarathna, Mahesh C. A. Galappaththi, Merje Toome-Heller, Tsuyoshi Hosoya, Kare Liimatainen, Rodrigo Márquez, Armin Mešić, Jean-Marc Moncalvo..

Basidiomycota is one of the major phyla in the fungal tree of life. The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology. In this study, we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families, 47 orders, 14 classes and four subphyla; we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019; and we provide notes for each order and discuss the history, defining characteristics, evolution, justification of orders, problems, significance, and plates. Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443–490 Myr (million years), classes in a time range of 312–412 Myr, and orders in a time range of 102–361 Myr. Families diverged in a time range of 50–289 Myr, 76–224 Myr, and 62–156 Myr in Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina, respectively. Based on the phylogenomic relationships and divergence times, we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae. In the current outline of Basidiomycota, there are four subphyla, 20 classes, 77 orders, 297 families, and 2134 genera accepted. When building a robust taxonomy of Basidiomycota in the genomic era, the generation of molecular phylogenetic data has become relatively easier. Finding phenotypical characters, especially those that can be applied for identification and classification, however, has become increasingly challenging.

担子菌纲(Basidiomycota)是真菌生命树中的一个主要门类。Basidiomycota 纲为真菌学研究人员和工作人员提供了重要的分类信息。在本研究中,我们以时间为框架建立了一棵系统发生树,包含了巴西真菌界的 127 个科、47 个目、14 个类和 4 个亚门的 487 个物种;根据系统发生关系和 2019 年以来的分类学研究更新了巴西真菌界的大纲;并为每个目提供了注释,讨论了其历史、定义特征、进化、目的合理性、问题、意义和板块。我们的系统发生组分析表明,亚门的分化时间范围为 443-490 Myr(百万年),门的分化时间范围为 312-412 Myr,纲的分化时间范围为 102-361 Myr。姬松茸科(Agaricomycotina)、褐姬松茸科(Pucciniomycotina)和星姬松茸科(Ustilaginomycotina)的科的分化时间范围分别为 50-289 Myr、76-224 Myr 和 62-156 Myr。根据系统发生组的关系和分化时间,我们提议在姬松茸目中建立一个新的菌亚目(Mycenineae),以容纳真菌科(Mycenaceae)。在目前的 Basidiomycota 纲中,共接受了 4 个亚纲、20 个类、77 个目、297 个科和 2134 个属。在基因组时代建立健全的巴西真菌分类法时,分子系统发育数据的生成变得相对容易。然而,寻找表型特征,尤其是可用于鉴定和分类的表型特征,却变得越来越具有挑战性。
{"title":"Phylogenomics, divergence times and notes of orders in Basidiomycota","authors":"Mao-Qiang He, Bin Cao, Fei Liu, Teun Boekhout, Teodor T. Denchev, Nathan Schoutteten, Cvetomir M. Denchev, Martin Kemler, Sergio P. Gorjón, Dominik Begerow, Ricardo Valenzuela, Naveed Davoodian, Tuula Niskanen, Alfredo Vizzini, Scott A. Redhead, Virginia Ramírez-Cruz, Viktor Papp, Vasiliy A. Dudka, Arun Kumar Dutta, Ricardo García-Sandoval, Xin-Zhan Liu, Teeratas Kijpornyongpan, Anton Savchenko, Leho Tedersoo, Bart Theelen, Larissa Trierveiler-Pereira, Fang Wu, Juan Carlos Zamora, Xiang-Yu Zeng, Li-Wei Zhou, Shi-Liang Liu, Masoomeh Ghobad-Nejhad, Admir J. Giachini, Guo-Jie Li, Makoto Kakishima, Ibai Olariaga, Danny Haelewaters, Bobby Sulistyo, Junta Sugiyama, Sten Svantesson, Andrey Yurkov, Pablo Alvarado, Vladimír Antonín, André Felipe da Silva, Irina Druzhinina, Tatiana B. Gibertoni, Laura Guzmán-Dávalos, Alfredo Justo, Samantha C. Karunarathna, Mahesh C. A. Galappaththi, Merje Toome-Heller, Tsuyoshi Hosoya, Kare Liimatainen, Rodrigo Márquez, Armin Mešić, Jean-Marc Moncalvo..","doi":"10.1007/s13225-024-00535-w","DOIUrl":"https://doi.org/10.1007/s13225-024-00535-w","url":null,"abstract":"<p>Basidiomycota is one of the major phyla in the fungal tree of life. The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology. In this study, we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families, 47 orders, 14 classes and four subphyla; we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019; and we provide notes for each order and discuss the history, defining characteristics, evolution, justification of orders, problems, significance, and plates. Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443–490 Myr (million years), classes in a time range of 312–412 Myr, and orders in a time range of 102–361 Myr. Families diverged in a time range of 50–289 Myr, 76–224 Myr, and 62–156 Myr in Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina, respectively. Based on the phylogenomic relationships and divergence times, we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae. In the current outline of Basidiomycota, there are four subphyla, 20 classes, 77 orders, 297 families, and 2134 genera accepted. When building a robust taxonomy of Basidiomycota in the genomic era, the generation of molecular phylogenetic data has become relatively easier. Finding phenotypical characters, especially those that can be applied for identification and classification, however, has become increasingly challenging.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"39 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection dictates the distance pattern of similarity in trees and soil fungi across forest ecosystems 选择决定了森林生态系统中树木和土壤真菌相似性的距离模式
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-01 DOI: 10.1007/s13225-024-00537-8
Yue-Hua Hu, Daniel J. Johnson, Zhen-Hua Sun, Lian-Ming Gao, Han-Dong Wen, Kun Xu, Hua Huang, Wei-Wei Liu, Min Cao, Ze-Wei Song, Peter G. Kennedy

How the four major processes affecting community assembly—selection, dispersal, drift, and diversification—solely or jointly shape co-occurring assemblages of macro- and microorganisms at the same scales remains poorly understood. Here, we delved into the distance pattern of similarity (DPS) in tree and soil fungal communities in three c. 20-hectare forest plots spanning tropical to temperate climates in Yunnan province, Southwest China. Specifically, we decrypted the assembly contribution of individual-based random sampling, selection and/or dispersal using drift-inexplicit ordination and drift-explicit baseline models. Surprisingly, our findings demonstrated that most soil fungal realized distribution ranges (RDR) were shorter than most trees. Because of explicitly integrating drift and the range of DPS is broader than the RDR of most trees and fungi, selection baseline models overwhelmingly captured the DPS structures in trees and fungi across spatial scales in tropical, subtropical, and subalpine forest ecosystems and that for fungi across taxonomic levels and fungal guilds. Under the premise that modeling frameworks, ecosystems, spatial scales, sample intensities, selection variables, and dispersal variables are well unified, the ubiquitous dominance of selection elucidates no fundamental difference in the assembly mechanism between trees and soil fungi.

影响群落组合的四个主要过程--选择、扩散、漂移和多样化--是如何在同一尺度上单独或共同形成共生的大型生物和微生物群落的,人们对此仍然知之甚少。在这里,我们深入研究了中国西南部云南省从热带气候到温带气候的三个面积约 20 公顷的林地中树木和土壤真菌群落的相似性距离模式(DPS)。具体而言,我们利用漂移-非显性序化和漂移-显性基线模型解密了基于个体的随机取样、选择和/或扩散的集合贡献。令人惊讶的是,我们的研究结果表明,大多数土壤真菌的实现分布范围(RDR)比大多数树木短。由于明确地整合了漂移,而且DPS的范围比大多数树木和真菌的RDR更广,因此选择基线模型在热带、亚热带和亚高山森林生态系统的空间尺度上绝大多数捕捉到了树木和真菌的DPS结构,而真菌的DPS结构则捕捉到了不同分类水平和真菌行业的DPS结构。在建模框架、生态系统、空间尺度、样本强度、选择变量和散布变量完全统一的前提下,无处不在的选择优势说明树木和土壤真菌的组装机制没有本质区别。
{"title":"Selection dictates the distance pattern of similarity in trees and soil fungi across forest ecosystems","authors":"Yue-Hua Hu, Daniel J. Johnson, Zhen-Hua Sun, Lian-Ming Gao, Han-Dong Wen, Kun Xu, Hua Huang, Wei-Wei Liu, Min Cao, Ze-Wei Song, Peter G. Kennedy","doi":"10.1007/s13225-024-00537-8","DOIUrl":"https://doi.org/10.1007/s13225-024-00537-8","url":null,"abstract":"<p>How the four major processes affecting community assembly—selection, dispersal, drift, and diversification—solely or jointly shape co-occurring assemblages of macro- and microorganisms at the same scales remains poorly understood. Here, we delved into the distance pattern of similarity (DPS) in tree and soil fungal communities in three <i>c.</i> 20-hectare forest plots spanning tropical to temperate climates in Yunnan province, Southwest China. Specifically, we decrypted the assembly contribution of individual-based random sampling, selection and/or dispersal using drift-inexplicit ordination and drift-explicit baseline models. Surprisingly, our findings demonstrated that most soil fungal realized distribution ranges (RDR) were shorter than most trees. Because of explicitly integrating drift and the range of DPS is broader than the RDR of most trees and fungi, selection baseline models overwhelmingly captured the DPS structures in trees and fungi across spatial scales in tropical, subtropical, and subalpine forest ecosystems and that for fungi across taxonomic levels and fungal guilds. Under the premise that modeling frameworks, ecosystems, spatial scales, sample intensities, selection variables, and dispersal variables are well unified, the ubiquitous dominance of selection elucidates no fundamental difference in the assembly mechanism between trees and soil fungi.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"51 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current trends, limitations and future research in the fungi? 真菌研究的当前趋势、局限性和未来发展?
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-03-20 DOI: 10.1007/s13225-023-00532-5
Kevin D. Hyde, Petr Baldrian, Yanpeng Chen, K. W. Thilini Chethana, Sybren De Hoog, Mingkwan Doilom, Antonio R. Gomes de Farias, Micael F. M. Gonçalves, Didsanutda Gonkhom, Heng Gui, Sandra Hilário, Yuwei Hu, Ruvishika S. Jayawardena, Sabin Khyaju, Paul M. Kirk, Petr Kohout, Thatsanee Luangharn, Sajeewa S. N. Maharachchikumbura, Ishara S. Manawasinghe, Peter E. Mortimer, Allen Grace T. Niego, Monthien Phonemany, Birthe Sandargo, Indunil C. Senanayake, Marc Stadler, Frank Surup, Naritsada Thongklang, Dhanushka N. Wanasinghe, Ali H. Bahkali, Arttapon Walker

The field of mycology has grown from an underappreciated subset of botany, to a valuable, modern scientific discipline. As this field of study has grown, there have been significant contributions to science, technology, and industry, highlighting the value of fungi in the modern era. This paper looks at the current research, along with the existing limitations, and suggests future areas where scientists can focus their efforts, in the field mycology. We show how fungi have become important emerging diseases in medical mycology. We discuss current trends and the potential of fungi in drug and novel compound discovery. We explore the current trends in phylogenomics, its potential, and outcomes and address the question of how phylogenomics can be applied in fungal ecology. In addition, the trends in functional genomics studies of fungi are discussed with their importance in unravelling the intricate mechanisms underlying fungal behaviour, interactions, and adaptations, paving the way for a comprehensive understanding of fungal biology. We look at the current research in building materials, how they can be used as carbon sinks, and how fungi can be used in biocircular economies. The numbers of fungi have always been of great interest and have often been written about and estimates have varied greatly. Thus, we discuss current trends and future research needs in order to obtain more reliable estimates. We address the aspects of machine learning (AI) and how it can be used in mycological research. Plant pathogens are affecting food production systems on a global scale, and as such, we look at the current trends and future research needed in this area, particularly in disease detection. We look at the latest data from High Throughput Sequencing studies and question if we are still gaining new knowledge at the same rate as before. A review of current trends in nanotechnology is provided and its future potential is addressed. The importance of Arbuscular Mycorrhizal Fungi is addressed and future trends are acknowledged. Fungal databases are becoming more and more important, and we therefore provide a review of the current major databases. Edible and medicinal fungi have a huge potential as food and medicines, especially in Asia and their prospects are discussed. Lifestyle changes in fungi (e.g., from endophytes, to pathogens, and/or saprobes) are also extremely important and a current research trend and are therefore addressed in this special issue of Fungal Diversity.

真菌学领域已经从一个不被重视的植物学分支发展成为一门宝贵的现代科学学科。随着这一研究领域的发展,真菌对科学、技术和工业做出了重大贡献,彰显了真菌在现代的价值。本文探讨了真菌学领域目前的研究情况以及存在的局限性,并提出了科学家未来可以重点研究的领域。我们展示了真菌如何成为医学真菌学中重要的新兴疾病。我们讨论了真菌在药物和新型化合物发现方面的当前趋势和潜力。我们探讨了系统发生组学的当前趋势、潜力和成果,并探讨了系统发生组学如何应用于真菌生态学的问题。此外,我们还讨论了真菌功能基因组学研究的趋势及其在揭示真菌行为、相互作用和适应性的复杂机制方面的重要性,从而为全面了解真菌生物学铺平道路。我们探讨了当前在建筑材料方面的研究,如何将它们用作碳汇,以及如何将真菌用于生物循环经济。真菌的数量一直是人们非常关心的问题,也经常被撰文讨论,但估计数字却大相径庭。因此,我们讨论了当前的趋势和未来的研究需求,以便获得更可靠的估算。我们讨论了机器学习(AI)的各个方面以及如何将其用于真菌学研究。植物病原体正在全球范围内影响粮食生产系统,因此,我们将探讨该领域的当前趋势和未来研究需求,特别是在病害检测方面。我们关注高通量测序研究的最新数据,并质疑我们是否仍在以与以往相同的速度获取新知识。我们回顾了当前纳米技术的发展趋势,并探讨了纳米技术的未来潜力。探讨了丛枝菌根真菌的重要性,并确认了未来的发展趋势。真菌数据库正变得越来越重要,因此我们对当前的主要数据库进行了综述。食用和药用真菌作为食品和药品具有巨大的潜力,尤其是在亚洲。真菌的生活方式变化(如从内生菌到病原体和/或溶菌体)也极为重要,是当前的研究趋势,因此本期《真菌多样性》特刊将对此进行探讨。
{"title":"Current trends, limitations and future research in the fungi?","authors":"Kevin D. Hyde, Petr Baldrian, Yanpeng Chen, K. W. Thilini Chethana, Sybren De Hoog, Mingkwan Doilom, Antonio R. Gomes de Farias, Micael F. M. Gonçalves, Didsanutda Gonkhom, Heng Gui, Sandra Hilário, Yuwei Hu, Ruvishika S. Jayawardena, Sabin Khyaju, Paul M. Kirk, Petr Kohout, Thatsanee Luangharn, Sajeewa S. N. Maharachchikumbura, Ishara S. Manawasinghe, Peter E. Mortimer, Allen Grace T. Niego, Monthien Phonemany, Birthe Sandargo, Indunil C. Senanayake, Marc Stadler, Frank Surup, Naritsada Thongklang, Dhanushka N. Wanasinghe, Ali H. Bahkali, Arttapon Walker","doi":"10.1007/s13225-023-00532-5","DOIUrl":"https://doi.org/10.1007/s13225-023-00532-5","url":null,"abstract":"<p>The field of mycology has grown from an underappreciated subset of botany, to a valuable, modern scientific discipline. As this field of study has grown, there have been significant contributions to science, technology, and industry, highlighting the value of fungi in the modern era. This paper looks at the current research, along with the existing limitations, and suggests future areas where scientists can focus their efforts, in the field mycology. We show how fungi have become important emerging diseases in medical mycology. We discuss current trends and the potential of fungi in drug and novel compound discovery. We explore the current trends in phylogenomics, its potential, and outcomes and address the question of how phylogenomics can be applied in fungal ecology. In addition, the trends in functional genomics studies of fungi are discussed with their importance in unravelling the intricate mechanisms underlying fungal behaviour, interactions, and adaptations, paving the way for a comprehensive understanding of fungal biology. We look at the current research in building materials, how they can be used as carbon sinks, and how fungi can be used in biocircular economies. The numbers of fungi have always been of great interest and have often been written about and estimates have varied greatly. Thus, we discuss current trends and future research needs in order to obtain more reliable estimates. We address the aspects of machine learning (AI) and how it can be used in mycological research. Plant pathogens are affecting food production systems on a global scale, and as such, we look at the current trends and future research needed in this area, particularly in disease detection. We look at the latest data from High Throughput Sequencing studies and question if we are still gaining new knowledge at the same rate as before. A review of current trends in nanotechnology is provided and its future potential is addressed. The importance of Arbuscular Mycorrhizal Fungi is addressed and future trends are acknowledged. Fungal databases are becoming more and more important, and we therefore provide a review of the current major databases. Edible and medicinal fungi have a huge potential as food and medicines, especially in Asia and their prospects are discussed. Lifestyle changes in fungi (e.g., from endophytes, to pathogens, and/or saprobes) are also extremely important and a current research trend and are therefore addressed in this special issue of Fungal Diversity.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"31 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species diversity of fungal pathogens on cultivated mushrooms: a case study on morels (Morchella, Pezizales) 栽培蘑菇上真菌病原体的物种多样性:羊肚菌(Morchella,Pezizales)案例研究
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-03-05 DOI: 10.1007/s13225-023-00531-6
Feng-Ming Yu, Ruvishika S. Jayawardena, Thatsanee Luangharn, Xiang-Yu Zeng, Cui-Jin-Yi Li, Shu-Xin Bao, Hong Ba, De-Qun Zhou, Song-Ming Tang, Kevin D. Hyde, Qi Zhao
<p>Mushrooms are important organisms because of their human nutritional and medicinal value. With the expansion of the cultivation of edible mushrooms, fungal diseases have become a major problem in limiting their production. Numerous fungi can cause mushroom deformation or rots. In this publication we report on fungal diseases found during <i>Morchella</i> cultivation in China, with emphasis on morphology and phylogeny to characterise species. The key findings include 1) establishment of a new family <i>Albomorchellophilaceae</i> in <i>Hypocreales</i>, and a novel monotypic genus <i>Albomorchellophila</i> with the type species <i>A. morchellae</i>. Divergence time estimates indicate that <i>Albomorchellophilaceae</i> diverged from its sister family <i>Calcarisporiaceae</i> at ca. 105 (92–120) MYA; 2) the phylogeny and morphology of the family <i>Pseudodiploosporeaceae</i> (<i>Hypocreales</i>) is revised. The family contains a single genus <i>Pseudodiploospora</i>. Intraspecific genetic analyses of <i>Pseudodiploospora longispora</i> reveals significant base differences within strains, especially in the regions of protein-coding genes <i>RPB</i> 2 and <i>TEF</i>; 3) four fungicolous taxa, i.e., <i>Cylindrodendrum alicantinum</i>, <i>Hypomyces aurantius</i>, <i>Hypomyces rosellus</i>, and <i>Trichothecium roseum</i>, are reported as putative pathogens on cultivated morels for the first time. In addition, the previously reported pathogens of morels, <i>Clonostachys rosea</i>, <i>Clonostachys solani</i>, <i>Hypomyces odoratus</i>, and <i>Pseudodiploospora longispora</i> are also detailed in their symptoms and morphology; 4) the phylogeny and morphology of “<i>Zelopaecilomyces</i>” previously placed within <i>Pseudodiploosporeaceae</i> are re-assessed. “<i>Zelopaecilomyces</i>” is proved to be introduced through a chimerism of gene fragments sourced from two distinct organisms. Consequently, it is recommended that “<i>Zelopaecilomyces</i>” should not be recognised due to the mixed up molecular data in phylogeny and a lack of support from morphological evidence. Furthermore, this study discusses the voucher specimen <i>Paecilomyces penicillatus</i> (CBS 448.69), which may contain two mixed taxa, i.e., <i>Pseudodiploospora longispora</i> and a member of <i>Penicillium</i>. Publications on pathogenic fungi of cultivated mushrooms is sporadically, which leads to a lack of understanding of causal agents. As a follow up to the diseases of morel cultivation, we also review the fungal diseases of cultivated mushrooms reported over the last four decades. More than 130 pathogens affect the growth and development of the main cultivated mushrooms. The taxonomic diversity of these pathogens is high, distributed in 58 genera, 40 families, 20 orders, 12 classes and six phyla. The host infected are from Ascomycota to Basidiomycota, mainly being reported from <i>Agaricus bisporus</i>, <i>Cordyceps militaris</i>, <i>Morchella</i> spp., and <i>Pleurotus</i> spp. This s
蘑菇因其对人类的营养和药用价值而成为重要的生物。随着食用菌种植的扩大,真菌疾病已成为限制其产量的一个主要问题。许多真菌都会导致蘑菇变形或腐烂。在本出版物中,我们报告了在中国栽培桑黄菌过程中发现的真菌疾病,重点是通过形态学和系统发育来描述物种特征。主要发现包括:1)在下菌纲中建立了一个新的科 Albomorchellophilaceae,以及一个新的单型属 Albomorchellophila,模式种为 A. morchellae。分歧时间估计表明,Albomorchellophilaceae 与其姊妹科 Calcarisporiaceae 的分歧时间约为 105 (92-120) MYY。105 (92-120) MYA;2)修订了假地孢科(Hypocreales)的系统发育和形态。该科包含一个假袋孢属。对长孢假双孢菌(Pseudodiploospora longispora)的种内遗传分析表明,菌株间存在显著的碱基差异,特别是在蛋白编码基因 RPB 2 和 TEF 区域;3)首次报道了四个真菌性类群,即 Cylindrodendrum alicantinum、Hypomyces aurantius、Hypomyces rosellus 和 Trichothecium roseum,是栽培羊肚菌的假定病原体。此外,之前报道的羊肚菌病原体 Clonostachys rosea、Clonostachys solani、Hypomyces odoratus 和 Pseudodiploospora longispora 的症状和形态也得到了详细说明;4)重新评估了之前归入 Pseudodiploosporeaceae 的 "Zelopaecilomyces "的系统发育和形态。经证明,"Zelopaecilomyces "是由来自两种不同生物的基因片段嵌合而成的。因此,建议不承认 "Zelopaecilomyces",原因是系统发育中的分子数据混杂,且缺乏形态学证据的支持。此外,本研究讨论的凭证标本 Paecilomyces penicillatus(CBS 448.69)可能包含两个混合类群,即 Pseudodiploospora longispora 和青霉的一个成员。有关栽培蘑菇病原真菌的出版物非常零散,导致人们对病原菌缺乏了解。作为羊肚菌栽培病害的后续研究,我们还回顾了过去四十年中报道的栽培蘑菇真菌病害。影响主要栽培蘑菇生长和发育的病原体超过 130 种。这些病原体的分类多样性很高,分布在 58 属、40 科、20 目、12 类和 6 门中。所感染的宿主从子囊菌界到担子菌界都有,主要是姬松茸、冬虫夏草、莫氏菌属和羊肚菌属。 这项研究不仅丰富了我们目前对栽培蘑菇(尤其是羊肚菌)病原体多样性的了解,还认识到一些类群作为潜在病原体的重要性。分类调查和准确鉴定是了解病原体与蘑菇之间相互作用的最初和关键步骤,并将为蘑菇产业带来更好的疾病管理策略。
{"title":"Species diversity of fungal pathogens on cultivated mushrooms: a case study on morels (Morchella, Pezizales)","authors":"Feng-Ming Yu, Ruvishika S. Jayawardena, Thatsanee Luangharn, Xiang-Yu Zeng, Cui-Jin-Yi Li, Shu-Xin Bao, Hong Ba, De-Qun Zhou, Song-Ming Tang, Kevin D. Hyde, Qi Zhao","doi":"10.1007/s13225-023-00531-6","DOIUrl":"https://doi.org/10.1007/s13225-023-00531-6","url":null,"abstract":"&lt;p&gt;Mushrooms are important organisms because of their human nutritional and medicinal value. With the expansion of the cultivation of edible mushrooms, fungal diseases have become a major problem in limiting their production. Numerous fungi can cause mushroom deformation or rots. In this publication we report on fungal diseases found during &lt;i&gt;Morchella&lt;/i&gt; cultivation in China, with emphasis on morphology and phylogeny to characterise species. The key findings include 1) establishment of a new family &lt;i&gt;Albomorchellophilaceae&lt;/i&gt; in &lt;i&gt;Hypocreales&lt;/i&gt;, and a novel monotypic genus &lt;i&gt;Albomorchellophila&lt;/i&gt; with the type species &lt;i&gt;A. morchellae&lt;/i&gt;. Divergence time estimates indicate that &lt;i&gt;Albomorchellophilaceae&lt;/i&gt; diverged from its sister family &lt;i&gt;Calcarisporiaceae&lt;/i&gt; at ca. 105 (92–120) MYA; 2) the phylogeny and morphology of the family &lt;i&gt;Pseudodiploosporeaceae&lt;/i&gt; (&lt;i&gt;Hypocreales&lt;/i&gt;) is revised. The family contains a single genus &lt;i&gt;Pseudodiploospora&lt;/i&gt;. Intraspecific genetic analyses of &lt;i&gt;Pseudodiploospora longispora&lt;/i&gt; reveals significant base differences within strains, especially in the regions of protein-coding genes &lt;i&gt;RPB&lt;/i&gt; 2 and &lt;i&gt;TEF&lt;/i&gt;; 3) four fungicolous taxa, i.e., &lt;i&gt;Cylindrodendrum alicantinum&lt;/i&gt;, &lt;i&gt;Hypomyces aurantius&lt;/i&gt;, &lt;i&gt;Hypomyces rosellus&lt;/i&gt;, and &lt;i&gt;Trichothecium roseum&lt;/i&gt;, are reported as putative pathogens on cultivated morels for the first time. In addition, the previously reported pathogens of morels, &lt;i&gt;Clonostachys rosea&lt;/i&gt;, &lt;i&gt;Clonostachys solani&lt;/i&gt;, &lt;i&gt;Hypomyces odoratus&lt;/i&gt;, and &lt;i&gt;Pseudodiploospora longispora&lt;/i&gt; are also detailed in their symptoms and morphology; 4) the phylogeny and morphology of “&lt;i&gt;Zelopaecilomyces&lt;/i&gt;” previously placed within &lt;i&gt;Pseudodiploosporeaceae&lt;/i&gt; are re-assessed. “&lt;i&gt;Zelopaecilomyces&lt;/i&gt;” is proved to be introduced through a chimerism of gene fragments sourced from two distinct organisms. Consequently, it is recommended that “&lt;i&gt;Zelopaecilomyces&lt;/i&gt;” should not be recognised due to the mixed up molecular data in phylogeny and a lack of support from morphological evidence. Furthermore, this study discusses the voucher specimen &lt;i&gt;Paecilomyces penicillatus&lt;/i&gt; (CBS 448.69), which may contain two mixed taxa, i.e., &lt;i&gt;Pseudodiploospora longispora&lt;/i&gt; and a member of &lt;i&gt;Penicillium&lt;/i&gt;. Publications on pathogenic fungi of cultivated mushrooms is sporadically, which leads to a lack of understanding of causal agents. As a follow up to the diseases of morel cultivation, we also review the fungal diseases of cultivated mushrooms reported over the last four decades. More than 130 pathogens affect the growth and development of the main cultivated mushrooms. The taxonomic diversity of these pathogens is high, distributed in 58 genera, 40 families, 20 orders, 12 classes and six phyla. The host infected are from Ascomycota to Basidiomycota, mainly being reported from &lt;i&gt;Agaricus bisporus&lt;/i&gt;, &lt;i&gt;Cordyceps militaris&lt;/i&gt;, &lt;i&gt;Morchella&lt;/i&gt; spp., and &lt;i&gt;Pleurotus&lt;/i&gt; spp. This s","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"14 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class-wide genomic tendency throughout specific extremes in black fungi 黑色真菌特定极端的全类基因组趋势
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-02-26 DOI: 10.1007/s13225-024-00533-y
Claudia Coleine, Tania Kurbessoian, Giulia Calia, Manuel Delgado-Baquerizo, Alessandro Cestaro, Massimo Pindo, Federica Armanini, Francesco Asnicar, Daniela Isola, Nicola Segata, Claudio Donati, Jason E. Stajich, Sybren de Hoog, Laura Selbmann

The classes Dothideomycetes and Eurotiomycetes include constitutively melanized fungi adapted to extreme conditions and they are widely distributed in diverse hostile habitats worldwide. Yet, despite the growing interest in these fungi, there is a considerable gap of knowledge on their functionality. Their genomic analysis is still in its infancy and the possibility to understand their adaptive strategies and exploit their potentialities in bioremediation is very limited. Here, we supply a genome catalog of 118 black fungi, encompassing different ecologies, phylogenies and lifestyles, as a first example of a comparative genomic study at high level of diversity. Results indicate that, as a rule, Dothideomycetes show more variable genome size and that larger genomes are associated with harshest conditions; low temperature tolerance and DNA repair capacity are overrepresented in their genomes. In Eurotiomycetes high temperature tolerance and capacity to metabolize hydrocarbons are more frequently present and these abilities are positively correlated with the human presence. The genomic features are consistent with the prevalent ecologies in the two classes. Indeed, Dothideomycetes are more common in cold and dry environments with high capacity for DNA repair being consistent with the normally highly UV-impacted conditions in their habitats; in contrast, Eurotiomycetes spread mainly in hot human-impacted sites with industrial pollution. Mean annual temperature and isothermality are positively correlated with tolerance to high temperatures in Dothideomycetes, suggesting that, despite their preference for the cold, they are potentially equipped to survive even when temperatures rise due to the global warming.

Dothideomycetes 类和 Eurotiomycetes 类包括适应极端条件的组成型黑色真菌,它们广泛分布于全球各种恶劣的生境中。然而,尽管人们对这些真菌的兴趣与日俱增,但对其功能的了解仍有相当大的差距。它们的基因组分析仍处于起步阶段,了解它们的适应策略和利用它们在生物修复方面的潜力的可能性非常有限。在这里,我们提供了 118 种黑色真菌的基因组目录,涵盖了不同的生态学、系统发育和生活方式,是高水平多样性比较基因组研究的第一个范例。研究结果表明,一般来说,多齿真菌的基因组大小变化较大,基因组较大的真菌与最恶劣的环境有关;耐低温和 DNA 修复能力在它们的基因组中占有较大比例。在欧洲真菌中,耐高温和代谢碳氢化合物的能力更常见,这些能力与人类的存在呈正相关。这些基因组特征与这两类生物的普遍生态环境相一致。事实上,多糖酵母菌更常见于寒冷和干燥的环境中,具有很强的 DNA 修复能力,这与其栖息地通常受紫外线高度影响的条件相一致;相比之下,欧洲酵母菌主要分布在受人类影响和工业污染的炎热地区。年平均温度和等温性与 Dothideomycetes 对高温的耐受性呈正相关,这表明尽管它们喜欢寒冷的环境,但即使全球变暖导致气温升高,它们也有可能生存下来。
{"title":"Class-wide genomic tendency throughout specific extremes in black fungi","authors":"Claudia Coleine, Tania Kurbessoian, Giulia Calia, Manuel Delgado-Baquerizo, Alessandro Cestaro, Massimo Pindo, Federica Armanini, Francesco Asnicar, Daniela Isola, Nicola Segata, Claudio Donati, Jason E. Stajich, Sybren de Hoog, Laura Selbmann","doi":"10.1007/s13225-024-00533-y","DOIUrl":"https://doi.org/10.1007/s13225-024-00533-y","url":null,"abstract":"<p>The classes <i>Dothideomycetes</i> and <i>Eurotiomycetes</i> include constitutively melanized fungi adapted to extreme conditions and they are widely distributed in diverse hostile habitats worldwide. Yet, despite the growing interest in these fungi, there is a considerable gap of knowledge on their functionality. Their genomic analysis is still in its infancy and the possibility to understand their adaptive strategies and exploit their potentialities in bioremediation is very limited. Here, we supply a genome catalog of 118 black fungi, encompassing different ecologies, phylogenies and lifestyles, as a first example of a comparative genomic study at high level of diversity. Results indicate that, as a rule, <i>Dothideomycetes</i> show more variable genome size and that larger genomes are associated with harshest conditions; low temperature tolerance and DNA repair capacity are overrepresented in their genomes. In <i>Eurotiomycetes</i> high temperature tolerance and capacity to metabolize hydrocarbons are more frequently present and these abilities are positively correlated with the human presence. The genomic features are consistent with the prevalent ecologies in the two classes. Indeed, <i>Dothideomycetes</i> are more common in cold and dry environments with high capacity for DNA repair being consistent with the normally highly UV-impacted conditions in their habitats; in contrast, <i>Eurotiomycetes</i> spread mainly in hot human-impacted sites with industrial pollution. Mean annual temperature and isothermality are positively correlated with tolerance to high temperatures in <i>Dothideomycetes</i>, suggesting that, despite their preference for the cold, they are potentially equipped to survive even when temperatures rise due to the global warming.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"6 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal diversity notes 1717–1817: taxonomic and phylogenetic contributions on genera and species of fungal taxa 真菌多样性笔记 1717-1817:关于真菌类群属和种的分类学和系统发生学贡献
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-02-15 DOI: 10.1007/s13225-023-00529-0
Shi-Liang Liu, Xue-Wei Wang, Guo-Jie Li, Chun-Ying Deng, Walter Rossi, Marco Leonardi, Kare Liimatainen, Tapio Kekki, Tuula Niskanen, Matthew E. Smith, Joe Ammirati, Dimitar Bojantchev, Mohamed A. Abdel-Wahab, Ming Zhang, Enjing Tian, Yong-Zhong Lu, Jing-Yi Zhang, Jian Ma, Arun Kumar Dutta, Krishnendu Acharya, Tian-Ye Du, Jize Xu, Ji Seon Kim, Young Woon Lim, Alice Gerlach, Nian-Kai Zeng, Yun-Xiao Han, Parisa Razaghi, Mubashar Raza, Lei Cai, Mark S. Calabon, E. B. Gareth Jones, Rituparna Saha, T. K. Arun Kumar, K. Krishnapriya, Anjitha Thomas, Malarvizhi Kaliyaperumal, Kezhocuyi Kezo, Sugantha Gunaseelan, Sanjay Kumar Singh, Paras Nath Singh, Ajay Chandrakant Lagashetti, Kadambari Subhash Pawar, Shuhua Jiang, Chao Zhang, Huang Zhang, Yun Qing, Tolgor Bau, Xing-Can Peng, Ting-Chi Wen, Natalia A. Ramirez, Nicolás Niveiro, Mei-Xiang Li, Zhu L. Yang, Gang Wu, Entaj Tarafder, Danushka S. Tennakoon, Chang-Hsin Kuo, Tatiane M. da Silva, Cristina M. Souza-Motta, Jadson D. P. Bezerra,..
<p>As the continuation of Fungal Diversity Notes series, the current paper is the 16th contribution to this series. A total of 103 taxa from seven classes in <i>Ascomycota</i> and <i>Basidiomycota</i> are included here. Of these 101 taxa, four new genera, 89 new species, one new combination, one new name and six new records are described in detail along with information of hosts and geographic distributions. The four genera newly introduced are <i>Ascoglobospora</i>, <i>Atheliella</i>, <i>Rufoboletus</i> and <i>Tenuimyces</i>. Newly described species are <i>Akanthomyces xixiuensis</i>, <i>Agaricus agharkarii</i>, <i>A. albostipitatus</i>, <i>Amphisphaeria guttulata</i>, <i>Ascoglobospora marina</i>, <i>Astrothelium peudostraminicolor</i>, <i>Athelia naviculispora</i>, <i>Atheliella conifericola</i>, <i>Athelopsis </i><i>subglaucina</i>, <i>Aureoboletus minimus</i>, <i>A. nanlingensis</i>, <i>Autophagomyces incertus</i>, <i>Beltrania liliiferae</i>, <i>Beltraniella jiangxiensis</i>, <i>Botryobasidium coniferarum</i>, <i>Calocybella sribuabanensis</i>, <i>Calonarius caesiofulvus</i>, <i>C. nobilis</i>, <i>C. pacificus</i>, <i>C. pulcher</i>, <i>C. subcorrosus</i>, <i>Cortinarius flaureifolius</i>, <i>C. floridaensis</i>, <i>C. subiodes</i>, <i>Crustomyces juniperi</i>, <i>C. scytinostromoides</i>, <i>Cystostereum subsirmaurense</i>, <i>Dimorphomyces seemanii</i>, <i>Fulvoderma microporum</i>, <i>Ginnsia laricicola</i>, <i>Gomphus zamorinorum</i>, <i>Halobyssothecium sichuanense</i>, <i>Hemileccinum duriusculum</i>, <i>Henningsomyces hengduanensis</i>, <i>Hygronarius californicus</i>, <i>Kneiffiella pseudoabdita</i>, <i>K. pseudoalutacea</i>, <i>Laboulbenia bifida</i>, <i>L. tschirnhausii</i>, <i>L. tuberculata</i>, <i>Lambertella dipterocarpacearum</i>, <i>Laxitextum subrubrum</i>, <i>Lyomyces austro-occidentalis</i>, <i>L. crystallina</i>, <i>L. guttulatus</i>, <i>L. niveus</i>, <i>L. tasmanicus</i>, <i>Marasmius centrocinnamomeus</i>, <i>M. ferrugineodiscus</i>, <i>Megasporoporia tamilnaduensis</i>, <i>Meruliopsis crystallina</i>, <i>Metuloidea imbricata</i>, <i>Moniliophthora atlantica</i>, <i>Mystinarius ochrobrunneus</i>, <i>Neomycoleptodiscus alishanense</i>, <i>Nigrograna kunmingensis</i>, <i>Paracremonium aquaticum</i>, <i>Parahelicomyces dictyosporus</i>, <i>Peniophorella sidera</i>, <i>P. subreticulata</i>, <i>Phlegmacium fennicum</i>, <i>P. pallidocaeruleum</i>, <i>Pholiota betulicola</i>, <i>P. subcaespitosa</i>, <i>Pleurotheciella hyalospora</i>, <i>Pleurothecium aseptatum</i>, <i>Resupinatus porrigens</i>, <i>Russula chlorina</i>, <i>R. chrysea</i>, <i>R. cruenta</i>, <i>R. haematina</i>, <i>R. luteocarpa</i>, <i>R. sanguinolenta</i>, <i>Synnemellisia punensis</i>, <i>Tenuimyces bambusicola</i>, <i>Thaxterogaster americanoporphyropus</i>, <i>T. obscurovibratilis</i>, <i>Thermoascus endophyticus</i>, <i>Trechispora alba</i>, <i>T. perminispora</i>, <i>T. subfarinacea</i>, <i>T. tuberculata</i>, <i>Tremella sairandhriana</i>, <i>Tropico
作为 "真菌多样性笔记 "系列的延续,本文是该系列的第 16 篇论文。本文共收录了来自子囊菌界和担子菌界 7 个类别的 103 个分类群。在这 101 个分类群中,详细描述了 4 个新属、89 个新种、1 个新组合、1 个新名称和 6 个新记录,并提供了寄主和地理分布信息。新引入的 4 个属是 Ascoglobospora、Atheliella、Rufoboletus 和 Tenuimyces。新描述的物种有 Akanthomyces xixiuensis、Agaricus agharkarii、A. albostipitatus、Amphisphaeria guttulata、Ascoglobospora marina、Astrothelium peudostraminicolor、Athehelia naviculispora、Atheliella conifericola、Athehelopsis subglaucina、Aureoboletus minimus、A.subiodes, Crustomyces juniperi, C. scytinostromoides.scytinostromoides、Cystostereum subsirmaurense、Dimorphomyces seemanii、Fulvoderma microporum、Ginnsia laricicola、Gomphus zamorinorum、Halobyssothecium sichuanense、Hemileccinum duriusculum、Henningsomyces hengduanensis、Hygronarius californicus、Kneiffiella pseudoabdita、K.tuberculata、Lambertella dipterocarpacearum、Laxitextum subrubrum、Lyomyces austro-occidentalis、L.crystallina, L. guttulatus, L. niveus, L. tasmanicus, Marasmius centrocinnamomeus, M. ferrugineodiscus, Meg.Ferrugineodiscus, Megasporoporia tamilnaduensis, Meruliopsis crystallina, Metuloidea imbricata, Moniliophthora atlantica, Mystinarius ochrobrunneus, Neomycoleptodiscus alishanense, Nigrograna kunmingensis, Paracremonium aquaticum, Parahelicomyces dictyosporus, Peniophorella sidera, P.P. pallidocaeruleum、Pholiota betulicola、P.subcaespitosa, Pleurotheciella hyalospora, Pleurothecium aseptatum, Resupinatus porrigens, Russula chlorina, R. chrysea, R. cruenta, R. haematina, R. luteocarpa, R. sanguinolenta, Synnemellisia punensis, Tenuimyces bambusicola, Thaxterogaster americanoporphyropus, T. obscurovibratilis.T. tuberculata、Tremella sairandhriana、Tropicoporus natarajaniae、T. subramaniae、Usnea kriegeriana、Wolfiporiella macrospora 和 Xylodon muchuanensis。Rufoboletus hainanensis 是新近从 Butyriboletus 转来的,而 Russula leucocarpa G.J. Li & Chun Y. Deng 是 Russula leucocarpa (T. Lebel) T. Lebel 的一个不合法的后同名。记录了 Agaricus bambusetorum、Bipolaris heliconiae、Crinipellis trichialis、Leucocoprinus cretaceus、Halobyssothecium cangshanense 和 Parasola setulosa 的新地理分布区域。与形态特征相对应,系统发生学证据也被用来将上述分类群置于适当的分类位置。目前的形态学和系统发生学数据有助于进一步澄清物种多样性和探索相关真菌类群的进化关系。
{"title":"Fungal diversity notes 1717–1817: taxonomic and phylogenetic contributions on genera and species of fungal taxa","authors":"Shi-Liang Liu, Xue-Wei Wang, Guo-Jie Li, Chun-Ying Deng, Walter Rossi, Marco Leonardi, Kare Liimatainen, Tapio Kekki, Tuula Niskanen, Matthew E. Smith, Joe Ammirati, Dimitar Bojantchev, Mohamed A. Abdel-Wahab, Ming Zhang, Enjing Tian, Yong-Zhong Lu, Jing-Yi Zhang, Jian Ma, Arun Kumar Dutta, Krishnendu Acharya, Tian-Ye Du, Jize Xu, Ji Seon Kim, Young Woon Lim, Alice Gerlach, Nian-Kai Zeng, Yun-Xiao Han, Parisa Razaghi, Mubashar Raza, Lei Cai, Mark S. Calabon, E. B. Gareth Jones, Rituparna Saha, T. K. Arun Kumar, K. Krishnapriya, Anjitha Thomas, Malarvizhi Kaliyaperumal, Kezhocuyi Kezo, Sugantha Gunaseelan, Sanjay Kumar Singh, Paras Nath Singh, Ajay Chandrakant Lagashetti, Kadambari Subhash Pawar, Shuhua Jiang, Chao Zhang, Huang Zhang, Yun Qing, Tolgor Bau, Xing-Can Peng, Ting-Chi Wen, Natalia A. Ramirez, Nicolás Niveiro, Mei-Xiang Li, Zhu L. Yang, Gang Wu, Entaj Tarafder, Danushka S. Tennakoon, Chang-Hsin Kuo, Tatiane M. da Silva, Cristina M. Souza-Motta, Jadson D. P. Bezerra,..","doi":"10.1007/s13225-023-00529-0","DOIUrl":"https://doi.org/10.1007/s13225-023-00529-0","url":null,"abstract":"&lt;p&gt;As the continuation of Fungal Diversity Notes series, the current paper is the 16th contribution to this series. A total of 103 taxa from seven classes in &lt;i&gt;Ascomycota&lt;/i&gt; and &lt;i&gt;Basidiomycota&lt;/i&gt; are included here. Of these 101 taxa, four new genera, 89 new species, one new combination, one new name and six new records are described in detail along with information of hosts and geographic distributions. The four genera newly introduced are &lt;i&gt;Ascoglobospora&lt;/i&gt;, &lt;i&gt;Atheliella&lt;/i&gt;, &lt;i&gt;Rufoboletus&lt;/i&gt; and &lt;i&gt;Tenuimyces&lt;/i&gt;. Newly described species are &lt;i&gt;Akanthomyces xixiuensis&lt;/i&gt;, &lt;i&gt;Agaricus agharkarii&lt;/i&gt;, &lt;i&gt;A. albostipitatus&lt;/i&gt;, &lt;i&gt;Amphisphaeria guttulata&lt;/i&gt;, &lt;i&gt;Ascoglobospora marina&lt;/i&gt;, &lt;i&gt;Astrothelium peudostraminicolor&lt;/i&gt;, &lt;i&gt;Athelia naviculispora&lt;/i&gt;, &lt;i&gt;Atheliella conifericola&lt;/i&gt;, &lt;i&gt;Athelopsis &lt;/i&gt;&lt;i&gt;subglaucina&lt;/i&gt;, &lt;i&gt;Aureoboletus minimus&lt;/i&gt;, &lt;i&gt;A. nanlingensis&lt;/i&gt;, &lt;i&gt;Autophagomyces incertus&lt;/i&gt;, &lt;i&gt;Beltrania liliiferae&lt;/i&gt;, &lt;i&gt;Beltraniella jiangxiensis&lt;/i&gt;, &lt;i&gt;Botryobasidium coniferarum&lt;/i&gt;, &lt;i&gt;Calocybella sribuabanensis&lt;/i&gt;, &lt;i&gt;Calonarius caesiofulvus&lt;/i&gt;, &lt;i&gt;C. nobilis&lt;/i&gt;, &lt;i&gt;C. pacificus&lt;/i&gt;, &lt;i&gt;C. pulcher&lt;/i&gt;, &lt;i&gt;C. subcorrosus&lt;/i&gt;, &lt;i&gt;Cortinarius flaureifolius&lt;/i&gt;, &lt;i&gt;C. floridaensis&lt;/i&gt;, &lt;i&gt;C. subiodes&lt;/i&gt;, &lt;i&gt;Crustomyces juniperi&lt;/i&gt;, &lt;i&gt;C. scytinostromoides&lt;/i&gt;, &lt;i&gt;Cystostereum subsirmaurense&lt;/i&gt;, &lt;i&gt;Dimorphomyces seemanii&lt;/i&gt;, &lt;i&gt;Fulvoderma microporum&lt;/i&gt;, &lt;i&gt;Ginnsia laricicola&lt;/i&gt;, &lt;i&gt;Gomphus zamorinorum&lt;/i&gt;, &lt;i&gt;Halobyssothecium sichuanense&lt;/i&gt;, &lt;i&gt;Hemileccinum duriusculum&lt;/i&gt;, &lt;i&gt;Henningsomyces hengduanensis&lt;/i&gt;, &lt;i&gt;Hygronarius californicus&lt;/i&gt;, &lt;i&gt;Kneiffiella pseudoabdita&lt;/i&gt;, &lt;i&gt;K. pseudoalutacea&lt;/i&gt;, &lt;i&gt;Laboulbenia bifida&lt;/i&gt;, &lt;i&gt;L. tschirnhausii&lt;/i&gt;, &lt;i&gt;L. tuberculata&lt;/i&gt;, &lt;i&gt;Lambertella dipterocarpacearum&lt;/i&gt;, &lt;i&gt;Laxitextum subrubrum&lt;/i&gt;, &lt;i&gt;Lyomyces austro-occidentalis&lt;/i&gt;, &lt;i&gt;L. crystallina&lt;/i&gt;, &lt;i&gt;L. guttulatus&lt;/i&gt;, &lt;i&gt;L. niveus&lt;/i&gt;, &lt;i&gt;L. tasmanicus&lt;/i&gt;, &lt;i&gt;Marasmius centrocinnamomeus&lt;/i&gt;, &lt;i&gt;M. ferrugineodiscus&lt;/i&gt;, &lt;i&gt;Megasporoporia tamilnaduensis&lt;/i&gt;, &lt;i&gt;Meruliopsis crystallina&lt;/i&gt;, &lt;i&gt;Metuloidea imbricata&lt;/i&gt;, &lt;i&gt;Moniliophthora atlantica&lt;/i&gt;, &lt;i&gt;Mystinarius ochrobrunneus&lt;/i&gt;, &lt;i&gt;Neomycoleptodiscus alishanense&lt;/i&gt;, &lt;i&gt;Nigrograna kunmingensis&lt;/i&gt;, &lt;i&gt;Paracremonium aquaticum&lt;/i&gt;, &lt;i&gt;Parahelicomyces dictyosporus&lt;/i&gt;, &lt;i&gt;Peniophorella sidera&lt;/i&gt;, &lt;i&gt;P. subreticulata&lt;/i&gt;, &lt;i&gt;Phlegmacium fennicum&lt;/i&gt;, &lt;i&gt;P. pallidocaeruleum&lt;/i&gt;, &lt;i&gt;Pholiota betulicola&lt;/i&gt;, &lt;i&gt;P. subcaespitosa&lt;/i&gt;, &lt;i&gt;Pleurotheciella hyalospora&lt;/i&gt;, &lt;i&gt;Pleurothecium aseptatum&lt;/i&gt;, &lt;i&gt;Resupinatus porrigens&lt;/i&gt;, &lt;i&gt;Russula chlorina&lt;/i&gt;, &lt;i&gt;R. chrysea&lt;/i&gt;, &lt;i&gt;R. cruenta&lt;/i&gt;, &lt;i&gt;R. haematina&lt;/i&gt;, &lt;i&gt;R. luteocarpa&lt;/i&gt;, &lt;i&gt;R. sanguinolenta&lt;/i&gt;, &lt;i&gt;Synnemellisia punensis&lt;/i&gt;, &lt;i&gt;Tenuimyces bambusicola&lt;/i&gt;, &lt;i&gt;Thaxterogaster americanoporphyropus&lt;/i&gt;, &lt;i&gt;T. obscurovibratilis&lt;/i&gt;, &lt;i&gt;Thermoascus endophyticus&lt;/i&gt;, &lt;i&gt;Trechispora alba&lt;/i&gt;, &lt;i&gt;T. perminispora&lt;/i&gt;, &lt;i&gt;T. subfarinacea&lt;/i&gt;, &lt;i&gt;T. tuberculata&lt;/i&gt;, &lt;i&gt;Tremella sairandhriana&lt;/i&gt;, &lt;i&gt;Tropico","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"6 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139739323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifestyle changes in Botryosphaeriaceae as evidenced by ancestral genome expansion and horizontal gene transfer 以祖先基因组扩增和水平基因转移为证据的 Botryosphaeriaceae 的生活方式变化
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2023-12-11 DOI: 10.1007/s13225-023-00530-7
Xuncheng Wang, Wei Zhang, Junbo Peng, Ishara S. Manawasinghe, Linna Wu, Yonghua Li, Qikai Xing, Xinghong Li, Jiye Yan

Botryosphaeriaceae (Botryosphaeriales, Dothideomycetes, Ascomycota) encompasses commonly encountered opportunistic pathogens that cause stem cankers on woody plants. Lifestyles of Botryosphaeriaceae species could vary as endophytes, pathogens and saprobes and one species can have one or more lifestyles. Therefore, this family is an excellent candidate to study the relationships among lifestyles and lifestyle changes. It is postulated that this family has saprobic ancestors, and the mechanisms by which they evolved from nonpathogenic ancestors to woody pathogens remain unclear. Here, we present an analysis of 18 Botryosphaeriaceae genomes, including four newly generated high-quality genomes of Botryosphaeriaceae strains. We compared Botryosphaeriaceae genomes with phylogenetically closely related Dothideomycetes taxa including plant pathogens and saprobes which revealed significant net gene family expansion in Botryosphaeriaceae. This gene expansion is prominent in the early ancestors before the divergence of genera of Botryosphaeriaceae. This expansion affected the pathogenicity-related genes and detoxification genes. Furthermore, we analysed horizontal gene transfer, which is a mechanism of transfer to genetic material between organisms that are not in a parent–offspring relationship and identified widespread putative intra-kingdom horizontal gene transfer events in this family. Most were transferred during the evolution of ancient ancestors of Botryosphaeriaceae, before the divergence of the modern genera and were enriched in pathogenicity-related genes and detoxification genes. Furthermore, The RNA sequencing analysis of the Botryosphaeriaceae species Lasiodiplodia theobromae revealed that pathogenicity-related genes and detoxification genes, including those obtained through gene family expansion and horizontal gene transfers, were significantly induced after the infection of plant hosts rather than before infection. These insights reveal critical roles for gene family expansion and horizontal gene transfers in the evolutionary adaptation of Botryosphaeriaceae in the infection of woody plants. We postulate that the pathogenic lifestyle of Botryosphaeriaceae species evolved from saprobic or endophytic lifestyles in the early divergence of this family. However, there are few endophytic genomes available for closely related species of Botryosphaeriaceae, thus further studies are necessary to clarify the evolutionary relationships of the endophytes.

Botryosphaeriaceae (Botryosphaeriales,Dothideomycetes,Ascomycota)包括常见的机会性病原体,可导致木本植物茎干溃疡。Botryosphaeriaceae 物种的生活方式可以作为内生菌、病原体和吸液菌而变化,一个物种可以有一种或多种生活方式。因此,该科是研究生活方式和生活方式变化之间关系的极佳对象。据推测,该科植物的祖先是树液生物,而它们从非病原体祖先进化为木本病原体的机制尚不清楚。在此,我们对 18 个 Botryosphaeriaceae 基因组进行了分析,其中包括 4 个新生成的高质量 Botryosphaeriaceae 菌株基因组。我们将 Botryosphaeriaceae 基因组与系统发育上密切相关的 Dothideomycetes 类群(包括植物病原菌和树腐菌)进行了比较,发现 Botryosphaeriaceae 中的基因家族有显著的净扩展。这种基因扩增在 Botryosphaeriaceae 属分化之前的早期祖先中十分突出。这种扩展影响了致病性相关基因和解毒基因。此外,我们还分析了水平基因转移(一种非亲子关系生物之间遗传物质的转移机制),并在该家族中发现了广泛的推定王国内部水平基因转移事件。大部分基因是在现代菌属分化之前,在 Botryosphaeriaceae 的远古祖先进化过程中转移的,并且富含致病性相关基因和解毒基因。此外,对Botryosphaeriaceae物种Lasiodiplodia theobromae的RNA测序分析表明,与致病性相关的基因和解毒基因,包括通过基因家族扩展和水平基因转移获得的基因,在感染植物宿主后而不是在感染前被显著诱导。这些发现揭示了基因家族扩增和水平基因转移在 Botryosphaeriaceae 感染木本植物的进化适应过程中的关键作用。我们推测 Botryosphaeriaceae 物种的致病生活方式是在该科早期分化过程中从吸附生活方式或内生生活方式演变而来的。然而,与 Botryosphaeriaceae 关系密切的内生菌基因组很少,因此有必要开展进一步研究,以明确内生菌的进化关系。
{"title":"Lifestyle changes in Botryosphaeriaceae as evidenced by ancestral genome expansion and horizontal gene transfer","authors":"Xuncheng Wang, Wei Zhang, Junbo Peng, Ishara S. Manawasinghe, Linna Wu, Yonghua Li, Qikai Xing, Xinghong Li, Jiye Yan","doi":"10.1007/s13225-023-00530-7","DOIUrl":"https://doi.org/10.1007/s13225-023-00530-7","url":null,"abstract":"<p><i>Botryosphaeriaceae</i> (Botryosphaeriales, Dothideomycetes, Ascomycota) encompasses commonly encountered opportunistic pathogens that cause stem cankers on woody plants. Lifestyles of <i>Botryosphaeriaceae</i> species could vary as endophytes, pathogens and saprobes and one species can have one or more lifestyles. Therefore, this family is an excellent candidate to study the relationships among lifestyles and lifestyle changes. It is postulated that this family has saprobic ancestors, and the mechanisms by which they evolved from nonpathogenic ancestors to woody pathogens remain unclear. Here, we present an analysis of 18 <i>Botryosphaeriaceae</i> genomes, including four newly generated high-quality genomes of <i>Botryosphaeriaceae</i> strains. We compared <i>Botryosphaeriaceae</i> genomes with phylogenetically closely related Dothideomycetes taxa including plant pathogens and saprobes which revealed significant net gene family expansion in <i>Botryosphaeriaceae</i>. This gene expansion is prominent in the early ancestors before the divergence of genera of <i>Botryosphaeriaceae</i>. This expansion affected the pathogenicity-related genes and detoxification genes. Furthermore, we analysed horizontal gene transfer, which is a mechanism of transfer to genetic material between organisms that are not in a parent–offspring relationship and identified widespread putative intra-kingdom horizontal gene transfer events in this family. Most were transferred during the evolution of ancient ancestors of <i>Botryosphaeriaceae</i>, before the divergence of the modern genera and were enriched in pathogenicity-related genes and detoxification genes. Furthermore, The RNA sequencing analysis of the <i>Botryosphaeriaceae</i> species <i>Lasiodiplodia theobromae</i> revealed that pathogenicity-related genes and detoxification genes, including those obtained through gene family expansion and horizontal gene transfers, were significantly induced after the infection of plant hosts rather than before infection. These insights reveal critical roles for gene family expansion and horizontal gene transfers in the evolutionary adaptation of <i>Botryosphaeriaceae</i> in the infection of woody plants. We postulate that the pathogenic lifestyle of <i>Botryosphaeriaceae</i> species evolved from saprobic or endophytic lifestyles in the early divergence of this family. However, there are few endophytic genomes available for closely related species of <i>Botryosphaeriaceae</i>, thus further studies are necessary to clarify the evolutionary relationships of the endophytes.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"65 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASF1 regulates asexual and sexual reproduction in Stemphylium eturmiunum by DJ-1 stimulation of the PI3K/AKT signaling pathway ASF1通过DJ-1刺激PI3K/AKT信号通路调控黄茎(Stemphylium eturium)的无性和有性生殖
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2023-12-04 DOI: 10.1007/s13225-023-00528-1
Shi Wang, Xiaoman Liu, Chenlin Xiong, Susu Gao, Wenmeng Xu, Lili Zhao, Chunyan Song, Xiaoyong Liu, Timothy Y. James, Zhuang Li, Xiuguo Zhang

Most fungi display a mixed mating system with both asexual and sexual reproduction. The timing of the two modes of reproduction must be carefully coordinated through signal perception and coordination in the cell along with chromatin modification. Here, we investigated coordination of reproductive output by investigating the function of the histone chaperone anti-silencing factor 1 (ASF1) in a fungal species amenable to characterization of both asexual and sexual reproduction. We used knockout approach to show that SeASF1 influenced asexual and sexual reproduction in Stemphylium eturmiunum. SeASF1-deleted strains failed to produce pseudothecia, but produce abnormal conidia and showed an irregular distribution of nuclei in mycelium. Transcriptome sequencing was then used to identify genes with altered expression in the SeASF1-deleted strains. The transcriptional expression of the identified SeDJ-1 was strongly regulated by SeASF1. The interaction of SeDJ-1 and SeASF1 was confirmed using Y2H, Co-IP, and pull-down. Due to some components of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway were known to interact with DJ-1 in mammals, we verified SePI3K, an element of PI3K/AKT signaling pathway in S. eturmiunum, was directly linked to SeDJ-1 and then these two proteins were defined as a coordinator of reproduction. However, knockout of SeDJ-1 or SePI3K altered the asexual and sexual reproduction, but SePI3K recovered the asexual and sexual development of ∆Sedj-1. The SeDJ-1-M6 segment of SeDJ-1 was essential for its interaction with SePI3K and played a critical role in restoring sexual reproduction in the ∆Sepi3k, providing a deep understanding of the regulatory mechanism of SeDJ-1 in S. eturmiunum development. Summarily, SeASF1 is able to trigger SeDJ-1 and SeDJ-1can also activate SePI3K, which is orchestrally involved in asexual and sexual reproduction in S. eturmiunum. All these results reveal that SeASF1 manipulates asexual and sexual reproduction in S. eturmiunum by SeDJ-1 perception of PI3K/AKT signaling pathway. These data highlight the deep similarities in coordinating asexual and sexual processes in both fungi and eukaryotes in general.

大多数真菌表现出一种混合的交配系统,即无性繁殖和有性繁殖。这两种繁殖模式的时间必须通过细胞中的信号感知和协调以及染色质修饰来仔细协调。在这里,我们通过研究组蛋白伴侣抗沉默因子1 (ASF1)在一种真菌物种中的功能来研究生殖输出的协调,该真菌物种既适合无性繁殖,也适合有性繁殖。我们采用基因敲除的方法来证明,SeASF1影响了黄茎的无性生殖和有性生殖。缺失seasf1的菌株不能产生假鞘,但产生异常分生孢子,菌丝细胞核分布不规则。然后使用转录组测序来鉴定在seasf1缺失菌株中表达改变的基因。经鉴定的SeDJ-1的转录表达受SeASF1的强烈调控。通过Y2H、Co-IP和pull-down确认SeDJ-1和SeASF1的相互作用。由于已知哺乳动物中磷脂酰肌醇3-激酶/蛋白激酶B (PI3K/AKT)信号通路的某些组分与DJ-1相互作用,我们证实了黄貂草中PI3K/AKT信号通路的元件SePI3K与SeDJ-1直接相连,并将这两个蛋白定义为生殖协调者。然而,敲除SeDJ-1或SePI3K改变了∆SeDJ-1的无性和有性生殖,但SePI3K恢复了∆SeDJ-1的无性和有性发育。SeDJ-1的SeDJ-1- m6片段是其与SePI3K相互作用的关键,在∆SePI3K的有性生殖恢复中起着关键作用,为深入了解SeDJ-1在沙蚕发育中的调控机制提供了线索。综上所述,sesf1能够触发SeDJ-1,而SeDJ-1也可以激活SePI3K,而SePI3K在沙蚕无性生殖和有性生殖中起着重要的作用。这些结果表明,sej -1通过感知PI3K/AKT信号通路,调控了沙蚕的无性繁殖和有性繁殖。这些数据突出了真菌和真核生物在协调无性和有性过程方面的深刻相似性。
{"title":"ASF1 regulates asexual and sexual reproduction in Stemphylium eturmiunum by DJ-1 stimulation of the PI3K/AKT signaling pathway","authors":"Shi Wang, Xiaoman Liu, Chenlin Xiong, Susu Gao, Wenmeng Xu, Lili Zhao, Chunyan Song, Xiaoyong Liu, Timothy Y. James, Zhuang Li, Xiuguo Zhang","doi":"10.1007/s13225-023-00528-1","DOIUrl":"https://doi.org/10.1007/s13225-023-00528-1","url":null,"abstract":"<p>Most fungi display a mixed mating system with both asexual and sexual reproduction. The timing of the two modes of reproduction must be carefully coordinated through signal perception and coordination in the cell along with chromatin modification. Here, we investigated coordination of reproductive output by investigating the function of the histone chaperone anti-silencing factor 1 (ASF1) in a fungal species amenable to characterization of both asexual and sexual reproduction. We used knockout approach to show that SeASF1 influenced asexual and sexual reproduction in <i>Stemphylium eturmiunum</i>. SeASF1-deleted strains failed to produce pseudothecia, but produce abnormal conidia and showed an irregular distribution of nuclei in mycelium. Transcriptome sequencing was then used to identify genes with altered expression in the SeASF1-deleted strains. The transcriptional expression of the identified SeDJ-1 was strongly regulated by SeASF1. The interaction of SeDJ-1 and SeASF1 was confirmed using Y2H, Co-IP, and pull-down. Due to some components of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway were known to interact with DJ-1 in mammals, we verified SePI3K, an element of PI3K/AKT signaling pathway in <i>S. eturmiunum</i>, was directly linked to SeDJ-1 and then these two proteins were defined as a coordinator of reproduction. However, knockout of SeDJ-1 or SePI3K altered the asexual and sexual reproduction, but SePI3K recovered the asexual and sexual development of ∆<i>Sedj-1</i>. The SeDJ-1-M6 segment of SeDJ-1 was essential for its interaction with SePI3K and played a critical role in restoring sexual reproduction in the ∆<i>Sepi3k</i>, providing a deep understanding of the regulatory mechanism of SeDJ-1 in <i>S. eturmiunum</i> development. Summarily, SeASF1 is able to trigger SeDJ-1 and SeDJ-1can also activate SePI3K, which is orchestrally involved in asexual and sexual reproduction in <i>S. eturmiunum</i>. All these results reveal that SeASF1 manipulates asexual and sexual reproduction in <i>S. eturmiunum</i> by SeDJ-1 perception of PI3K/AKT signaling pathway. These data highlight the deep similarities in coordinating asexual and sexual processes in both fungi and eukaryotes in general.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":" December","pages":""},"PeriodicalIF":20.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138481014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic arrangement within the family Clitocybaceae (Tricholomatineae, Agaricales): phylogenetic and phylogenomic evidence, morphological data and muscarine-producing innovation 阴蒂菌科的系统排列:系统发育和系统基因组证据、形态数据和产生毒蕈碱的创新
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2023-11-27 DOI: 10.1007/s13225-023-00527-2
Zheng-Mi He, Zuo-Hong Chen, Tolgor Bau, Geng-Shen Wang, Zhu L. Yang

The Clitocybaceae is a recently established family. Currently, the infrafamilial divisions and relationships within the family are vague due to limited sampling and genes employed for phylogenetic analysis. Some mushrooms of the family contain the neurotoxic muscarine, which has caused many severe and even deadly poisonings worldwide. However, the taxonomic distribution and evolution of the toxin within the family is largely unknown. In this study, phylogenetic analyses based on nucleotide sequences of ITS and of six molecular loci (ITS, LSU, TEF1, RPB1, RPB2 and ATP6), plus a phylogenomic analysis based on 485 single-copy orthologous genes, were performed to reconstruct the framework of Clitocybaceae. BEAST analysis was used to estimate the divergence times within the family. Additionally, biochemical analysis for muscarine was conducted of 32 representative species. Based on these analyses, an updated classification of Clitocybaceae into six genera (Clitocybe, Collybia, Dendrocollybia, Lepista, Pseudolyophyllum, and Singerocybe) is proposed. The genus Collybia is emended to accommodate four subgenera (Collybia, Crassicybe, Leucocalocybe, and Macrosporocybe). Seventeen new Chinese species and 15 new combinations are proposed. Keys to the genera of Clitocybaceae and the subgenera of Collybia, as well as to the known species of Clitocybe and Collybia subgen. Collybia in China, are presented. In addition, muscarine was detected in 18 species, and these muscarine-containing species formed a major monophyletic clade within Collybia subgen. Collybia. Finally, our phylogenetic, phylogenomic, chemotaxonomic and molecular dating results indicate that the Clitocybaceae is a natural group estimated to have arisen some 60 million years ago, and in this family, muscarine has evolved only once circa 20 million years ago without later losses.

阴蒂菌科是一个新近成立的科。目前,由于样本和用于系统发育分析的基因有限,家族内的家族内部划分和关系模糊不清。该家族的一些蘑菇含有神经毒性毒蕈碱,在世界范围内引起了许多严重甚至致命的中毒。然而,毒素在该家族中的分类分布和进化在很大程度上是未知的。本研究基于ITS和6个分子位点(ITS、LSU、TEF1、RPB1、RPB2和ATP6)的核苷酸序列,以及基于485个单拷贝同源基因的系统发育分析,重建了clitocybacae的结构框架。使用BEAST分析来估计家族内部的分化时间。并对32种有代表性的毒蕈碱进行了生化分析。在此基础上,提出了一种更新的clitocybacae分类方法:Clitocybe、Collybia、Dendrocollybia、Lepista、Pseudolyophyllum和Singerocybe。Collybia属被修正为容纳四个亚属(Collybia, assicybe, Leucocalocybe和Macrosporocybe)。提出了17个中国新种和15个新组合。cliitocybacae属和Collybia亚属的关键字,以及已知的cliitocybe和Collybia亚属的关键字。在中国的哥伦比亚,都有介绍。此外,在18个物种中检测到毒蕈碱,这些含有毒蕈碱的物种构成了Collybia亚属中一个主要的单系分支。Collybia。最后,我们的系统发育、系统基因组学、化学分类和分子定年结果表明,阴蒂菌科是一个自然的类群,估计大约在6000万年前出现,而在这个科中,muscarine在大约2000万年前只进化过一次,后来没有消失。
{"title":"Systematic arrangement within the family Clitocybaceae (Tricholomatineae, Agaricales): phylogenetic and phylogenomic evidence, morphological data and muscarine-producing innovation","authors":"Zheng-Mi He, Zuo-Hong Chen, Tolgor Bau, Geng-Shen Wang, Zhu L. Yang","doi":"10.1007/s13225-023-00527-2","DOIUrl":"https://doi.org/10.1007/s13225-023-00527-2","url":null,"abstract":"<p>The Clitocybaceae is a recently established family. Currently, the infrafamilial divisions and relationships within the family are vague due to limited sampling and genes employed for phylogenetic analysis. Some mushrooms of the family contain the neurotoxic muscarine, which has caused many severe and even deadly poisonings worldwide. However, the taxonomic distribution and evolution of the toxin within the family is largely unknown. In this study, phylogenetic analyses based on nucleotide sequences of ITS and of six molecular loci (ITS, LSU, <i>TEF1</i>, <i>RPB1</i>, <i>RPB2</i> and <i>ATP6</i>), plus a phylogenomic analysis based on 485 single-copy orthologous genes, were performed to reconstruct the framework of Clitocybaceae. BEAST analysis was used to estimate the divergence times within the family. Additionally, biochemical analysis for muscarine was conducted of 32 representative species. Based on these analyses, an updated classification of Clitocybaceae into six genera (<i>Clitocybe</i>, <i>Collybia</i>, <i>Dendrocollybia</i>, <i>Lepista</i>, <i>Pseudolyophyllum</i>, and <i>Singerocybe</i>) is proposed. The genus <i>Collybia</i> is emended to accommodate four subgenera (<i>Collybia</i>, <i>Crassicybe</i>, <i>Leucocalocybe</i>, and <i>Macrosporocybe</i>). Seventeen new Chinese species and 15 new combinations are proposed. Keys to the genera of Clitocybaceae and the subgenera of <i>Collybia</i>, as well as to the known species of <i>Clitocybe</i> and <i>Collybia</i> subgen. <i>Collybia</i> in China, are presented. In addition, muscarine was detected in 18 species, and these muscarine-containing species formed a major monophyletic clade within <i>Collybia</i> subgen. <i>Collybia</i>. Finally, our phylogenetic, phylogenomic, chemotaxonomic and molecular dating results indicate that the Clitocybaceae is a natural group estimated to have arisen some 60 million years ago, and in this family, muscarine has evolved only once circa 20 million years ago without later losses.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"71 6","pages":""},"PeriodicalIF":20.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138449723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae 皮肤植物和哺乳动物毛发:节皮科进化的各个方面
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2023-11-20 DOI: 10.1007/s13225-023-00526-3
Chao Tang, Xin Zhou, Jacques Guillot, Gudrun Wibbelt, Shuwen Deng, Hazal Kandemir, Yvonne Gräser, Peiying Feng, Yingqian Kang, G. Sybren de Hoog

Dermatophytes and other members of Onygenales are unique in their ability to degrade keratin, affecting hair and nails, and in the case of human hosts, causing skin infections. Subtillisins are essential proteases in keratin assimilation, and subtilisin-like protease 1 (SUB1) and SUB3–7 are specific for dermatophytes. eIF2α kinases are serine-threonine kinases that perform essential functions in response to infection, proteotoxicity, and nutrient scavenging. The relatively conserved nature of EIF2AK4 among fungi makes them potential evolutionary markers, which may contribute to a deeper understanding of dermatophyte taxonomy and evolution. This study aimed to assess the phylogeny of dermatophytes by examining the EIF2AK4 and SUB1 genes compared to the ITS gene marker. The phylogenetic trees generated from the EIF2AK4 and SUB1 genes exhibited a similar topology, which differed from that observed in the ITS tree. Our preliminary findings with a limited dataset suggest that the EIF2AK4 and SUB1 genes provide a reasonably correct reflection of the evolution of Arthrodermataceae. In addition, the study analyzed in vitro keratinolytic responses of 19 dermatophyte species using hairs of a broad range of mammals, including ancestral as well as derived species, as substrates. Trichophyton mentagrophytes and Nannizzia gypsea were the most active in degrading hair, while Trichophyton verrucosum, Trichophyton tonsurans and Epidermophyton floccosum showed low response. Hairs of Hyracoidea and Rodentia were most affected of all mammal hairs, while in contrast, bat hairs were difficult to degrade by nearly all tested dermatophyte species. Zoophilic species showed more activity than anthropophilic dermatophytes, but hair degradation profiles were not diagnostic for particular dermatophyte species.

皮肤真菌和Onygenales的其他成员在降解角蛋白,影响头发和指甲以及在人类宿主的情况下引起皮肤感染方面具有独特的能力。枯草素是角蛋白同化过程中必需的蛋白酶,而枯草素样蛋白酶1 (SUB1)和SUB3-7是皮肤真菌所特有的。eIF2α激酶是丝氨酸-苏氨酸激酶,在应对感染、蛋白质毒性和营养清除方面发挥重要作用。EIF2AK4在真菌中的相对保守性使其成为潜在的进化标记,这可能有助于更深入地了解皮肤真菌的分类和进化。本研究旨在通过检测EIF2AK4和SUB1基因与ITS基因标记的比较来评估皮肤真菌的系统发育。由EIF2AK4和SUB1基因生成的系统发育树显示出类似的拓扑结构,这与ITS树中观察到的不同。我们在有限的数据集上的初步发现表明,EIF2AK4和SUB1基因提供了一个相当正确的反映关节皮科进化的基因。此外,该研究还分析了19种皮肤真菌的体外角化反应,使用了广泛的哺乳动物(包括祖先和衍生物种)的毛发作为底物。对毛的降解活性最高的是墨多毛癣菌和石膏毛癣菌,而对疣毛癣菌、疣毛癣菌和絮状表皮癣菌的降解活性较低。在所有哺乳动物的毛发中,水螅目和啮齿目的毛发受到的影响最大,而蝙蝠的毛发几乎都难以被所有的皮肤真菌降解。嗜兽种比嗜人种表现出更强的活性,但毛发降解谱不能诊断特定种类的皮肤真菌。
{"title":"Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae","authors":"Chao Tang, Xin Zhou, Jacques Guillot, Gudrun Wibbelt, Shuwen Deng, Hazal Kandemir, Yvonne Gräser, Peiying Feng, Yingqian Kang, G. Sybren de Hoog","doi":"10.1007/s13225-023-00526-3","DOIUrl":"https://doi.org/10.1007/s13225-023-00526-3","url":null,"abstract":"<p>Dermatophytes and other members of <i>Onygenales</i> are unique in their ability to degrade keratin, affecting hair and nails, and in the case of human hosts, causing skin infections. Subtillisins are essential proteases in keratin assimilation, and subtilisin-like protease 1 (SUB1) and SUB3–7 are specific for dermatophytes. <i>eIF2α</i> kinases are serine-threonine kinases that perform essential functions in response to infection, proteotoxicity, and nutrient scavenging. The relatively conserved nature of EIF2AK4 among fungi makes them potential evolutionary markers, which may contribute to a deeper understanding of dermatophyte taxonomy and evolution. This study aimed to assess the phylogeny of dermatophytes by examining the EIF2AK4 and SUB1 genes compared to the ITS gene marker. The phylogenetic trees generated from the EIF2AK4 and SUB1 genes exhibited a similar topology, which differed from that observed in the ITS tree. Our preliminary findings with a limited dataset suggest that the EIF2AK4 and SUB1 <i>g</i>enes provide a reasonably correct reflection of the evolution of <i>Arthrodermataceae</i>. In addition, the study analyzed in vitro keratinolytic responses of 19 dermatophyte species using hairs of a broad range of mammals, including ancestral as well as derived species, as substrates. <i>Trichophyton mentagrophytes</i> and <i>Nannizzia gypsea</i> were the most active in degrading hair, while <i>Trichophyton verrucosum</i>, <i>Trichophyton tonsurans</i> and <i>Epidermophyton floccosum</i> showed low response. Hairs of <i>Hyracoidea</i> and <i>Rodentia</i> were most affected of all mammal hairs, while in contrast, bat hairs were difficult to degrade by nearly all tested dermatophyte species. Zoophilic species showed more activity than anthropophilic dermatophytes, but hair degradation profiles were not diagnostic for particular dermatophyte species.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"138 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138085809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Diversity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1