Fiber-reinforced aerogel composites are widely used for thermal protection. The properties of the fibers play a critical role in determining the structure and properties of the final aerogel composite. However, the effects of the fiber's characteristics on the structure and properties of the aerogel composite have rarely been studied. Herein, we prepared quartz fiber felt-reinforced silica-polybenzoxazine aerogel composite (QF/PBSAs) with different fiber diameters using a simple copolymerization process with the ambient pressure drying method. The reasons for the effects of fiber diameter on the structure and properties of the aerogel composites were investigated. The results showed that the pore structure of the aerogel composites was affected by the fiber diameter, which led to significant changes in the mechanical behavior and thermal insulation performance. At room temperature, pore structure and density were found to be the main factors influencing the thermal conductivity of the composites. At elevated temperatures, the radiative thermal conductivity (λr) plays a dominant role, and reducing the fiber diameter suppressed λr, thus decreasing the thermal conductivity. When the QF/PBSAs were exposed to a 1200 °C butane flame, the PBS aerogel was pyrolyzed, and the pyrolysis gas carried away a large amount of heat and formed a thermal barrier in the interfacial layer, at which time λr and the pyrolysis of the PBS aerogel jointly determined the backside temperature of the composites. The results of this study can provide valuable guidance for the application of polybenzoxazine aerogel composites in the field of thermal protection.
纤维增强气凝胶复合材料被广泛用于热防护。纤维的特性对最终气凝胶复合材料的结构和性能起着至关重要的作用。然而,纤维特性对气凝胶复合材料结构和性能的影响却鲜有研究。在此,我们采用简单的共聚工艺和常压干燥法制备了不同纤维直径的石英纤维毡增强二氧化硅-聚苯并噁嗪气凝胶复合材料(QF/PBSAs)。研究了纤维直径对气凝胶复合材料结构和性能影响的原因。结果表明,气凝胶复合材料的孔隙结构受到纤维直径的影响,导致其力学性能和隔热性能发生显著变化。室温下,孔隙结构和密度是影响复合材料热导率的主要因素。在高温条件下,辐射导热系数(λr)起主导作用,减小纤维直径会抑制λr,从而降低导热系数。当 QF/PBSAs 暴露在 1200 °C 丁烷火焰中时,PBS 气凝胶发生热解,热解气体带走大量热量并在界面层中形成热障,此时λr 和 PBS 气凝胶的热解共同决定了复合材料的背面温度。本研究的结果可为聚苯并恶嗪气凝胶复合材料在热防护领域的应用提供有价值的指导。
{"title":"Effect of Fiber Characteristics on the Structure and Properties of Quartz Fiber Felt Reinforced Silica-Polybenzoxazine Aerogel Composites.","authors":"Lanfang Liu, Liangjun Li, Yijie Hu, Junzong Feng, Yonggang Jiang, Jian Feng","doi":"10.3390/gels10100613","DOIUrl":"https://doi.org/10.3390/gels10100613","url":null,"abstract":"<p><p>Fiber-reinforced aerogel composites are widely used for thermal protection. The properties of the fibers play a critical role in determining the structure and properties of the final aerogel composite. However, the effects of the fiber's characteristics on the structure and properties of the aerogel composite have rarely been studied. Herein, we prepared quartz fiber felt-reinforced silica-polybenzoxazine aerogel composite (QF/PBSAs) with different fiber diameters using a simple copolymerization process with the ambient pressure drying method. The reasons for the effects of fiber diameter on the structure and properties of the aerogel composites were investigated. The results showed that the pore structure of the aerogel composites was affected by the fiber diameter, which led to significant changes in the mechanical behavior and thermal insulation performance. At room temperature, pore structure and density were found to be the main factors influencing the thermal conductivity of the composites. At elevated temperatures, the radiative thermal conductivity (λr) plays a dominant role, and reducing the fiber diameter suppressed λr, thus decreasing the thermal conductivity. When the QF/PBSAs were exposed to a 1200 °C butane flame, the PBS aerogel was pyrolyzed, and the pyrolysis gas carried away a large amount of heat and formed a thermal barrier in the interfacial layer, at which time λr and the pyrolysis of the PBS aerogel jointly determined the backside temperature of the composites. The results of this study can provide valuable guidance for the application of polybenzoxazine aerogel composites in the field of thermal protection.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials.
{"title":"Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels.","authors":"Veronika Richterová, Miloslav Pekař","doi":"10.3390/gels10100611","DOIUrl":"https://doi.org/10.3390/gels10100611","url":null,"abstract":"<p><p>In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melina Korčok, Miroslav Veverka, Kristina Nakonechna, Simona Škrípová, Vladimir Vietoris
As dietary needs shift with the growing and aging population, there is a demand for food products that meet nutritional, safety, and tribological requirements while being cost-effective. Seniors must be given significant consideration in new product development. This study examines consumer preferences for arabinogalactan (AG) and beta-glucan (BG) hydrogels with vanilla and coffee-biscuit flavors, using consumer tests (N = 80) and an online survey (N = 852). It focuses on the gels' physical properties, such as texture and viscosity, and their impact on sensory perception. The use of two different gel-forming polysaccharides, each with a unique sensory profile, was observed to affect the sensory properties of the resulting gels and subsequently influence product acceptance. This study analyzed preferences across three age groups: young (18-39 years), middle-aged (40-59 years), and older adults (60+ years). The results showed that seniors preferred AG-based gels. Significant attributes such as the intensity of flavor and bitter taste influenced the overall liking of the gels. Texture also notably impacted preferences. The survey findings revealed statistically significant (p < 0.05) differences in preferences between older adults and younger age groups. Tailoring product development and marketing strategies based on age and sensory preferences could enhance consumer acceptance of edible gels.
随着人口的增长和老龄化,饮食需求也在发生变化,因此需要既能满足营养、安全和摩擦学要求,又具有成本效益的食品。在新产品开发过程中,必须对老年人给予高度重视。本研究通过消费者测试(80 人)和在线调查(852 人),研究了消费者对具有香草和咖啡饼干口味的阿拉伯半乳聚糖(AG)和β-葡聚糖(BG)水凝胶的偏好。研究重点是凝胶的物理特性(如质地和粘度)及其对感官的影响。据观察,使用两种不同的凝胶形成多糖(每种多糖都有独特的感官特征)会影响凝胶的感官特性,进而影响产品的接受度。这项研究分析了三个年龄组的偏好:年轻人(18-39 岁)、中年人(40-59 岁)和老年人(60 岁以上)。结果显示,老年人更喜欢 AG 类凝胶。味道的浓淡和苦味等重要属性影响了对凝胶的总体喜好程度。质地对喜好也有显著影响。调查结果显示,老年人和年轻群体在偏好方面存在显著的统计学差异(p < 0.05)。根据年龄和感官偏好来定制产品开发和营销策略,可以提高消费者对食用凝胶的接受度。
{"title":"Factors Influencing Elderly Consumers' Preferences for Edible Gels: Insights from Slovakia.","authors":"Melina Korčok, Miroslav Veverka, Kristina Nakonechna, Simona Škrípová, Vladimir Vietoris","doi":"10.3390/gels10100610","DOIUrl":"https://doi.org/10.3390/gels10100610","url":null,"abstract":"<p><p>As dietary needs shift with the growing and aging population, there is a demand for food products that meet nutritional, safety, and tribological requirements while being cost-effective. Seniors must be given significant consideration in new product development. This study examines consumer preferences for arabinogalactan (AG) and beta-glucan (BG) hydrogels with vanilla and coffee-biscuit flavors, using consumer tests (<i>N</i> = 80) and an online survey (<i>N</i> = 852). It focuses on the gels' physical properties, such as texture and viscosity, and their impact on sensory perception. The use of two different gel-forming polysaccharides, each with a unique sensory profile, was observed to affect the sensory properties of the resulting gels and subsequently influence product acceptance. This study analyzed preferences across three age groups: young (18-39 years), middle-aged (40-59 years), and older adults (60+ years). The results showed that seniors preferred AG-based gels. Significant attributes such as the intensity of flavor and bitter taste influenced the overall liking of the gels. Texture also notably impacted preferences. The survey findings revealed statistically significant (<i>p</i> < 0.05) differences in preferences between older adults and younger age groups. Tailoring product development and marketing strategies based on age and sensory preferences could enhance consumer acceptance of edible gels.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Bermudez-Lekerika, Katherine B Crump, Karin Wuertz-Kozak, Christine L Le Maitre, Benjamin Gantenbein
In the original publication [...].
在最初的出版物中 [......] 。
{"title":"Correction: Bermudez-Lekerika et al. Sulfated Hydrogels as Primary Intervertebral Disc Cell Culture Systems. <i>Gels</i> 2024, <i>10</i>, 330.","authors":"Paola Bermudez-Lekerika, Katherine B Crump, Karin Wuertz-Kozak, Christine L Le Maitre, Benjamin Gantenbein","doi":"10.3390/gels10100612","DOIUrl":"https://doi.org/10.3390/gels10100612","url":null,"abstract":"<p><p>In the original publication [...].</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karla Lizette Tovar-Carrillo, Lizett Trujillo-Morales, Juan Carlos Cuevas-González, Judith Virginia Ríos-Arana, León Francisco Espinosa-Cristobal, Erasto Armando Zaragoza-Contreras
Hydrogels elaborated from Dasylirion spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm2 (for the samples without GSE) and went to 40 N/mm2 for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against S. mutans, E. Faecalis, S. aureus, and P. aureginosa. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.
{"title":"Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility.","authors":"Karla Lizette Tovar-Carrillo, Lizett Trujillo-Morales, Juan Carlos Cuevas-González, Judith Virginia Ríos-Arana, León Francisco Espinosa-Cristobal, Erasto Armando Zaragoza-Contreras","doi":"10.3390/gels10090606","DOIUrl":"https://doi.org/10.3390/gels10090606","url":null,"abstract":"<p><p>Hydrogels elaborated from <i>Dasylirion</i> spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm<sup>2</sup> (for the samples without GSE) and went to 40 N/mm<sup>2</sup> for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against <i>S. mutans</i>, <i>E. Faecalis</i>, <i>S. aureus</i>, and <i>P. aureginosa</i>. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yumeng Zhu, Fangyan Li, Shuo Wang, Hongmei Shi, Minqian Zhao, Shaohong You, Sibo Su, Gang Cheng
Diabetic wounds present significant burdens to both patients and the healthcare system due to their prolonged inflammatory phase and adverse microenvironment. Traditional Chinese medicine (TCM), particularly Scutellaria baicalensis extract (SE), has shown promise in wound healing. Herein, sesbania gum (SG) was oxidized and formed hydrogel with carboxymethyl chitosan (CMCS) through the imine bond. Then, SE was loaded into the hydrogel as a wound dressing (CMCS-OSG@SE hydrogel). In vitro experiments demonstrated the mechanical properties and ROS scavenging efficiency of the hydrogel, as well as the release of SE and its biocompatibility. In an vivo study, diabetic mice with S. aureus infection were used, and the CMCS--OSG@SE hydrogel dressing accelerated wound healing by promoting epidermal regeneration and collagen deposition. This composite polysaccharide hydrogel loaded with SE shows great potential for diabetic wound treatment.
糖尿病伤口由于炎症期延长和不利的微环境,给患者和医疗系统带来了沉重负担。传统中药,尤其是黄芩提取物(SE),在伤口愈合方面显示出良好的前景。在此,芝麻胶(SG)被氧化并通过亚胺键与羧甲基壳聚糖(CMCS)形成水凝胶。然后,将 SE 添加到水凝胶中作为伤口敷料(CMCS-OSG@SE 水凝胶)。体外实验证明了水凝胶的机械性能和清除 ROS 的效率,以及 SE 的释放和生物相容性。在一项体内研究中,使用了感染金黄色葡萄球菌的糖尿病小鼠,CMCS--OSG@SE水凝胶敷料通过促进表皮再生和胶原沉积,加速了伤口愈合。这种负载 SE 的复合多糖水凝胶在糖尿病伤口治疗方面显示出巨大的潜力。
{"title":"Composite Polysaccharide Hydrogel Loaded with <i>Scutellaria baicalensis</i> Extract for Diabetic Wound Treatment.","authors":"Yumeng Zhu, Fangyan Li, Shuo Wang, Hongmei Shi, Minqian Zhao, Shaohong You, Sibo Su, Gang Cheng","doi":"10.3390/gels10090605","DOIUrl":"https://doi.org/10.3390/gels10090605","url":null,"abstract":"<p><p>Diabetic wounds present significant burdens to both patients and the healthcare system due to their prolonged inflammatory phase and adverse microenvironment. Traditional Chinese medicine (TCM), particularly <i>Scutellaria baicalensis</i> extract (SE), has shown promise in wound healing. Herein, sesbania gum (SG) was oxidized and formed hydrogel with carboxymethyl chitosan (CMCS) through the imine bond. Then, SE was loaded into the hydrogel as a wound dressing (CMCS-OSG@SE hydrogel). In vitro experiments demonstrated the mechanical properties and ROS scavenging efficiency of the hydrogel, as well as the release of SE and its biocompatibility. In an vivo study, diabetic mice with <i>S. aureus</i> infection were used, and the CMCS--OSG@SE hydrogel dressing accelerated wound healing by promoting epidermal regeneration and collagen deposition. This composite polysaccharide hydrogel loaded with SE shows great potential for diabetic wound treatment.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mona M Shahien, Alia Alshammari, Somaia Ibrahim, Enas Haridy Ahmed, Hanan Abdelmawgoud Atia, Hemat A Elariny, Marwa H Abdallah
Sulpiride (Sul) is a medication that blocks dopamine D2 receptors. It is used to treat gastrointestinal disturbances and has antipsychotic effects depending on the dose given. Sulpiride is subject to P-glycoprotein efflux, resulting in limited bioavailability and erratic absorption. Hence, the aim of this study was to generate a glycerosomal in situ gel of sulpiride for intranasal administration, specifically targeting children with schizophrenia who may have difficulty swallowing traditional solid medications, for enhancing its bioavailability. This study aimed to demonstrate the efficacy of intranasal administration of glycerin-encapsulated lipid-nanovesicles (glycerosomes) mixed with in situ gels for prolonged release of anti-psychotic medication. A Box-Behnken design was utilized to create sulpiride-loaded glycerosomes (Sul-GMs), with the lipid amount (A), glycerin concentration (B), and sonication time (C) acting as independent variables. Their impact on the entrapment efficiency, EE% (Y1), and in vitro drug release (Y2) were evaluated. The sulpiride EE% showed an increase when the glycerin concentration was raised to 25% v/v. Nevertheless, when the glycerin concentration was raised to 40% v/v, there was a notable decrease in the EE%. The optimized glycerosome was added to pH triggered carbopol 974P in situ gel formulations including HPMC K15M with different concentrations. The in situ gel formulation (G3) comprising 0.6% carbopol 974P and 0.6% hydroxypropyl methyl cellulose-K15M (HPMC K15M) demonstrated suitable pH, viscosity, desired gel strength, spreadability, and mucoadhesive strength. Consequently, it was selected for in vitro study, ex vivo permeation investigation, and in vivo evaluations. The glycerosomal in situ gel exhibited favorable ex vivo permeability of SU when applied to the nasal mucosa. The pharmacokinetic investigation revealed that the optimized Sul-loaded glycerosomal in situ gel exhibited a significant fourfold and twofold enhancement in systemic bioavailability compared to both the control gel and the commercially available formulation. Finally, the intranasal administration of Sul-loaded glycerosomal in situ gel is a promising alternative to oral treatment for pediatric patients with psychosis.
{"title":"Development of Glycerosomal pH Triggered In Situ Gelling System to Ameliorate the Nasal Delivery of Sulpiride for Pediatric Psychosis.","authors":"Mona M Shahien, Alia Alshammari, Somaia Ibrahim, Enas Haridy Ahmed, Hanan Abdelmawgoud Atia, Hemat A Elariny, Marwa H Abdallah","doi":"10.3390/gels10090608","DOIUrl":"https://doi.org/10.3390/gels10090608","url":null,"abstract":"<p><p>Sulpiride (Sul) is a medication that blocks dopamine D<sub>2</sub> receptors. It is used to treat gastrointestinal disturbances and has antipsychotic effects depending on the dose given. Sulpiride is subject to P-glycoprotein efflux, resulting in limited bioavailability and erratic absorption. Hence, the aim of this study was to generate a glycerosomal in situ gel of sulpiride for intranasal administration, specifically targeting children with schizophrenia who may have difficulty swallowing traditional solid medications, for enhancing its bioavailability. This study aimed to demonstrate the efficacy of intranasal administration of glycerin-encapsulated lipid-nanovesicles (glycerosomes) mixed with in situ gels for prolonged release of anti-psychotic medication. A Box-Behnken design was utilized to create sulpiride-loaded glycerosomes (Sul-GMs), with the lipid amount (A), glycerin concentration (B), and sonication time (C) acting as independent variables. Their impact on the entrapment efficiency, EE% (Y<sub>1</sub>), and in vitro drug release (Y<sub>2</sub>) were evaluated. The sulpiride EE% showed an increase when the glycerin concentration was raised to 25% <i>v</i>/<i>v</i>. Nevertheless, when the glycerin concentration was raised to 40% <i>v</i>/<i>v</i>, there was a notable decrease in the EE%. The optimized glycerosome was added to pH triggered carbopol 974P in situ gel formulations including HPMC K15M with different concentrations. The in situ gel formulation (G3) comprising 0.6% carbopol 974P and 0.6% hydroxypropyl methyl cellulose-K15M (HPMC K15M) demonstrated suitable pH, viscosity, desired gel strength, spreadability, and mucoadhesive strength. Consequently, it was selected for in vitro study, ex vivo permeation investigation, and in vivo evaluations. The glycerosomal in situ gel exhibited favorable ex vivo permeability of SU when applied to the nasal mucosa. The pharmacokinetic investigation revealed that the optimized Sul-loaded glycerosomal in situ gel exhibited a significant fourfold and twofold enhancement in systemic bioavailability compared to both the control gel and the commercially available formulation. Finally, the intranasal administration of Sul-loaded glycerosomal in situ gel is a promising alternative to oral treatment for pediatric patients with psychosis.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, cellulose and other biomass nanofibers (NFs) have been increasingly utilized in the design of sustainable materials for environmental, biomedical, and other applications. However, the past literature lacks a comparison of the macromolecular and nanofibrous states of biopolymers in various materials, and the advantages and limitations of using nanofibers (NF) instead of conventional polymers are poorly understood. To address this question, hydrogels based on interpolyelectrolyte complexes (IPECs) between carboxymethyl cellulose nanofibers (CMCNFs) and chitosan (CS) were prepared by ele+ctrostatic cross-linking and compared with the hydrogels of carboxymethyl cellulose (CMC) and CS biopolymers. The presence of the rigid CMCNF altered the mechanism of the IPEC assembly and drastically affected the structure of IPEC hydrogels. The swelling ratios of CMCNF-CS hydrogels of ca. 40% were notably lower than the ca. 100-300% swelling of CMC-CS hydrogels. The rheological measurements revealed a higher storage modulus (G') of the CMCNF-CS hydrogel, reaching 13.3 kPa compared to only 3.5 kPa measured for the CMC-CS hydrogel. Further comparison of the adsorption characteristics of the CMCNF-CS and CMC-CS hydrogels toward Cu2+, Cd2+, and Hg2+ ions showed the slightly higher adsorption capacity of CMC-CS for Cu2+ but similar adsorption capacities for Cd2+ and Hg2+. The adsorption kinetics obeyed the pseudo-second-order adsorption model in both cases. Overall, while the replacement of CMC with CMCNF in hydrogel does not significantly affect the performance of such systems as adsorbents, CMCNF imparts IPEC hydrogel with higher stiffness and a frequency-independent loss (G″) modulus and suppresses the hydrogel swelling, so can be beneficial in practical applications that require stable performance under various dynamic conditions.
{"title":"Polyion Hydrogels of Polymeric and Nanofibrous Carboxymethyl Cellulose and Chitosan: Mechanical Characteristics and Potential Use in Environmental Remediation.","authors":"Taisei Kawate, Yehao Wang, Kayee Chan, Nobuyuki Shibata, Yuya Doi, Yuichi Masubuchi, Anatoly Zinchenko","doi":"10.3390/gels10090604","DOIUrl":"https://doi.org/10.3390/gels10090604","url":null,"abstract":"<p><p>Recently, cellulose and other biomass nanofibers (NFs) have been increasingly utilized in the design of sustainable materials for environmental, biomedical, and other applications. However, the past literature lacks a comparison of the macromolecular and nanofibrous states of biopolymers in various materials, and the advantages and limitations of using nanofibers (NF) instead of conventional polymers are poorly understood. To address this question, hydrogels based on interpolyelectrolyte complexes (IPECs) between carboxymethyl cellulose nanofibers (CMCNFs) and chitosan (CS) were prepared by ele+ctrostatic cross-linking and compared with the hydrogels of carboxymethyl cellulose (CMC) and CS biopolymers. The presence of the rigid CMCNF altered the mechanism of the IPEC assembly and drastically affected the structure of IPEC hydrogels. The swelling ratios of CMCNF-CS hydrogels of ca. 40% were notably lower than the ca. 100-300% swelling of CMC-CS hydrogels. The rheological measurements revealed a higher storage modulus (G') of the CMCNF-CS hydrogel, reaching 13.3 kPa compared to only 3.5 kPa measured for the CMC-CS hydrogel. Further comparison of the adsorption characteristics of the CMCNF-CS and CMC-CS hydrogels toward Cu<sup>2+</sup>, Cd<sup>2+</sup>, and Hg<sup>2+</sup> ions showed the slightly higher adsorption capacity of CMC-CS for Cu<sup>2+</sup> but similar adsorption capacities for Cd<sup>2+</sup> and Hg<sup>2+</sup>. The adsorption kinetics obeyed the pseudo-second-order adsorption model in both cases. Overall, while the replacement of CMC with CMCNF in hydrogel does not significantly affect the performance of such systems as adsorbents, CMCNF imparts IPEC hydrogel with higher stiffness and a frequency-independent loss (G″) modulus and suppresses the hydrogel swelling, so can be beneficial in practical applications that require stable performance under various dynamic conditions.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)-cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (Ra) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent.
{"title":"Cellulose Fiber with Enhanced Mechanical Properties: The Role of Co-Solvents in Gel-like NMMO System.","authors":"Suhnue Kim, Darae Lee, Hyungsup Kim","doi":"10.3390/gels10090607","DOIUrl":"https://doi.org/10.3390/gels10090607","url":null,"abstract":"<p><p>Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)-cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (R<sub>a</sub>) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hybrid hydrogels with superabsorbent properties based on acrylic acid (20%), sodium alginate (0.5%) and poly(ethylene oxide) (0.1%) were obtained by electron-beam irradiation between 5 and 20 kGy, and are characterized by different physical and chemical methods; the first results reported showed gel fractions over 87%, cross-link densities under 9.9 × 103 mol/cm3 and swelling degrees of 400 g/g. Two types of hydrogels (without and with 0.1% initiator potassium persulfate) have been subjected to swelling and deswelling experiments in different swelling media with different pHs, chosen in accordance with the purpose for which these superabsorbent materials were obtained, i.e., water and nutrients carriers for agricultural purposes: 6.05 (distilled water), 7.66 (tap water), 5.40 (synthetic nutrient solution) and 7.45 (organic nutrient solution). Swelling kinetics and swelling dynamics have been also studied in order to investigate the influence of swelling media type and pH on the absorption phenomenon. The swelling and deswelling behaviors were influenced by the hydrogel characteristics and pH of the swelling media. Both the polymeric chain relaxation (non-Fickian diffusion) and macromolecular relaxation (super case II) phenomenon were highlighted as a function of swelling media type.
{"title":"Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation-Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media.","authors":"Elena Manaila, Gabriela Craciun","doi":"10.3390/gels10090609","DOIUrl":"https://doi.org/10.3390/gels10090609","url":null,"abstract":"<p><p>Hybrid hydrogels with superabsorbent properties based on acrylic acid (20%), sodium alginate (0.5%) and poly(ethylene oxide) (0.1%) were obtained by electron-beam irradiation between 5 and 20 kGy, and are characterized by different physical and chemical methods; the first results reported showed gel fractions over 87%, cross-link densities under 9.9 × 10<sup>3</sup> mol/cm<sup>3</sup> and swelling degrees of 400 g/g. Two types of hydrogels (without and with 0.1% initiator potassium persulfate) have been subjected to swelling and deswelling experiments in different swelling media with different pHs, chosen in accordance with the purpose for which these superabsorbent materials were obtained, i.e., water and nutrients carriers for agricultural purposes: 6.05 (distilled water), 7.66 (tap water), 5.40 (synthetic nutrient solution) and 7.45 (organic nutrient solution). Swelling kinetics and swelling dynamics have been also studied in order to investigate the influence of swelling media type and pH on the absorption phenomenon. The swelling and deswelling behaviors were influenced by the hydrogel characteristics and pH of the swelling media. Both the polymeric chain relaxation (non-Fickian diffusion) and macromolecular relaxation (super case II) phenomenon were highlighted as a function of swelling media type.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}