Birte Moser, Peter G. Cook, Anthony D. Miller, Shawan Dogramaci, Ilka Wallis
Open pit mining frequently requires regional water tables to be lowered to access ore deposits. When mines close, dewatering ceases allowing the water table to recover. In arid and semi-arid mining regions, the developing pit lakes are predominantly fed by groundwater during this recovery phase and pit lakes develop first into “terminal sinks” for the surrounding groundwater system. With time, the re-establishment of regional hydraulic gradients can cause pit lakes to develop into throughflow systems, in which pit lake water outflows into adjacent aquifers. In this study, we use numerical groundwater modeling to aid process understanding of how regional hydraulic gradients, aquifer properties, net evaporation rates, and pit geometry determine the hydraulic evolution of groundwater-fed pit lakes. We find that before the recovery of the regional water table to its new equilibrium, pit lakes frequently transition to throughflow systems. Throughflow from pit lakes to downstream aquifers can develop within two decades following cessation of dewatering even under low hydraulic gradients (e.g., 5 × 10−4) or high net evaporation rates (e.g., 2.5 m/year). Pit lakes remain terminal sinks only under suitable combinations of high evaporation rates, low hydraulic gradients, and low hydraulic conductivities. In addition, we develop an approximate analytical solution for a rapid assessment of the hydraulic status of pit lakes under steady-state conditions. Understanding whether pit lakes remain terminal sinks or transition into throughflow systems largely determines the long-term water quality of pit lakes and downstream aquifers. This knowledge is fundamental for mine closure and planning post-mining land use.
{"title":"The Hydraulic Evolution of Groundwater-Fed Pit Lakes After Mine Closure","authors":"Birte Moser, Peter G. Cook, Anthony D. Miller, Shawan Dogramaci, Ilka Wallis","doi":"10.1111/gwat.13419","DOIUrl":"10.1111/gwat.13419","url":null,"abstract":"<p>Open pit mining frequently requires regional water tables to be lowered to access ore deposits. When mines close, dewatering ceases allowing the water table to recover. In arid and semi-arid mining regions, the developing pit lakes are predominantly fed by groundwater during this recovery phase and pit lakes develop first into “terminal sinks” for the surrounding groundwater system. With time, the re-establishment of regional hydraulic gradients can cause pit lakes to develop into throughflow systems, in which pit lake water outflows into adjacent aquifers. In this study, we use numerical groundwater modeling to aid process understanding of how regional hydraulic gradients, aquifer properties, net evaporation rates, and pit geometry determine the hydraulic evolution of groundwater-fed pit lakes. We find that before the recovery of the regional water table to its new equilibrium, pit lakes frequently transition to throughflow systems. Throughflow from pit lakes to downstream aquifers can develop within two decades following cessation of dewatering even under low hydraulic gradients (e.g., 5 × 10<sup>−4</sup>) or high net evaporation rates (e.g., 2.5 m/year). Pit lakes remain terminal sinks only under suitable combinations of high evaporation rates, low hydraulic gradients, and low hydraulic conductivities. In addition, we develop an approximate analytical solution for a rapid assessment of the hydraulic status of pit lakes under steady-state conditions. Understanding whether pit lakes remain terminal sinks or transition into throughflow systems largely determines the long-term water quality of pit lakes and downstream aquifers. This knowledge is fundamental for mine closure and planning post-mining land use.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"889-903"},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Arab region is located in an arid environment and suffers from water scarcity and poor water quality which are expected to become more severe in coming years due to global warming. In this study, the groundwater quality of 205 wells in Qatar was investigated. The physical parameters of pH, electrical conductivity (EC), total dissolved solids (TDS), salinity, inorganic carbon (IC), and organic carbon (OC) were determined. The study characterized the concentrations of major anions of Cl, F, Br, NO3, PO4, and SO4, and major cations of Ca, K, Mg, and Na. Importantly, metals and metalloids including V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb, and U were determined. The results revealed that the groundwater of all wells is not drinkable due to high salinity (average TDS 4598 mg/L and salinity 0.4%, respectively). Additionally, average concentrations of major anions Cl, SO4, and F were 1472, 1064, and 1.9 mg/L, respectively, and all exceed the World Health Organization (WHO) guidelines for drinking water. However, NO3 concentration in 11 out of 205 wells was above the WHO guidelines of 50 mg/L due to intensive agriculture and fertilizer applications. Major cations of Ca, K, Mg, and Na were higher than WHO guidelines with average concentrations of 345, 63, 127, and 923 mg/L, respectively. All trace metals were much lower than the WHO guidelines for drinking water; however, the vanadium (V) average concentration in groundwater of all wells was 31 μg/L, which is five times higher than the Dutch guidelines (whereas the WHO has no guidelines for V). The groundwater of Qatar is dominated by Ca and Mg sulfates in Sabkha environments and dominated by NaCl in the coastal zones from evaporate environments consisting of coastal salt flats, salt pans, estuaries, and lagoons supersaturated by salts and the influence of sea water intrusion.
{"title":"Groundwater Contamination in Arid Coastal Areas: Qatar as a Case Study","authors":"Basem Shomar, Rajendran Sankaran","doi":"10.1111/gwat.13411","DOIUrl":"10.1111/gwat.13411","url":null,"abstract":"<p>The Arab region is located in an arid environment and suffers from water scarcity and poor water quality which are expected to become more severe in coming years due to global warming. In this study, the groundwater quality of 205 wells in Qatar was investigated. The physical parameters of pH, electrical conductivity (EC), total dissolved solids (TDS), salinity, inorganic carbon (IC), and organic carbon (OC) were determined. The study characterized the concentrations of major anions of Cl, F, Br, NO<sub>3</sub>, PO<sub>4</sub>, and SO<sub>4</sub>, and major cations of Ca, K, Mg, and Na. Importantly, metals and metalloids including V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb, and U were determined. The results revealed that the groundwater of all wells is not drinkable due to high salinity (average TDS 4598 mg/L and salinity 0.4%, respectively). Additionally, average concentrations of major anions Cl, SO<sub>4</sub>, and F were 1472, 1064, and 1.9 mg/L, respectively, and all exceed the World Health Organization (WHO) guidelines for drinking water. However, NO<sub>3</sub> concentration in 11 out of 205 wells was above the WHO guidelines of 50 mg/L due to intensive agriculture and fertilizer applications. Major cations of Ca, K, Mg, and Na were higher than WHO guidelines with average concentrations of 345, 63, 127, and 923 mg/L, respectively. All trace metals were much lower than the WHO guidelines for drinking water; however, the vanadium (V) average concentration in groundwater of all wells was 31 μg/L, which is five times higher than the Dutch guidelines (whereas the WHO has no guidelines for V). The groundwater of Qatar is dominated by Ca and Mg sulfates in Sabkha environments and dominated by NaCl in the coastal zones from evaporate environments consisting of coastal salt flats, salt pans, estuaries, and lagoons supersaturated by salts and the influence of sea water intrusion.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"847-859"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Citizen science (CS) around the world is undergoing a resurgence, potentially due to the utilization of new technologies and methods to capture information, such as data and photo entry via mobile phone apps. CS has been used in aquatic ecology for several decades, however the use of volunteers to collect data in groundwaters has rarely occurred. Groundwater research, particularly groundwater ecosystems, is unevenly distributed across the world, limiting our knowledge of these ecosystems and their functions. Here, we engaged six volunteer farmers in semi-arid region of north-western New South Wales, Australia to participate in an assessment of groundwater health using privately owned wells. Volunteers were supplied with sampling kits and instructions on sampling methods. Data retrieved indicated the health of the groundwater ecosystems, simultaneously providing information on water quality and groundwater biota present within the farm aquifers. Diverse stygofauna were collected from the trial, which reflected historical records of stygofauna within the same catchment indicating the viability of using citizen scientist for data collection. The citizen science project not only aided the collection of data and assessment of groundwater health, but also provided a tool for education, attracting media attention which furthered the education to a national audience. The amount of data still required to understand groundwater ecosystems, combined with the urgency to manage these environments, suggests that citizen scientists may complement the efforts of scientists around the globe to establish the impacts and consequences of human activities on this resource.
{"title":"Monitoring Groundwater Health Using Citizen Scientists in Semi-Arid Regional Australia","authors":"Kathryn L. Korbel, Grant C. Hose","doi":"10.1111/gwat.13407","DOIUrl":"10.1111/gwat.13407","url":null,"abstract":"<p>Citizen science (CS) around the world is undergoing a resurgence, potentially due to the utilization of new technologies and methods to capture information, such as data and photo entry via mobile phone apps. CS has been used in aquatic ecology for several decades, however the use of volunteers to collect data in groundwaters has rarely occurred. Groundwater research, particularly groundwater ecosystems, is unevenly distributed across the world, limiting our knowledge of these ecosystems and their functions. Here, we engaged six volunteer farmers in semi-arid region of north-western New South Wales, Australia to participate in an assessment of groundwater health using privately owned wells. Volunteers were supplied with sampling kits and instructions on sampling methods. Data retrieved indicated the health of the groundwater ecosystems, simultaneously providing information on water quality and groundwater biota present within the farm aquifers. Diverse stygofauna were collected from the trial, which reflected historical records of stygofauna within the same catchment indicating the viability of using citizen scientist for data collection. The citizen science project not only aided the collection of data and assessment of groundwater health, but also provided a tool for education, attracting media attention which furthered the education to a national audience. The amount of data still required to understand groundwater ecosystems, combined with the urgency to manage these environments, suggests that citizen scientists may complement the efforts of scientists around the globe to establish the impacts and consequences of human activities on this resource.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"834-846"},"PeriodicalIF":2.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13407","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brent P. Heerspink, Michael N. Fienen, Howard W. Reeves
There is a significant need to develop decision support tools capable of delivering accurate representations of environmental conditions, such as ground and surface water solute concentrations, in a timely and computationally efficient manner. Such tools can be leveraged to assess a large number of potential management strategies for mitigating non-point source pollutants. Here, we assess the effectiveness of the impulse-response emulation approach to approximate process-based groundwater model estimates of solute transport from MODFLOW and MT3D over a wide range of model inputs and parameters, with the goal of assessing where in parameter space the assumptions underlying this emulation approach are valid. The impulse-response emulator was developed using the sensitivity analysis utilities in the PEST++ software suite and is capable of approximating MODFLOW/MT3D estimates of solute transport over a large portion of the parameter space tested, except in cases where the Courant number is above 0.5. Across all runs tested, the highest percent errors were at the plume fronts. These results suggest that the impulse-response approach may be suitable for emulation of solute transport models for a wide range of cases, except when high-resolution outputs are needed, or when very low concentrations at plume edges are of particular interest.
{"title":"Evaluation of an Impulse-Response Emulator for Groundwater Contaminant Transport Modeling","authors":"Brent P. Heerspink, Michael N. Fienen, Howard W. Reeves","doi":"10.1111/gwat.13405","DOIUrl":"10.1111/gwat.13405","url":null,"abstract":"<p>There is a significant need to develop decision support tools capable of delivering accurate representations of environmental conditions, such as ground and surface water solute concentrations, in a timely and computationally efficient manner. Such tools can be leveraged to assess a large number of potential management strategies for mitigating non-point source pollutants. Here, we assess the effectiveness of the impulse-response emulation approach to approximate process-based groundwater model estimates of solute transport from MODFLOW and MT3D over a wide range of model inputs and parameters, with the goal of assessing where in parameter space the assumptions underlying this emulation approach are valid. The impulse-response emulator was developed using the sensitivity analysis utilities in the PEST++ software suite and is capable of approximating MODFLOW/MT3D estimates of solute transport over a large portion of the parameter space tested, except in cases where the Courant number is above 0.5. Across all runs tested, the highest percent errors were at the plume fronts. These results suggest that the impulse-response approach may be suitable for emulation of solute transport models for a wide range of cases, except when high-resolution outputs are needed, or when very low concentrations at plume edges are of particular interest.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"945-956"},"PeriodicalIF":2.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The safe operation of underground reservoirs and environmental protection heavily rely on the water flow through coal pillar dams in coal mines. Meanwhile, research on the flow characteristics in coal pillar dams has been limited due to their low hydraulic conductivity. To address this gap, this study assembled a novel seepage experimental device and conducted a series of carefully designed seepage experiments to examine the characteristics of low-permeability in coal pillar dams. The experiments aim to explore the relationship between water flux and hydraulic gradient, considering varying core lengths and immersion times. Flow parameters were determined by fitting observed flux-gradient curves with predictions from both Darcy and non-Darcian laws. Several significant results were obtained. First, a noticeable non-linear relationship between water flux and hydraulic gradient was observed, particularly evident at low flow velocities. Second, the non-Darcy laws effectively interpreted the experimental data, with threshold pressure gradients ranging 13.60 to 58.64 for different core lengths. Third, the study established that water immersion significantly affects the flow characteristics of coal pillar dams, resulting in an increased hydraulic conductivity and flow velocity. These findings carry significant implications for the design of coal pillar dams within underground coal mine reservoirs, providing insights for constructing more stable structures and ensuring environmental protection.
{"title":"Experimental Study of Non-Darcian Flow Characteristics in Low-Permeability Coal Pillar Dams","authors":"Xu Li, Peng Zhu, Konghui Zuo, Zhang Wen, Qi Zhu, Qiang Guo, Hamza Jakada","doi":"10.1111/gwat.13401","DOIUrl":"10.1111/gwat.13401","url":null,"abstract":"<p>The safe operation of underground reservoirs and environmental protection heavily rely on the water flow through coal pillar dams in coal mines. Meanwhile, research on the flow characteristics in coal pillar dams has been limited due to their low hydraulic conductivity. To address this gap, this study assembled a novel seepage experimental device and conducted a series of carefully designed seepage experiments to examine the characteristics of low-permeability in coal pillar dams. The experiments aim to explore the relationship between water flux and hydraulic gradient, considering varying core lengths and immersion times. Flow parameters were determined by fitting observed flux-gradient curves with predictions from both Darcy and non-Darcian laws. Several significant results were obtained. First, a noticeable non-linear relationship between water flux and hydraulic gradient was observed, particularly evident at low flow velocities. Second, the non-Darcy laws effectively interpreted the experimental data, with threshold pressure gradients ranging 13.60 to 58.64 for different core lengths. Third, the study established that water immersion significantly affects the flow characteristics of coal pillar dams, resulting in an increased hydraulic conductivity and flow velocity. These findings carry significant implications for the design of coal pillar dams within underground coal mine reservoirs, providing insights for constructing more stable structures and ensuring environmental protection.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"934-944"},"PeriodicalIF":2.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Introduction to Hydraulic Testing in Hydrogeology","authors":"Javad Ashjari","doi":"10.1111/gwat.13389","DOIUrl":"10.1111/gwat.13389","url":null,"abstract":"","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"823-824"},"PeriodicalIF":2.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua D. Larsen, Christian D. Langevin, Joseph D. Hughes, Richard G. Niswonger
An agricultural water use package has been developed for MODFLOW 6 using the MODFLOW Application Programming Interface (API). The MODFLOW API Agricultural Water Use Package (API-Ag) was based on the approach to simulate irrigation demand in the MODFLOW-NWT and GSFLOW Agricultural Water Use (AG) Package. The API-Ag Package differs from the previous approach by implementing new features and support for additional irrigation providers. New features include representation of deficit and over-irrigation, Multi-Aquifer Well and Lake Package irrigation providers, and support for structured, vertex, and unstructured grid models. Three example problems are presented that demonstrate how the API-Ag Package improves representation of highly managed systems and are further used to validate the irrigation demand and delivery formulations. Irrigation volumes simulated in the three example problems show excellent agreement with the MODFLOW-NWT AG Package.
{"title":"An Agricultural Package for MODFLOW 6 Using the Application Programming Interface","authors":"Joshua D. Larsen, Christian D. Langevin, Joseph D. Hughes, Richard G. Niswonger","doi":"10.1111/gwat.13367","DOIUrl":"10.1111/gwat.13367","url":null,"abstract":"<p>An agricultural water use package has been developed for MODFLOW 6 using the MODFLOW Application Programming Interface (API). The MODFLOW API Agricultural Water Use Package (API-Ag) was based on the approach to simulate irrigation demand in the MODFLOW-NWT and GSFLOW Agricultural Water Use (AG) Package. The API-Ag Package differs from the previous approach by implementing new features and support for additional irrigation providers. New features include representation of deficit and over-irrigation, Multi-Aquifer Well and Lake Package irrigation providers, and support for structured, vertex, and unstructured grid models. Three example problems are presented that demonstrate how the API-Ag Package improves representation of highly managed systems and are further used to validate the irrigation demand and delivery formulations. Irrigation volumes simulated in the three example problems show excellent agreement with the MODFLOW-NWT AG Package.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 1","pages":"157-166"},"PeriodicalIF":2.6,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13367","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of retention function and relative conductivity function is essential for the calculation of flow in a variably saturated media using the Richards equation. A widely used mathematical model for this is the Mualem-van Genuchten model which requires the shape parameters