Pub Date : 2024-10-24DOI: 10.3389/fmars.2024.1423534
Elizabeth W. North, Michael J. Wilberg, Jeff Blair, Lisa Wainger, Jeffrey C. Cornwell, Robert Jones, Chris Hayes, Rasika Gawde, Raleigh Robert Hood, Taylor Goelz, Troy Hartley, Marvin M. Mace, Memo Diriker, Niquinn Fowler, Brian Polkinghorn
Worldwide, enhancement of oyster populations is undertaken to achieve a variety of goals including support of food production, local economies, water quality, coastal habitat, biodiversity, and cultural heritage. Although numerous strategies for improving oyster stocks exist, enhancement efforts can be thwarted by long-standing conflict among community groups about which strategies to implement, where efforts should be focused, and how much funding should be allocated to each strategy. The objective of this paper is to compare two engagement approaches that resulted in recommendations for multi-benefit enhancements to oyster populations and the oyster industry in Maryland, U.S.A., using the Consensus Solutions process with collaborative simulation modeling. These recommendations were put forward by the OysterFutures Workgroup in 2018 and the Maryland Oyster Advisory Commission (OAC) in 2021. Notable similarities between the efforts were the basic principles of the Consensus Solutions process: neutral facilitation, a 75% agreement threshold, the presence of management agency leadership at the meetings, a scientific support team that created a management scenario model in collaboration with community group representatives, numerous opportunities for representatives to listen to each other, and a structured consensus building process for idea generation, rating, and approval of management options. To ensure meaningful representation by the most affected user groups, the goal for membership composition was 60% from industry and 40% from advocacy, agency, and academic groups in both processes. Important differences between the processes included the impetus for the process (a research program versus a legislatively-mandated process), the size of the groups, the structure of the meetings, and the clear and pervasive impact of the COVID-19 pandemic on the ability of OAC members to interact. Despite differences and challenges, both groups were able to agree on a package of recommendations, indicating that consensus-based processes with collaborative modeling offer viable paths toward coordinated cross-sector natural resource decisions with scientific basis and community support. In addition, collaborative modeling resulted in ‘myth busting’ findings that allowed participants to reassess and realign their thinking about how the coupled human-oyster system would respond to management changes.
{"title":"Two applications of the Consensus Solutions process with collaborative modeling for management of a contentious oyster fishery","authors":"Elizabeth W. North, Michael J. Wilberg, Jeff Blair, Lisa Wainger, Jeffrey C. Cornwell, Robert Jones, Chris Hayes, Rasika Gawde, Raleigh Robert Hood, Taylor Goelz, Troy Hartley, Marvin M. Mace, Memo Diriker, Niquinn Fowler, Brian Polkinghorn","doi":"10.3389/fmars.2024.1423534","DOIUrl":"https://doi.org/10.3389/fmars.2024.1423534","url":null,"abstract":"Worldwide, enhancement of oyster populations is undertaken to achieve a variety of goals including support of food production, local economies, water quality, coastal habitat, biodiversity, and cultural heritage. Although numerous strategies for improving oyster stocks exist, enhancement efforts can be thwarted by long-standing conflict among community groups about which strategies to implement, where efforts should be focused, and how much funding should be allocated to each strategy. The objective of this paper is to compare two engagement approaches that resulted in recommendations for multi-benefit enhancements to oyster populations and the oyster industry in Maryland, U.S.A., using the Consensus Solutions process with collaborative simulation modeling. These recommendations were put forward by the OysterFutures Workgroup in 2018 and the Maryland Oyster Advisory Commission (OAC) in 2021. Notable similarities between the efforts were the basic principles of the Consensus Solutions process: neutral facilitation, a 75% agreement threshold, the presence of management agency leadership at the meetings, a scientific support team that created a management scenario model in collaboration with community group representatives, numerous opportunities for representatives to listen to each other, and a structured consensus building process for idea generation, rating, and approval of management options. To ensure meaningful representation by the most affected user groups, the goal for membership composition was 60% from industry and 40% from advocacy, agency, and academic groups in both processes. Important differences between the processes included the impetus for the process (a research program versus a legislatively-mandated process), the size of the groups, the structure of the meetings, and the clear and pervasive impact of the COVID-19 pandemic on the ability of OAC members to interact. Despite differences and challenges, both groups were able to agree on a package of recommendations, indicating that consensus-based processes with collaborative modeling offer viable paths toward coordinated cross-sector natural resource decisions with scientific basis and community support. In addition, collaborative modeling resulted in ‘myth busting’ findings that allowed participants to reassess and realign their thinking about how the coupled human-oyster system would respond to management changes.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Significant wave height (SWH) is an important parameter to reflect wave state, which is of great significance in ocean engineering. However, the current wave observation methods have limitations in capturing wave field data with high spatial resolution. In this study, to generate the SWHs field over the Northeast Pacific and Northwest Atlantic, multi-source satellite altimeter data (CRYOSAT-2, SARAL, JASON-3, SENTINEL-3A, SENTINEL-3B, HY-2B and CFOSAT) are fused with a spatial resolution of 0.125° x 0.125° and a temporal resolution of 1 day. We employ the Inverse Distance Weighting (IDW) method and the IDW-based spatiotemporal (IDW-ST) method for data fusion. The fusion results exhibit a consistent spatial distribution characteristic, but the results of the IDW method display the visible trajectory. Moreover, the IDW-ST method, which incorporates time factors, shows great agreement between the fused SWH and buoy data. However, when the water depth change near the grid point has a great influence on the fusion, the complexity of bathymetric topography makes the traditional two-dimensional spatial fusion methods inadequate. Therefore, an improved method is proposed based on the IDW-ST fusion method, which introduces the water depth factor and significantly enhances fusion accuracy in regions where bathymetric variations greatly affect fusion results. The proposed method can be used to generate reliable SWH fields, especially in complex bathymetric topography conditions, and provide significant support for marine infrastructure design, ocean energy utilization and marine disaster protection.
{"title":"High-resolution mapping of significant wave heights in the Northeast Pacific and Northwest Atlantic using improved multi-source satellite altimetry fusion method","authors":"Hongbin Yang, Bingchen Liang, Huijun Gao, Zhuxiao Shao","doi":"10.3389/fmars.2024.1458892","DOIUrl":"https://doi.org/10.3389/fmars.2024.1458892","url":null,"abstract":"Significant wave height (SWH) is an important parameter to reflect wave state, which is of great significance in ocean engineering. However, the current wave observation methods have limitations in capturing wave field data with high spatial resolution. In this study, to generate the SWHs field over the Northeast Pacific and Northwest Atlantic, multi-source satellite altimeter data (CRYOSAT-2, SARAL, JASON-3, SENTINEL-3A, SENTINEL-3B, HY-2B and CFOSAT) are fused with a spatial resolution of 0.125° x 0.125° and a temporal resolution of 1 day. We employ the Inverse Distance Weighting (IDW) method and the IDW-based spatiotemporal (IDW-ST) method for data fusion. The fusion results exhibit a consistent spatial distribution characteristic, but the results of the IDW method display the visible trajectory. Moreover, the IDW-ST method, which incorporates time factors, shows great agreement between the fused SWH and buoy data. However, when the water depth change near the grid point has a great influence on the fusion, the complexity of bathymetric topography makes the traditional two-dimensional spatial fusion methods inadequate. Therefore, an improved method is proposed based on the IDW-ST fusion method, which introduces the water depth factor and significantly enhances fusion accuracy in regions where bathymetric variations greatly affect fusion results. The proposed method can be used to generate reliable SWH fields, especially in complex bathymetric topography conditions, and provide significant support for marine infrastructure design, ocean energy utilization and marine disaster protection.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.3389/fmars.2024.1459619
Naresh Kumar Goud Lakku, Piyali Chowdhury, Manasa Ranjan Behera
Predicting the nearshore sediment transport and shifts in coastlines in view of climate change is important for planning and management of coastal infrastructure and requires an accurate prediction of the regional wave climate as well as an in-depth understanding of the complex morphology surrounding the area of interest. Recently, hybrid shoreline evolution models are being used to inform coastal management. These models typically apply the one-line theory to estimate changes in shoreline morphology based on littoral drift gradients calculated from a 2DH coupled wave, flow, and sediment transport model. As per the one-line theory, the calculated littoral drift is uniformly distributed over the active coastal profile. A key challenge facing the application of hybrid models is that they fail to consider complex morphologies when updating the shorelines for several scenarios. This is mainly due to the scarcity of field datasets on beach behavior and nearshore morphological change that extends up to the local depth of closure, leading to assumptions in this value in overall shoreline shift predictions. In this study, we propose an improved hybrid model for shoreline shift predictions in an open sandy beach system impacted by human interventions and changes in wave climate. Three main conclusions are derived from this study. First, the optimal boundary conditions for modeling shoreline evolution need to vary according to local coastal geomorphology and processes. Second, specifying boundary conditions within physically realistic ranges does not guarantee reliable shoreline evolution predictions. Third, hybrid 2D/one-line models have limited applicability in simple planform morphologies where the active beach profile is subject to direct impacts due to wave action and/or human interventions, plausibly due to the one-line theory assumption of a constant time-averaged coastal profile. These findings provide insightful information into the drivers of shoreline evolution around sandy beaches, which have practical implications for advancing the shoreline evolution models.
{"title":"An improved hybrid model for shoreline change","authors":"Naresh Kumar Goud Lakku, Piyali Chowdhury, Manasa Ranjan Behera","doi":"10.3389/fmars.2024.1459619","DOIUrl":"https://doi.org/10.3389/fmars.2024.1459619","url":null,"abstract":"Predicting the nearshore sediment transport and shifts in coastlines in view of climate change is important for planning and management of coastal infrastructure and requires an accurate prediction of the regional wave climate as well as an in-depth understanding of the complex morphology surrounding the area of interest. Recently, hybrid shoreline evolution models are being used to inform coastal management. These models typically apply the one-line theory to estimate changes in shoreline morphology based on littoral drift gradients calculated from a 2DH coupled wave, flow, and sediment transport model. As per the one-line theory, the calculated littoral drift is uniformly distributed over the active coastal profile. A key challenge facing the application of hybrid models is that they fail to consider complex morphologies when updating the shorelines for several scenarios. This is mainly due to the scarcity of field datasets on beach behavior and nearshore morphological change that extends up to the local depth of closure, leading to assumptions in this value in overall shoreline shift predictions. In this study, we propose an improved hybrid model for shoreline shift predictions in an open sandy beach system impacted by human interventions and changes in wave climate. Three main conclusions are derived from this study. First, the optimal boundary conditions for modeling shoreline evolution need to vary according to local coastal geomorphology and processes. Second, specifying boundary conditions within physically realistic ranges does not guarantee reliable shoreline evolution predictions. Third, hybrid 2D/one-line models have limited applicability in simple planform morphologies where the active beach profile is subject to direct impacts due to wave action and/or human interventions, plausibly due to the one-line theory assumption of a constant time-averaged coastal profile. These findings provide insightful information into the drivers of shoreline evolution around sandy beaches, which have practical implications for advancing the shoreline evolution models.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.3389/fmars.2024.1434007
Barbara Gianella Jacob, Orlando Astudillo, Boris Dewitte, María Valladares, Gonzalo Alvarez Vergara, Carolina Medel, David W. Crawford, Eduardo Uribe, Beatriz Yanicelli
The relationship between phytoplankton abundances and wind forcing in upwelling systems involves a number of processes that make the relationship nonlinear in nature. In particular, although upwelling-favorable winds tend to provide nutrients for phytoplankton growth, they can also induce export of both biomass and nutrients to the open ocean through Ekman and eddy-induced transport, or dilution of populations through vertical mixing, which negatively impacts increase in biomass. These processes are essentially nonlinear and can interact antagonistically or synergistically on the overall coastal accumulation of biomass. Consequently, producers and consumers tend to decline above a certain wind threshold despite input of nutrient-enriched water. We have observed this phenomenon in an embayment off Central Chile (30°S), where almost 10 years (2000-2009) of microphytoplankton data were analyzed together with environmental variables and wind phenology. Our findings showed that abundance, species diversity and evenness of diatoms and dinoflagellates all increased post-2005 when the mean of the alongshore surface wind stress reached a maximum threshold value of 0.026 N m-2, observed at the decadal temporal variability scale. The increased abundances of diatoms and dinoflagellates post-2005 was associated with the changing phase of the Pacific Decadal Oscillation (PDO) from positive (warm) to negative (cold) phases, which was also associated with a decrease in the intra-seasonal wind activity. Both abundance and diversity of the microphytoplankton community peaked during the post-2005 period whereas higher abundances and frequency of harmful algal blooms (e.g. Pseudo-nitzschia australis) were observed prior to 2005. We suggest that the low-frequency (decadal) variations of mean wind stress during a transition phase of the PDO combined with the reduction in intra-seasonal (periods shorter than 2 months) wind variability after 2005 provided an “optimal environmental window” for the ecosystem.
{"title":"Abundance and diversity of diatoms and dinoflagellates in an embayment off Central Chile (30°S): evidence of an optimal environmental window driven by low and high frequency winds","authors":"Barbara Gianella Jacob, Orlando Astudillo, Boris Dewitte, María Valladares, Gonzalo Alvarez Vergara, Carolina Medel, David W. Crawford, Eduardo Uribe, Beatriz Yanicelli","doi":"10.3389/fmars.2024.1434007","DOIUrl":"https://doi.org/10.3389/fmars.2024.1434007","url":null,"abstract":"The relationship between phytoplankton abundances and wind forcing in upwelling systems involves a number of processes that make the relationship nonlinear in nature. In particular, although upwelling-favorable winds tend to provide nutrients for phytoplankton growth, they can also induce export of both biomass and nutrients to the open ocean through Ekman and eddy-induced transport, or dilution of populations through vertical mixing, which negatively impacts increase in biomass. These processes are essentially nonlinear and can interact antagonistically or synergistically on the overall coastal accumulation of biomass. Consequently, producers and consumers tend to decline above a certain wind threshold despite input of nutrient-enriched water. We have observed this phenomenon in an embayment off Central Chile (30°S), where almost 10 years (2000-2009) of microphytoplankton data were analyzed together with environmental variables and wind phenology. Our findings showed that abundance, species diversity and evenness of diatoms and dinoflagellates all increased post-2005 when the mean of the alongshore surface wind stress reached a maximum threshold value of 0.026 N m<jats:sup>-2</jats:sup>, observed at the decadal temporal variability scale. The increased abundances of diatoms and dinoflagellates post-2005 was associated with the changing phase of the Pacific Decadal Oscillation (PDO) from positive (warm) to negative (cold) phases, which was also associated with a decrease in the intra-seasonal wind activity. Both abundance and diversity of the microphytoplankton community peaked during the post-2005 period whereas higher abundances and frequency of harmful algal blooms (e.g. <jats:italic>Pseudo-nitzschia australis</jats:italic>) were observed prior to 2005. We suggest that the low-frequency (decadal) variations of mean wind stress during a transition phase of the PDO combined with the reduction in intra-seasonal (periods shorter than 2 months) wind variability after 2005 provided an “optimal environmental window” for the ecosystem.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.3389/fmars.2024.1466037
Juan Li, David Antoine, Yannick Huot
The composition and size distribution of particles in the ocean control their optical (scattering and absorption) properties, as well as a range of biogeochemical and ecological processes. Therefore, they provide important information about the pelagic ocean ecosystem’s structure and functioning, which can be used to assess primary production, particle sinking, and carbon sequestration. Due to its harsh environment and remoteness, the particulate bio-optical properties of the Southern Ocean (SO) remain poorly observed and understood. Here, we combined field measurements from hydrographic casts from two research voyages and from autonomous profiling floats (BGC-Argo) to examine particulate bio-optical properties and relationships among several ecologically and optically important variables, namely the phytoplankton chlorophyll a concentration (Chl), the particulate absorption coefficient (ap), the particulate backscattering coefficient (bbp), and the particulate organic carbon (POC) concentration. In the clearest waters of the SO (Chl < 0.2 mg m−3), we found a significant contribution to absorption by non-algal particles (NAP) at 442 nm, which was up to 10 times greater than the absorption by phytoplankton. This makes the particulate bio-optical properties there remarkably different from typical oceanic case 1 water. A matchup analysis confirms the impact of this larger NAP absorption on the retrieval of Chl from satellite ocean colour observations. For waters with Chl > 0.2 mg m−3, no significant differences are observed between the SO and temperate waters. Our findings also demonstrate consistency in predicting phytoplankton carbon from either Chl or bbp, suggesting that both methods are applicable in the SO.
海洋中颗粒的组成和大小分布控制着它们的光学(散射和吸收)特性,以及一系列生物地球化学和生态过程。因此,它们提供了有关浮游海洋生态系统结构和功能的重要信息,可用于评估初级生产、颗粒沉降和碳封存。由于南大洋(SO)环境恶劣、位置偏远,对其微粒生物光学特性的观测和了解仍然很少。在此,我们结合两次研究航行的水文测量数据和自主剖面浮标(BGC-Argo)的实地测量数据,研究了颗粒生物光学特性以及几个重要的生态和光学变量之间的关系,即浮游植物叶绿素 a 浓度(Chl)、颗粒吸收系数(ap)、颗粒后向散射系数(bbp)和颗粒有机碳浓度(POC)。在 SO 最清澈的水域(Chl< 0.2 mg m-3)中,我们发现非藻类颗粒(NAP)对 442 纳米波长的吸收有显著贡献,是浮游植物吸收的 10 倍。这使得那里的微粒生物光学特性与典型的海洋情况 1 海水有明显不同。匹配分析证实了更大的 NAP 吸收对从卫星海洋颜色观测中获取 Chl 的影响。对于 Chl > 0.2 mg m-3 的水域,在 SO 和温带水域之间没有观察到显著差异。我们的研究结果还表明,从 Chl 或 bbp 预测浮游植物碳具有一致性,表明这两种方法都适用于 SO。
{"title":"Bio-optical variability of particulate matter in the Southern Ocean","authors":"Juan Li, David Antoine, Yannick Huot","doi":"10.3389/fmars.2024.1466037","DOIUrl":"https://doi.org/10.3389/fmars.2024.1466037","url":null,"abstract":"The composition and size distribution of particles in the ocean control their optical (scattering and absorption) properties, as well as a range of biogeochemical and ecological processes. Therefore, they provide important information about the pelagic ocean ecosystem’s structure and functioning, which can be used to assess primary production, particle sinking, and carbon sequestration. Due to its harsh environment and remoteness, the particulate bio-optical properties of the Southern Ocean (SO) remain poorly observed and understood. Here, we combined field measurements from hydrographic casts from two research voyages and from autonomous profiling floats (BGC-Argo) to examine particulate bio-optical properties and relationships among several ecologically and optically important variables, namely the phytoplankton chlorophyll <jats:italic>a</jats:italic> concentration (Chl), the particulate absorption coefficient (<jats:italic>a<jats:sub>p</jats:sub></jats:italic>), the particulate backscattering coefficient (<jats:italic>b</jats:italic><jats:sub>bp</jats:sub>), and the particulate organic carbon (POC) concentration. In the clearest waters of the SO (Chl &lt; 0.2 mg m<jats:sup>−3</jats:sup>), we found a significant contribution to absorption by non-algal particles (NAP) at 442 nm, which was up to 10 times greater than the absorption by phytoplankton. This makes the particulate bio-optical properties there remarkably different from typical oceanic case 1 water. A matchup analysis confirms the impact of this larger NAP absorption on the retrieval of Chl from satellite ocean colour observations. For waters with Chl &gt; 0.2 mg m<jats:sup>−3</jats:sup>, no significant differences are observed between the SO and temperate waters. Our findings also demonstrate consistency in predicting phytoplankton carbon from either Chl or <jats:italic>b</jats:italic><jats:sub>bp</jats:sub>, suggesting that both methods are applicable in the SO.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laizhou Bay’s coastline has undergone multiple alterations due to human activities such as land reclamation and port construction. These changes in the coastline have led to modifications in the bay’s hydrodynamic conditions, which, in turn, can impact the marine environment and potentially result in a decline in biodiversity. To date, there has been no comprehensive study focusing on the coastline changes and hydrodynamic variations in Laizhou Bay. Therefore, this study utilizes coastline and water depth data from four time points—1990, 2003, 2013, and 2023—to establish a two-dimensional tidal current model of Laizhou Bay using Delft3D. Based on the good agreement between the simulated tidal current results and the observed data, this study further investigates the changes in tidal prism and water exchange in Laizhou Bay. The results indicate that tidal currents dominate the bay, with significant influences of topographic changes on the velocity and direction of tidal flows. The Eulerian residual current velocity is substantially lower than the tidal current velocity. Both tidal and residual currents play a role in controlling the distribution of materials within Laizhou Bay. Over the past three decades (1990-2023), the tidal prism in Laizhou Bay has shown a downward trend, with the tidal prism during spring, intermediate, and neap tides in 2023 reduced by 2.03%, 6.36%, and 10.19%, respectively, compared to 1990. The water exchange capacity has also weakened, with the half-exchange time being 71 days in 1990, increasing to 73 days in 2003 and 81 days in 2013, and showing a slight increase of 1 day in 2023 compared to 2013. Thus, changes in the coastline and water depth of Laizhou Bay can alter its hydrodynamic conditions, significantly impacting the tidal prism and water exchange, leading to a decrease in tidal prism and exchange rate, an increase in the water exchange period, a slower dispersion rate of pollutants, and a reduced water environmental carrying capacity. This research provides a scientific reference for protecting the marine environment and coastal management in Laizhou Bay.
{"title":"The effects of changes in the coastline and water depth on tidal prism and water exchange of the Laizhou Bay, China","authors":"Jiwei Sun, Lihong Peng, Xingwang Zhu, Zikang Li, Hongyuan Shi, Chao Zhan, Zaijin You","doi":"10.3389/fmars.2024.1459482","DOIUrl":"https://doi.org/10.3389/fmars.2024.1459482","url":null,"abstract":"Laizhou Bay’s coastline has undergone multiple alterations due to human activities such as land reclamation and port construction. These changes in the coastline have led to modifications in the bay’s hydrodynamic conditions, which, in turn, can impact the marine environment and potentially result in a decline in biodiversity. To date, there has been no comprehensive study focusing on the coastline changes and hydrodynamic variations in Laizhou Bay. Therefore, this study utilizes coastline and water depth data from four time points—1990, 2003, 2013, and 2023—to establish a two-dimensional tidal current model of Laizhou Bay using Delft3D. Based on the good agreement between the simulated tidal current results and the observed data, this study further investigates the changes in tidal prism and water exchange in Laizhou Bay. The results indicate that tidal currents dominate the bay, with significant influences of topographic changes on the velocity and direction of tidal flows. The Eulerian residual current velocity is substantially lower than the tidal current velocity. Both tidal and residual currents play a role in controlling the distribution of materials within Laizhou Bay. Over the past three decades (1990-2023), the tidal prism in Laizhou Bay has shown a downward trend, with the tidal prism during spring, intermediate, and neap tides in 2023 reduced by 2.03%, 6.36%, and 10.19%, respectively, compared to 1990. The water exchange capacity has also weakened, with the half-exchange time being 71 days in 1990, increasing to 73 days in 2003 and 81 days in 2013, and showing a slight increase of 1 day in 2023 compared to 2013. Thus, changes in the coastline and water depth of Laizhou Bay can alter its hydrodynamic conditions, significantly impacting the tidal prism and water exchange, leading to a decrease in tidal prism and exchange rate, an increase in the water exchange period, a slower dispersion rate of pollutants, and a reduced water environmental carrying capacity. This research provides a scientific reference for protecting the marine environment and coastal management in Laizhou Bay.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since the first plans to develop offshore wind farms (OWFs), concerns have been raised about the impacts on marine megafauna. Today, it is required to assess these impacts over the whole lifecycle of the OWF. Before construction, initial assessments are often conducted by visual surveys, but subsequent monitoring over the lifecycle of the OWF has to be digital due to safety requirements, leading to challenges in data comparability. The aim of this study was to attempt to establish generalizable intercalibration factors for this transition between visual and digital monitoring methods. To this end, intercalibration surveys were conducted at five different sites and at different times of the year within a site, using both visual monitoring at low-altitude and digital monitoring at both low and high altitudes. We tested the potential for intercalibration of the results based on the ratio of abundance estimated from data collected by the different methods. We explored factors such as the species under study and site-specific conditions that may influence intercalibration. We computed more than 100 intercalibration factors and found that, on average, abundance estimates from digital methods were higher than those from visual methods and that flight altitude for digital monitoring did not significantly influence abundance estimates. Aside from divergent abundance estimates depending on monitoring method, the findings also revealed significant heterogeneity, only one-third of which was explained by contextual factors such as taxonomy or the sea conditions. This outcome presents a pessimistic outlook on the prospect for the intercalibration of results between an initial assessment carried out with visual observations and subsequent monitoring with digital methods after OWF construction and until decommissioning. The high heterogeneity prevents seamless transferability of intercalibration factors and highlights the importance of local context.
{"title":"Going digital: challenges in monitoring marine megafauna when comparing results from visual and digital aerial surveys","authors":"Maud Quéroué, Matthieu Authier, Aurélien Besnard, Karine Heerah","doi":"10.3389/fmars.2024.1432798","DOIUrl":"https://doi.org/10.3389/fmars.2024.1432798","url":null,"abstract":"Since the first plans to develop offshore wind farms (OWFs), concerns have been raised about the impacts on marine megafauna. Today, it is required to assess these impacts over the whole lifecycle of the OWF. Before construction, initial assessments are often conducted by visual surveys, but subsequent monitoring over the lifecycle of the OWF has to be digital due to safety requirements, leading to challenges in data comparability. The aim of this study was to attempt to establish generalizable intercalibration factors for this transition between visual and digital monitoring methods. To this end, intercalibration surveys were conducted at five different sites and at different times of the year within a site, using both visual monitoring at low-altitude and digital monitoring at both low and high altitudes. We tested the potential for intercalibration of the results based on the ratio of abundance estimated from data collected by the different methods. We explored factors such as the species under study and site-specific conditions that may influence intercalibration. We computed more than 100 intercalibration factors and found that, on average, abundance estimates from digital methods were higher than those from visual methods and that flight altitude for digital monitoring did not significantly influence abundance estimates. Aside from divergent abundance estimates depending on monitoring method, the findings also revealed significant heterogeneity, only one-third of which was explained by contextual factors such as taxonomy or the sea conditions. This outcome presents a pessimistic outlook on the prospect for the intercalibration of results between an initial assessment carried out with visual observations and subsequent monitoring with digital methods after OWF construction and until decommissioning. The high heterogeneity prevents seamless transferability of intercalibration factors and highlights the importance of local context.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.3389/fmars.2024.1453439
Lulu Liu, Yan Sun, Run Liu, Xiaobo Wei, Zhiqiang Li
In coastal erosion studies, the erosion and accretion index is a vital research tool for analyzing types of erosion and accretion. This index is primarily empirical or semi-empirical and is usually validated through tank experiments or open beach datasets, resulting in significant variation across different beach environments. In this study, 11 beach profiles of eight beaches measured along the Qiongzhou Strait in China, measured from 2018 to 2021, were analyzed to quantitatively determine coastal erosion or accretion by calculating each profile’s volume change per unit width. Additionally, sediment and wave data were used to calculate five erosion and accretion indices monthly to determine erosion and accretion conditions. These conditions were then compared with actual beach erosion and accretion data to evaluate the applicability of various discriminant indices. Furthermore, optimizing the threshold values of discriminant indices. The results show that: (1) Overall annual erosion and accretion are minimal, but seasonal variation is significant for beaches on both sides of the Qiongzhou Strait; (2) The five discriminant indices have some limitations in this study area, necessitating careful consideration when applying them to headland bay arc-shaped beaches with fetch-limited environments like the Qiongzhou Strait; (3) The selection of discriminant index parameters and their respective contribution degree of each parameter affects the formula’s applicability, with two-parameter formulas proving superior to the three-parameter formula in the study area; (4) Beach environmental factors, particularly those influenced by headlands and fetch-limited environments, impact the indices’ applicability; (5) Increasing the threshold value to a certain extent can improve the formula’s applicability.
{"title":"Evaluation of the applicability of beach erosion and accretion index in Qiongzhou Strait of China","authors":"Lulu Liu, Yan Sun, Run Liu, Xiaobo Wei, Zhiqiang Li","doi":"10.3389/fmars.2024.1453439","DOIUrl":"https://doi.org/10.3389/fmars.2024.1453439","url":null,"abstract":"In coastal erosion studies, the erosion and accretion index is a vital research tool for analyzing types of erosion and accretion. This index is primarily empirical or semi-empirical and is usually validated through tank experiments or open beach datasets, resulting in significant variation across different beach environments. In this study, 11 beach profiles of eight beaches measured along the Qiongzhou Strait in China, measured from 2018 to 2021, were analyzed to quantitatively determine coastal erosion or accretion by calculating each profile’s volume change per unit width. Additionally, sediment and wave data were used to calculate five erosion and accretion indices monthly to determine erosion and accretion conditions. These conditions were then compared with actual beach erosion and accretion data to evaluate the applicability of various discriminant indices. Furthermore, optimizing the threshold values of discriminant indices. The results show that: (1) Overall annual erosion and accretion are minimal, but seasonal variation is significant for beaches on both sides of the Qiongzhou Strait; (2) The five discriminant indices have some limitations in this study area, necessitating careful consideration when applying them to headland bay arc-shaped beaches with fetch-limited environments like the Qiongzhou Strait; (3) The selection of discriminant index parameters and their respective contribution degree of each parameter affects the formula’s applicability, with two-parameter formulas proving superior to the three-parameter formula in the study area; (4) Beach environmental factors, particularly those influenced by headlands and fetch-limited environments, impact the indices’ applicability; (5) Increasing the threshold value to a certain extent can improve the formula’s applicability.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.3389/fmars.2024.1380914
Katrin Schroeder, Mireno Borghini
Oceanographic mooring missions are critical for advancing our understanding of the world’s oceans and their role in the broader Earth system. These missions rely on the deployment and maintenance of complex observing systems, comprising subsurface, profiling, and surface moorings, which are designed to collect valuable data from the ocean interior. The success of these missions depends on meticulous planning and strategic execution, which are facilitated by the use of Field Service Plans (FSPs). FSPs are comprehensive and adaptable planning tools that integrate safety measures, contingency plans, and timelines to ensure the successful and safe recovery, maintenance, and deployment of mooring systems. In this paper, we provide a comprehensive guide to drafting, implementing, and adapting FSPs tailored to the unique challenges posed by oceanographic mooring missions. We highlight the critical role of FSPs in optimizing safety, data quality, and mission success, while also underscoring the need for flexibility and adaptation. Our aim is to provide practical guidance and a template for researchers, expedition leaders, and institutions engaged in oceanographic research.
{"title":"An example of a field service plan for oceanographic submerged moorings","authors":"Katrin Schroeder, Mireno Borghini","doi":"10.3389/fmars.2024.1380914","DOIUrl":"https://doi.org/10.3389/fmars.2024.1380914","url":null,"abstract":"Oceanographic mooring missions are critical for advancing our understanding of the world’s oceans and their role in the broader Earth system. These missions rely on the deployment and maintenance of complex observing systems, comprising subsurface, profiling, and surface moorings, which are designed to collect valuable data from the ocean interior. The success of these missions depends on meticulous planning and strategic execution, which are facilitated by the use of Field Service Plans (FSPs). FSPs are comprehensive and adaptable planning tools that integrate safety measures, contingency plans, and timelines to ensure the successful and safe recovery, maintenance, and deployment of mooring systems. In this paper, we provide a comprehensive guide to drafting, implementing, and adapting FSPs tailored to the unique challenges posed by oceanographic mooring missions. We highlight the critical role of FSPs in optimizing safety, data quality, and mission success, while also underscoring the need for flexibility and adaptation. Our aim is to provide practical guidance and a template for researchers, expedition leaders, and institutions engaged in oceanographic research.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.3389/fmars.2024.1483330
Reina J. Veenhof, Michael T. Burrows, Adam D. Hughes, Kati Michalek, Michael E. Ross, Alex I. Thomson, Jeffrey Fedenko, Michele S. Stanley
Seaweed aquaculture is gaining traction globally as a solution to many climate issues. However, seaweeds themselves are also under threat of anthropogenically driven climate change. Here, we summarize climate-related challenges to the seaweed aquaculture industry, with a focus on the developing trade in the North Atlantic. Specifically, we summarize three main challenges: i) abiotic change; ii) extreme events; and iii) disease & herbivory. Abiotic change includes negative effects of ocean warming and acidification, as well as altered seasonality due to ocean warming. This can lower biomass yield and change biochemical composition of the seaweeds. Extreme events can cause considerable damage and loss to seaweed farms, particularly due to marine heatwaves, storms and freshwater inputs. Seaweed diseases have a higher chance of proliferating under environmentally stressful conditions such as ocean warming and decreased salinity. Herbivory causes loss of biomass but is not well researched in relation to seaweed aquaculture in the North Atlantic. Despite challenges, opportunities exist to improve resilience to climate change, summarized in three sections: i) future proof site selection; ii) advances in breeding and microbiome manipulation; and iii) restorative aquaculture. We present a case study where we use predictive modelling to illustrate suitable habitat for seaweed cultivation in the North Atlantic under future ocean warming. Notably, there was a large loss of suitable habitat for cultivating Alaria esculenta and Laminaria digitata. We show how selection and priming and microbe inoculates may be a cost-effective and scalable solution to improve disease- and thermal tolerance. Co-cultivation of seaweeds may increase both yield and biodiversity co-benefits. Finally, we show that aquaculture and restoration can benefit from collaborating on nursery techniques and push for improved legislation.
{"title":"Sustainable seaweed aquaculture and climate change in the North Atlantic: challenges and opportunities","authors":"Reina J. Veenhof, Michael T. Burrows, Adam D. Hughes, Kati Michalek, Michael E. Ross, Alex I. Thomson, Jeffrey Fedenko, Michele S. Stanley","doi":"10.3389/fmars.2024.1483330","DOIUrl":"https://doi.org/10.3389/fmars.2024.1483330","url":null,"abstract":"Seaweed aquaculture is gaining traction globally as a solution to many climate issues. However, seaweeds themselves are also under threat of anthropogenically driven climate change. Here, we summarize climate-related challenges to the seaweed aquaculture industry, with a focus on the developing trade in the North Atlantic. Specifically, we summarize three main challenges: i) abiotic change; ii) extreme events; and iii) disease &amp; herbivory. Abiotic change includes negative effects of ocean warming and acidification, as well as altered seasonality due to ocean warming. This can lower biomass yield and change biochemical composition of the seaweeds. Extreme events can cause considerable damage and loss to seaweed farms, particularly due to marine heatwaves, storms and freshwater inputs. Seaweed diseases have a higher chance of proliferating under environmentally stressful conditions such as ocean warming and decreased salinity. Herbivory causes loss of biomass but is not well researched in relation to seaweed aquaculture in the North Atlantic. Despite challenges, opportunities exist to improve resilience to climate change, summarized in three sections: i) future proof site selection; ii) advances in breeding and microbiome manipulation; and iii) restorative aquaculture. We present a case study where we use predictive modelling to illustrate suitable habitat for seaweed cultivation in the North Atlantic under future ocean warming. Notably, there was a large loss of suitable habitat for cultivating <jats:italic>Alaria esculenta</jats:italic> and <jats:italic>Laminaria digitata</jats:italic>. We show how selection and priming and microbe inoculates may be a cost-effective and scalable solution to improve disease- and thermal tolerance. Co-cultivation of seaweeds may increase both yield and biodiversity co-benefits. Finally, we show that aquaculture and restoration can benefit from collaborating on nursery techniques and push for improved legislation.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}