Ying Liu, Hao Xiao, Yongxiang Jia, Yajun Lv, Li Dai, Chen Yang
The deposition of Yellow River sediment in the middle and lower reaches is a significant factor in the siltation of reservoirs and the occurrence of serious flooding along the river. The efficient and valuable utilization of Yellow River sediment has already become a key research topic in this field. In this study, we have employed Yellow River sediment as the primary material, in conjunction with commercially available slag, fly ash, and quicklime as the binder, to develop a novel type of artificial flood-prevention stone. Following a 28-day standard curing procedure, the highest compressive strength of the prepared artificial stone was recorded at 4.29 MPa, with a value exceeding 0.7 MPa under wet conditions. The results demonstrated that the prepared artificial stone met the specifications for artificial flood-prevention stones. The curing mechanism, as evidenced by analyses from SEM and XRD testing, indicated that the alkali excitation process in the binder, which produced C-A-S-H gel, was the key factor in enhancing the compressive strength of the specimens. Notably, an evaluation of the amount of CO2 emissions and the cost of the artificial stone concluded that the preparation process was both environmentally friendly and cost-effective.
{"title":"Development of Environmentally Friendly and Economical Flood-Prevention Stones Based on the Sediments of the Yellow River.","authors":"Ying Liu, Hao Xiao, Yongxiang Jia, Yajun Lv, Li Dai, Chen Yang","doi":"10.3390/gels10100622","DOIUrl":"https://doi.org/10.3390/gels10100622","url":null,"abstract":"<p><p>The deposition of Yellow River sediment in the middle and lower reaches is a significant factor in the siltation of reservoirs and the occurrence of serious flooding along the river. The efficient and valuable utilization of Yellow River sediment has already become a key research topic in this field. In this study, we have employed Yellow River sediment as the primary material, in conjunction with commercially available slag, fly ash, and quicklime as the binder, to develop a novel type of artificial flood-prevention stone. Following a 28-day standard curing procedure, the highest compressive strength of the prepared artificial stone was recorded at 4.29 MPa, with a value exceeding 0.7 MPa under wet conditions. The results demonstrated that the prepared artificial stone met the specifications for artificial flood-prevention stones. The curing mechanism, as evidenced by analyses from SEM and XRD testing, indicated that the alkali excitation process in the binder, which produced C-A-S-H gel, was the key factor in enhancing the compressive strength of the specimens. Notably, an evaluation of the amount of CO<sub>2</sub> emissions and the cost of the artificial stone concluded that the preparation process was both environmentally friendly and cost-effective.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As more and more mines utilize the cemented paste backfill (CPB) mining method, the demand for reducing backfill cost and carbon footprint is increasing and becoming more critical. In this work, a new backfill gel binder made with 40 wt.% of low-quality Class F fly ash (FCM) is proposed to replace ordinary Portland cement (OPC). The binder hydration and gel hardening properties were experimentally investigated through X-ray diffraction, Mercury intrusion porosimetry, uniaxial compression, and thermogravimetric analysis. Three different mine tailings were used to verify the FCM's applicability. Results show that the strength performance of FCM-CPB is 72% of that of OPC-CPB, while FCM production cost is almost less than half of OPC. The hydration process of the FCM-CPB can be divided into five stages, and the main hydration products are ettringite and gel-like hydrates. The 31.2% porosity of FCM-CPB at 28-day curing is higher than that of 7-day curing, while the average pore size is lower, and the structure is denser. The FCM can meet the strength requirement of three different mine tailings regarding different subsequent filling and cut-and-fill mining methods. The proposed FCM provides a feasible alternative with economic and environmental benefits.
{"title":"Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization.","authors":"Bolin Xiao, Jiandong Wang, Aixiang Wu, Ruiming Guo","doi":"10.3390/gels10100623","DOIUrl":"https://doi.org/10.3390/gels10100623","url":null,"abstract":"<p><p>As more and more mines utilize the cemented paste backfill (CPB) mining method, the demand for reducing backfill cost and carbon footprint is increasing and becoming more critical. In this work, a new backfill gel binder made with 40 wt.% of low-quality Class F fly ash (FCM) is proposed to replace ordinary Portland cement (OPC). The binder hydration and gel hardening properties were experimentally investigated through X-ray diffraction, Mercury intrusion porosimetry, uniaxial compression, and thermogravimetric analysis. Three different mine tailings were used to verify the FCM's applicability. Results show that the strength performance of FCM-CPB is 72% of that of OPC-CPB, while FCM production cost is almost less than half of OPC. The hydration process of the FCM-CPB can be divided into five stages, and the main hydration products are ettringite and gel-like hydrates. The 31.2% porosity of FCM-CPB at 28-day curing is higher than that of 7-day curing, while the average pore size is lower, and the structure is denser. The FCM can meet the strength requirement of three different mine tailings regarding different subsequent filling and cut-and-fill mining methods. The proposed FCM provides a feasible alternative with economic and environmental benefits.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingchun Ji, Kehan Chen, Han Yi, Bingfang He, Tianyue Jiang
Delayed wound healing induced by bacterial infection and a persistent inflammatory response remains a great clinical challenge. Herein, we reported a paintable, anti-bacterial, and anti-inflammatory Nap-F3K-CA (Nap-Phe-Phe-Phe-Lys-Caffeic Acid) hydrogel for burn wound management based on caffeic acid (CA)-functionalized short peptides (Nap-Phe-Phe-Phe-Lys). Hydrogels are assembled by non-covalent interactions between gelators, and the incorporation of CA promotes the self-assembly of the hydrogel. After being applied to burn wounds, the hydrogel effectively adapted to irregular wound beds and maintained a moist protective environment at the wound. The Nap-F3K-CA hydrogel can scavenge ROS to relieve oxidative damage and downregulate proinflammatory levels. The Nap-F3K-CA hydrogel also displayed potent antibacterial activity against Gram-positive and Gram-negative bacteria, which reduced the incidence of wound infections. Moreover, the hydrogel exhibited good biocompatibility and hemostatic function. In vivo experiments demonstrated that the Nap-F3K-CA hydrogel significantly accelerated the repair of the skin structure including promoting collagen deposition, vascular regeneration, and hair follicle formation. These findings proved the clinical application potential of the Nap-F3K-CA hydrogel as a promising burn wound dressing.
{"title":"A Paintable Small-Molecule Hydrogel with Antimicrobial and ROS Scavenging Activities for Burn Wound Healing.","authors":"Qingchun Ji, Kehan Chen, Han Yi, Bingfang He, Tianyue Jiang","doi":"10.3390/gels10100621","DOIUrl":"https://doi.org/10.3390/gels10100621","url":null,"abstract":"<p><p>Delayed wound healing induced by bacterial infection and a persistent inflammatory response remains a great clinical challenge. Herein, we reported a paintable, anti-bacterial, and anti-inflammatory Nap-F3K-CA (Nap-Phe-Phe-Phe-Lys-Caffeic Acid) hydrogel for burn wound management based on caffeic acid (CA)-functionalized short peptides (Nap-Phe-Phe-Phe-Lys). Hydrogels are assembled by non-covalent interactions between gelators, and the incorporation of CA promotes the self-assembly of the hydrogel. After being applied to burn wounds, the hydrogel effectively adapted to irregular wound beds and maintained a moist protective environment at the wound. The Nap-F3K-CA hydrogel can scavenge ROS to relieve oxidative damage and downregulate proinflammatory levels. The Nap-F3K-CA hydrogel also displayed potent antibacterial activity against Gram-positive and Gram-negative bacteria, which reduced the incidence of wound infections. Moreover, the hydrogel exhibited good biocompatibility and hemostatic function. In vivo experiments demonstrated that the Nap-F3K-CA hydrogel significantly accelerated the repair of the skin structure including promoting collagen deposition, vascular regeneration, and hair follicle formation. These findings proved the clinical application potential of the Nap-F3K-CA hydrogel as a promising burn wound dressing.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Ma, He Wang, Shu Jiang, Mengyu Chen, Lei Zhang
How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular-polymer composite gel is developed, which is suitable for plugging multi-scale fractured water channeling. The supramolecular-polymer composite gel is composed of a polymer (such as polyacrylamide), cross-linking agent (such as polyethyleneimine), supramolecular gel factor (such as cyclodextrin) and polarity regulator (such as ethyl alcohol). The mass fraction of polyacrylamide, polyethyleneimine, cyclodextrin and ethyl alcohol are 0.15%, 0.2%, 1% and 0.2%, respectively. At the initial state, the viscosity of the composite gelant system is less than 20 mPa·s. It has good injection performance in micro-scale fractures and can enter the deep part of a fractured reservoir. At 40 °C, the composite gelant system can form a gel with a double network structure after gelation. One of the networks is formed by the covalent interaction between polyacrylamide and polyethyleneimine, the other network is formed by the self-assembly of cyclodextrins under the action of the ethyl alcohol. The comprehensive performance of the composite gel is greatly improved. The strength of the composite gel is >5 × 104 mPa·s, and it has good plugging strength in large-scale fractures. The composite gel can be used as a conformance control agent for fractured low-permeability oilfields.
{"title":"Development and Performance Evaluation of a New Conformance Control Agent Gel.","authors":"Bin Ma, He Wang, Shu Jiang, Mengyu Chen, Lei Zhang","doi":"10.3390/gels10100618","DOIUrl":"https://doi.org/10.3390/gels10100618","url":null,"abstract":"<p><p>How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular-polymer composite gel is developed, which is suitable for plugging multi-scale fractured water channeling. The supramolecular-polymer composite gel is composed of a polymer (such as polyacrylamide), cross-linking agent (such as polyethyleneimine), supramolecular gel factor (such as cyclodextrin) and polarity regulator (such as ethyl alcohol). The mass fraction of polyacrylamide, polyethyleneimine, cyclodextrin and ethyl alcohol are 0.15%, 0.2%, 1% and 0.2%, respectively. At the initial state, the viscosity of the composite gelant system is less than 20 mPa·s. It has good injection performance in micro-scale fractures and can enter the deep part of a fractured reservoir. At 40 °C, the composite gelant system can form a gel with a double network structure after gelation. One of the networks is formed by the covalent interaction between polyacrylamide and polyethyleneimine, the other network is formed by the self-assembly of cyclodextrins under the action of the ethyl alcohol. The comprehensive performance of the composite gel is greatly improved. The strength of the composite gel is >5 × 10<sup>4</sup> mPa·s, and it has good plugging strength in large-scale fractures. The composite gel can be used as a conformance control agent for fractured low-permeability oilfields.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farid Fadhillah, Abdulrahman G Alhamzani, Khaled Bin Bandar, Abdullah Alshamari, Saad Aljlil, Abdelrahman G Gadallah, M A Habib, Mortaga M Abou-Krisha, Mona A Abdel-Fatah
This work aimed to develop an anionic cellulose nanofiber (CNF) bio-adsorbent from date palm tree waste and to investigate its removal efficiency compared to cationic methylene blue dye from contaminated water. Date palm pulp was first prepared from date palm leaves through acid hydrolysis using H2SO4, followed by hydrolysis in a basic medium using KOH, in which the process completely removed the components of hemicellulose, lignin, and silica. To obtain anionic CNF, the resulting pulp was further treated with H2SO4, followed by centrifugation. Biogel formation of the CNF suspension was promoted by sonication, where its removal efficiency of methylene blue dye was studied as a function of dye concentration, temperature, contact time, and pH value. In this work, we investigated two isotherms, i.e., Langmuir and Freundlich. The Langmuir model's consistency with the experimental data suggests that the adsorption of methylene blue dye onto CNF is monolayer and surface-limited. The reported maximum removal efficiency of 5 mg/g at 60 °C indicates the optimal temperature for adsorption in this specific case. Additionally, a pseudo-second-order model and Elovich model were also utilized to obtain a better understanding of the adsorption mechanism, in which we found not just physical adsorption but also an indication of a chemical reaction occurring between methylene blue dye and CNF. According to the results, that pseudo-second-order model's consistency with the experimental data suggests that the adsorption of methylene blue (MB) onto CNF is rate-limiting step involving chemisorption between the two. The study reveals that CNF adsorbents derived from renewable natural waste sources such as date palm leaves can be effective in removing cationic contaminants such as methylene blue dye.
{"title":"Application of Anionic Hydrogels from Date Palm Waste for Dye Adsorption in Wastewater Treatment.","authors":"Farid Fadhillah, Abdulrahman G Alhamzani, Khaled Bin Bandar, Abdullah Alshamari, Saad Aljlil, Abdelrahman G Gadallah, M A Habib, Mortaga M Abou-Krisha, Mona A Abdel-Fatah","doi":"10.3390/gels10100617","DOIUrl":"https://doi.org/10.3390/gels10100617","url":null,"abstract":"<p><p>This work aimed to develop an anionic cellulose nanofiber (CNF) bio-adsorbent from date palm tree waste and to investigate its removal efficiency compared to cationic methylene blue dye from contaminated water. Date palm pulp was first prepared from date palm leaves through acid hydrolysis using H<sub>2</sub>SO<sub>4</sub>, followed by hydrolysis in a basic medium using KOH, in which the process completely removed the components of hemicellulose, lignin, and silica. To obtain anionic CNF, the resulting pulp was further treated with H<sub>2</sub>SO<sub>4</sub>, followed by centrifugation. Biogel formation of the CNF suspension was promoted by sonication, where its removal efficiency of methylene blue dye was studied as a function of dye concentration, temperature, contact time, and pH value. In this work, we investigated two isotherms, i.e., Langmuir and Freundlich. The Langmuir model's consistency with the experimental data suggests that the adsorption of methylene blue dye onto CNF is monolayer and surface-limited. The reported maximum removal efficiency of 5 mg/g at 60 °C indicates the optimal temperature for adsorption in this specific case. Additionally, a pseudo-second-order model and Elovich model were also utilized to obtain a better understanding of the adsorption mechanism, in which we found not just physical adsorption but also an indication of a chemical reaction occurring between methylene blue dye and CNF. According to the results, that pseudo-second-order model's consistency with the experimental data suggests that the adsorption of methylene blue (MB) onto CNF is rate-limiting step involving chemisorption between the two. The study reveals that CNF adsorbents derived from renewable natural waste sources such as date palm leaves can be effective in removing cationic contaminants such as methylene blue dye.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karla J Santamaría, Brayan J Anaya, Aikaterini Lalatsa, Patricia González-Barranco, Lucía Cantú-Cárdenas, Dolores R Serrano
In today's pharmaceutical landscape, there's an urgent need to develop new drug delivery systems that are appealing and effective in ensuring therapeutic adherence, particularly among paediatric patients. The advent of 3D printing in medicine is revolutionizing this space by enabling the creation of precise, customizable, and visually appealing dosage forms. In this study, we produced 250 mg metformin paediatric gummies based on the semi-solid extrusion (SSE) 3D printing technique. A pharmaceutical ink containing metformin was successfully formulated with optimal flow properties suitable for room-temperature printing. Using a quality by design approach, 3D printing and casting methodologies were compared. The 3D-printed gummies exhibited better firmness and sustained release at earlier times to avoid metformin release in the oral cavity and ensure palatability. The texture and physical appearance match those of gummies commercially available. In conclusion, SSE allowed for the successful manufacture of 3D-printed sugar-free gummies for the treatment of diabetes mellitus for paediatric patients and is an easily translatable approach to clinical practice.
在当今的制药领域,迫切需要开发出既吸引人又能有效确保治疗依从性的新型给药系统,尤其是在儿科患者中。3D打印技术在医药领域的出现为这一领域带来了革命性的变化,它可以制造出精确、可定制且外观精美的剂型。在这项研究中,我们采用半固态挤压(SSE)3D 打印技术制作了 250 毫克二甲双胍儿科软糖。含有二甲双胍的药用油墨配制成功,具有适合室温打印的最佳流动特性。采用质量源于设计的方法,对三维打印和铸造方法进行了比较。三维打印软糖具有更好的硬度,并能在更早的时间内持续释放二甲双胍,从而避免二甲双胍在口腔中释放,并确保其适口性。其质地和物理外观与市面上销售的软糖一致。总之,SSE 成功制造出用于治疗儿科糖尿病的 3D 打印无糖软糖,是一种易于转化为临床实践的方法。
{"title":"Engineering 3D Printed Gummies Loaded with Metformin for Paediatric Use.","authors":"Karla J Santamaría, Brayan J Anaya, Aikaterini Lalatsa, Patricia González-Barranco, Lucía Cantú-Cárdenas, Dolores R Serrano","doi":"10.3390/gels10100620","DOIUrl":"https://doi.org/10.3390/gels10100620","url":null,"abstract":"<p><p>In today's pharmaceutical landscape, there's an urgent need to develop new drug delivery systems that are appealing and effective in ensuring therapeutic adherence, particularly among paediatric patients. The advent of 3D printing in medicine is revolutionizing this space by enabling the creation of precise, customizable, and visually appealing dosage forms. In this study, we produced 250 mg metformin paediatric gummies based on the semi-solid extrusion (SSE) 3D printing technique. A pharmaceutical ink containing metformin was successfully formulated with optimal flow properties suitable for room-temperature printing. Using a quality by design approach, 3D printing and casting methodologies were compared. The 3D-printed gummies exhibited better firmness and sustained release at earlier times to avoid metformin release in the oral cavity and ensure palatability. The texture and physical appearance match those of gummies commercially available. In conclusion, SSE allowed for the successful manufacture of 3D-printed sugar-free gummies for the treatment of diabetes mellitus for paediatric patients and is an easily translatable approach to clinical practice.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tae-Hoon Koo, Jason K Lee, Shawn P Grogan, Ho Jong Ra, Darryl D D'Lima
The clinical application of collagen-based biomaterials is expanding rapidly, especially in tissue engineering and cosmetics. While oral supplements and injectable skin boosters are popular for enhancing skin health, clinical evidence supporting their effectiveness remains limited. Injectable products show potential in revitalizing skin, but safety concerns persist due to challenges in sterilization and the risk of biological contamination. Traditional methods of sterilization (heat and irradiation) can denature collagen. This study addresses these issues by introducing a novel technique: the double filtration and low-temperature steam sterilization of a collagen gel. In vitro tests documented the sterility and confirmed that the collagen did not show cytotoxicity, degradation, integrity, and viscosity characteristics changes after the processing and sterilization. The collagen gel induced new collagen expression and the proliferation of human dermal fibroblasts when the cells were cultured with the collagen gel. An in vivo study found no adverse effects in rats or significant lesions at the implantation site over 13 weeks. These results suggest that this novel method to process collagen gels is a safe and effective skin booster. Advanced processing methods are likely to mitigate the safety risks associated with injectable collagen products, though further research is needed to validate their biological effectiveness and clinical benefits.
{"title":"Biocompatibility Study of Purified and Low-Temperature-Sterilized Injectable Collagen for Soft Tissue Repair: Intramuscular Implantation in Rats.","authors":"Tae-Hoon Koo, Jason K Lee, Shawn P Grogan, Ho Jong Ra, Darryl D D'Lima","doi":"10.3390/gels10100619","DOIUrl":"https://doi.org/10.3390/gels10100619","url":null,"abstract":"<p><p>The clinical application of collagen-based biomaterials is expanding rapidly, especially in tissue engineering and cosmetics. While oral supplements and injectable skin boosters are popular for enhancing skin health, clinical evidence supporting their effectiveness remains limited. Injectable products show potential in revitalizing skin, but safety concerns persist due to challenges in sterilization and the risk of biological contamination. Traditional methods of sterilization (heat and irradiation) can denature collagen. This study addresses these issues by introducing a novel technique: the double filtration and low-temperature steam sterilization of a collagen gel. In vitro tests documented the sterility and confirmed that the collagen did not show cytotoxicity, degradation, integrity, and viscosity characteristics changes after the processing and sterilization. The collagen gel induced new collagen expression and the proliferation of human dermal fibroblasts when the cells were cultured with the collagen gel. An in vivo study found no adverse effects in rats or significant lesions at the implantation site over 13 weeks. These results suggest that this novel method to process collagen gels is a safe and effective skin booster. Advanced processing methods are likely to mitigate the safety risks associated with injectable collagen products, though further research is needed to validate their biological effectiveness and clinical benefits.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Maria Blejan, Violeta Nour, Alexandru Radu Corbu, Georgiana Gabriela Codină
Fruit processing by-products could represent a sustainable ingredient for developing innovative dairy products. The present study was conducted to develop a novel functional yogurt by adding bilberry pomace powder (BPP) at 0.5%, 1.0%, and 1.5% (w/w) levels in stirred-type yogurt production to confer color and to increase the dietary fiber and polyphenol content. Physicochemical properties of the yogurt samples, including color parameters, titratable acidity, pH, water holding capacity (WHC), and syneresis, as well as textural and rheological properties, were evaluated in yogurts on the 1, 14, and 28 days of refrigerated storage (4 °C). In addition, total phenolic content, total anthocyanin content, and radical scavenging activity were determined in yogurts, and sensory analysis was conducted. The results showed that BPP is a valuable source of polyphenols, dietary fiber, and oils rich in n-3 polyunsaturated fatty acids (n-3 PUFAs, n-6/n-3 ratio = 0.91). The incorporation of BPP imparted an attractive purple color to the yogurts, increased WHC, and reduced syneresis. Moreover, the addition of BPP improved the rheological properties, demonstrating that a more dense and stable yogurt gel network structure was obtained than the control. The yogurt enriched with 1.0% BPP received the highest scores for color, consistency, taste, and overall acceptability. Hence, bilberry pomace powder might be used as an ingredient to improve the nutritional and functional value of yogurts.
{"title":"Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt.","authors":"Ana Maria Blejan, Violeta Nour, Alexandru Radu Corbu, Georgiana Gabriela Codină","doi":"10.3390/gels10100616","DOIUrl":"https://doi.org/10.3390/gels10100616","url":null,"abstract":"<p><p>Fruit processing by-products could represent a sustainable ingredient for developing innovative dairy products. The present study was conducted to develop a novel functional yogurt by adding bilberry pomace powder (BPP) at 0.5%, 1.0%, and 1.5% (<i>w</i>/<i>w</i>) levels in stirred-type yogurt production to confer color and to increase the dietary fiber and polyphenol content. Physicochemical properties of the yogurt samples, including color parameters, titratable acidity, pH, water holding capacity (WHC), and syneresis, as well as textural and rheological properties, were evaluated in yogurts on the 1, 14, and 28 days of refrigerated storage (4 °C). In addition, total phenolic content, total anthocyanin content, and radical scavenging activity were determined in yogurts, and sensory analysis was conducted. The results showed that BPP is a valuable source of polyphenols, dietary fiber, and oils rich in n-3 polyunsaturated fatty acids (n-3 PUFAs, n-6/n-3 ratio = 0.91). The incorporation of BPP imparted an attractive purple color to the yogurts, increased WHC, and reduced syneresis. Moreover, the addition of BPP improved the rheological properties, demonstrating that a more dense and stable yogurt gel network structure was obtained than the control. The yogurt enriched with 1.0% BPP received the highest scores for color, consistency, taste, and overall acceptability. Hence, bilberry pomace powder might be used as an ingredient to improve the nutritional and functional value of yogurts.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Yang, Fan Li, Renjing Ji, Xiaorong Yu, Huan Yang, Gaoshen Su
A self-degradable rubber plug (SDRP) was developed to address issues in existing crosslinked polymer temporary plugging technology, such as poor self-degradation properties. The synthesis formula was optimized using response surface analysis, resulting in an optimized composition of the SDRP: 13 wt% monomer, 0.02 wt% initiator, 0.7 wt% crosslinker, and 1.8 wt% degradation catalyst. Under the condition of 70-120 °C, the SDRP was transformed from a liquid to a solid gel in 30-110 min; the degradation time was 3-10 days, and the viscosity of the completely degraded solution was lower than 20 mPa·s. At an injection volume of 1 PV SDPR, a breakthrough pressure of 8.34 MPa was achieved. The hydrolysis of the unstable crosslinker was found to have caused the breakage of the SDRP. Over time, the functional groups within the unstable crosslinker underwent hydrolysis due to the combined effects of temperature and the degradation catalyst. This process led to the disruption of crosslinking points, resulting in a gradual deterioration of the network structure. As a consequence, some immobile water was converted into free water. The mobility of water molecules increased until the plug was completely degraded into a viscous liquid. This study enriches the temporary plugging gel system.
{"title":"Self-Degradable Rubber Plug for Temporary Plugging and Its Degradation Mechanism.","authors":"Fan Yang, Fan Li, Renjing Ji, Xiaorong Yu, Huan Yang, Gaoshen Su","doi":"10.3390/gels10100615","DOIUrl":"https://doi.org/10.3390/gels10100615","url":null,"abstract":"<p><p>A self-degradable rubber plug (SDRP) was developed to address issues in existing crosslinked polymer temporary plugging technology, such as poor self-degradation properties. The synthesis formula was optimized using response surface analysis, resulting in an optimized composition of the SDRP: 13 wt% monomer, 0.02 wt% initiator, 0.7 wt% crosslinker, and 1.8 wt% degradation catalyst. Under the condition of 70-120 °C, the SDRP was transformed from a liquid to a solid gel in 30-110 min; the degradation time was 3-10 days, and the viscosity of the completely degraded solution was lower than 20 mPa·s. At an injection volume of 1 PV SDPR, a breakthrough pressure of 8.34 MPa was achieved. The hydrolysis of the unstable crosslinker was found to have caused the breakage of the SDRP. Over time, the functional groups within the unstable crosslinker underwent hydrolysis due to the combined effects of temperature and the degradation catalyst. This process led to the disruption of crosslinking points, resulting in a gradual deterioration of the network structure. As a consequence, some immobile water was converted into free water. The mobility of water molecules increased until the plug was completely degraded into a viscous liquid. This study enriches the temporary plugging gel system.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
San Kim, Yumin Shin, Jaewon Han, Hye Jin Kim, Sung-Hyuk Sunwoo
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
{"title":"Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites.","authors":"San Kim, Yumin Shin, Jaewon Han, Hye Jin Kim, Sung-Hyuk Sunwoo","doi":"10.3390/gels10100614","DOIUrl":"https://doi.org/10.3390/gels10100614","url":null,"abstract":"<p><p>Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}