A well-planned field data collection program should be designed to (1) collect a sufficient set of data of the right types at the right locations, and (2) collect a parsimonious set of data to avoid unnecessary costs. Combining PEST and a simple analytic element method (AEM) groundwater flow model for the site of interest provides a relatively simple, low-cost method of developing such a program. AEM models are well suited to this approach because they are quick to develop yet hydraulically accurate, reducing impacts on project budgets at early data collection planning stages; and quick to run, solving rapidly for the many iterations that PEST requires to generate good parameter estimates. This article shows two examples of this method: one for a steady state watershed model, and one for a transient pumping test project to demonstrate that PEST coupled with a simple AEM model that sketches out the key features of a site conceptual model can be an efficient tool in planning key parts of a hydrogeologic site investigation.
Structural landform evolution and hydrogeochemical analyses are crucial for understanding the characteristics of karst groundwater systems and the development of deep karst formed by complex aquifers in a tectonic collision zone. Detailed structural landform evolution analysis was carried out along the large-scale anticlinorium to investigate the temporal evolution of karst aquifer systems and karstification. Results showed that the tectonic activity included weak horizontal compression and slow vertical uplift during the Triassic to Middle Jurassic, forming a denuded clastic platform. This period was mainly preserved in the geological record as burial karst. From the Late Jurassic to the Early Cretaceous, the study area was strongly compressed by S–N-trending stress, and developed E–W-trending high-angle imbricate thrust structures, which controlled the formation of folded and fault-blocked mountains. Vertical multilayered strata underwent a strong horizontal extrusion, forming a large-scale anticlinorium with secondary folds and faults. With the exposure of carbonate rocks due to rapid crustal uplift, karst began to develop, forming a vertical multilayer karst aquifer system and controlling the distribution of karst groundwater. The Fangxian faulted basin was formed from the Late Cretaceous to the Paleogene, whereby landforms were dominated by intermountain basins. Slow crustal uplift caused the retreat of the denudation line to the east, leading to an increase in hydrodynamic conditions and karstification, and the initiation of early karst groundwater systems. Since the Neogene, intermittent and rapid crustal uplift has led to the deepening of rivers, resulting in the formation of peak clusters and canyons, the development of deep karst, and the complete formation of karst groundwater systems. Combined with hydrogeochemical and borehole data, local, intermediate, and regional karst groundwater systems were identified. It has vital significance to the geological route selection or construction of deep-buried tunnels and the utilization of karst groundwater.
Permeability is a required parameter for studying aquifer properties. However, for sandstone aquifers with low permeability, it is difficult to measure permeability directly through experiments. Based on fractal theory and the J function, a new method to calculate the permeability of a sandstone aquifer is derived. This work first solves the J function under each water saturation according to its definition. Combined with mercury pressure data, the J function and logarithmic curve equation of water saturation are then fitted by the drawing method, and the fractal dimension and tortuosity of the aquifer are further solved. Finally, the aquifer's permeability is calculated using the new permeability calculation method. To verify the accuracy of the proposed method, 15 rock samples from the Chang 7 Group, Ordos Basin, are taken as research objects. The permeability is calculated using the new method combined with mercury injection data and aquifer characteristic parameters, and the results are compared with the real permeability. The relative error of most samples is <20%, which shows the permeability calculated by this method is accurate and reliable. The effects of fractal dimension, tortuosity, and porosity on permeability are also analyzed.
Inspired by the analysis by Mishra et al. (2012) of variable pumping rate tests using piecewise-linear reconstructions of the pumping history, this article contains a derivation of the convolutional form of pumping tests in which the pumping history may take any possible form. The solution is very similar to the classical Theis (1935) equation but uses the Green's function for a pumped aquifer given by taking the time derivative of the well function