Pub Date : 2024-12-14DOI: 10.1016/j.heares.2024.109167
Loes Beckers, Birgit Philips, Wendy Huinck, Emmanuel Mylanus, Andreas Büchner, Andrej Kral
Objective: We investigated auditory working-memory using behavioural measures and electroencephalography (EEG) in adult Cochlear Implant (CI) users with varying degrees of CI performance.
Methods: 24 adult CI listeners (age: M = 61.38, SD = 12.45) performed the Sternberg auditory-digit-in-working-memory task during which EEG, accuracy, and promptness were captured. Participants were presented with 2, 4, or 6 digits at Signal-to-Noise Ratios (SNR) of 0, +5 and +10dB. They had to identify a probe stimulus as present in the preceding sequence. ANOVA models were used to compare conditions.
Results: ANOVA revealed that increasing memory load (ML) led to decreased task performance and CI performance interacted with ML and SNR. Centro-parietal alpha power increased during memory encoding but did not differ between conditions. Frontal alpha power was positively correlated with accuracy in conditions most affected by SNR (r = 0.57, r = 0.52) and theta power in conditions most affected by ML (r = 0.55, r = 0.57).
Conclusions: While parietal alpha power is modulated by the task, it is frontal alpha that relates quantitatively to sensory aspects of processing (noise) and frontal theta to memory load in this group of CI listeners.
Significance: These results suggest that alpha and theta show distinct relationships to behaviour, providing additional insight into neurocognitive (auditory working-memory) processes in CI users.
{"title":"Auditory working memory in noise in cochlear implant users: Insights from behavioural and neuronal measures.","authors":"Loes Beckers, Birgit Philips, Wendy Huinck, Emmanuel Mylanus, Andreas Büchner, Andrej Kral","doi":"10.1016/j.heares.2024.109167","DOIUrl":"https://doi.org/10.1016/j.heares.2024.109167","url":null,"abstract":"<p><strong>Objective: </strong>We investigated auditory working-memory using behavioural measures and electroencephalography (EEG) in adult Cochlear Implant (CI) users with varying degrees of CI performance.</p><p><strong>Methods: </strong>24 adult CI listeners (age: M = 61.38, SD = 12.45) performed the Sternberg auditory-digit-in-working-memory task during which EEG, accuracy, and promptness were captured. Participants were presented with 2, 4, or 6 digits at Signal-to-Noise Ratios (SNR) of 0, +5 and +10dB. They had to identify a probe stimulus as present in the preceding sequence. ANOVA models were used to compare conditions.</p><p><strong>Results: </strong>ANOVA revealed that increasing memory load (ML) led to decreased task performance and CI performance interacted with ML and SNR. Centro-parietal alpha power increased during memory encoding but did not differ between conditions. Frontal alpha power was positively correlated with accuracy in conditions most affected by SNR (r = 0.57, r = 0.52) and theta power in conditions most affected by ML (r = 0.55, r = 0.57).</p><p><strong>Conclusions: </strong>While parietal alpha power is modulated by the task, it is frontal alpha that relates quantitatively to sensory aspects of processing (noise) and frontal theta to memory load in this group of CI listeners.</p><p><strong>Significance: </strong>These results suggest that alpha and theta show distinct relationships to behaviour, providing additional insight into neurocognitive (auditory working-memory) processes in CI users.</p>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"456 ","pages":"109167"},"PeriodicalIF":2.5,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1016/j.heares.2024.109166
Monica A Benson, John Peacock, Matthew D Sergison, Dominik Stich, Daniel J Tollin
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate. Animal studies to date have focused primarily on peripheral hearing measures to diagnose ribbon synapse loss, while suggesting binaural listening deficits such as speech-reception-in-noise result from this disorder, but haven't accounted for the possible regeneration of synapses. To address this, we measured binaural physiological and behavioral function, the latter utilizing the pre-pulse inhibition of acoustic startle method, in both male and female adult guinea pigs following exposure to noise that has been shown to induce cochlear synaptopathy. Physiological measurements extended to 2 months post noise exposure to characterize any deficit and subsequent recovery. While common audiological assessments showed temporary threshold shift, reduced evoked potential amplitudes indicative of synaptopathy and measurable binaural electrophysiological hearing deficits post exposure, all measures recovered by 2 months. Suspected regeneration of synaptic ribbons occurred by 2 months post exposure and cochlear histology revealed no synaptic loss 4 months post exposure. Our results show that the same noise exposure protocol demonstrated to cause synaptic loss in prior studies causes physiological binaural processing deficits in the brainstem and that the recovery of neural binaural processing coincides with the regeneration of synapses shown in previous studies and normal binaural hearing behavior.
{"title":"Neural and behavioral binaural hearing impairment and its recovery following moderate noise exposure.","authors":"Monica A Benson, John Peacock, Matthew D Sergison, Dominik Stich, Daniel J Tollin","doi":"10.1016/j.heares.2024.109166","DOIUrl":"https://doi.org/10.1016/j.heares.2024.109166","url":null,"abstract":"<p><p>Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of \"hidden hearing loss\" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate. Animal studies to date have focused primarily on peripheral hearing measures to diagnose ribbon synapse loss, while suggesting binaural listening deficits such as speech-reception-in-noise result from this disorder, but haven't accounted for the possible regeneration of synapses. To address this, we measured binaural physiological and behavioral function, the latter utilizing the pre-pulse inhibition of acoustic startle method, in both male and female adult guinea pigs following exposure to noise that has been shown to induce cochlear synaptopathy. Physiological measurements extended to 2 months post noise exposure to characterize any deficit and subsequent recovery. While common audiological assessments showed temporary threshold shift, reduced evoked potential amplitudes indicative of synaptopathy and measurable binaural electrophysiological hearing deficits post exposure, all measures recovered by 2 months. Suspected regeneration of synaptic ribbons occurred by 2 months post exposure and cochlear histology revealed no synaptic loss 4 months post exposure. Our results show that the same noise exposure protocol demonstrated to cause synaptic loss in prior studies causes physiological binaural processing deficits in the brainstem and that the recovery of neural binaural processing coincides with the regeneration of synapses shown in previous studies and normal binaural hearing behavior.</p>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"456 ","pages":"109166"},"PeriodicalIF":2.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1016/j.heares.2024.109163
Anu Sabu, Dexter Irvine, David B Grayden, James Fallon
Originally reserved for those who are profoundly deaf, cochlear implantation is now common for people with partial hearing loss, particularly when combined with a hearing aid. This combined intervention enhances speech comprehension and sound quality when compared to electrical stimulation alone, particularly in noisy environments, but the physiological basis for the benefits is not well understood. Our long-term aim is to elucidate the underlying physiological mechanisms of this improvement, and as a first step in this process, we have investigated in normal hearing cats, the degree to which the patterns of neural activity evoked in the inferior colliculus (IC) by speech sounds in various levels of noise allows discrimination between those sounds. Neuronal responses were recorded simultaneously from 32 sites across the tonotopic axis of the IC in anaesthetised normal hearing cats (n = 7). Speech sounds were presented at 20, 40 and 60 dB SPL in quiet and with increasing levels of additive noise (signal-to-noise ratios (SNRs) -20, -15, -10, -5, 0, +5, +10, +15, +20 dB). Neural discrimination was assessed using a Euclidean measure of distance between neural responses, resulting in a function reflecting speech sound differentiation across various SNRs. Responses of IC neurons reliably encoded the speech stimuli when presented in quiet, with optimal performance when an analysis bin-width of 5-10 ms was used. Discrimination thresholds did not depend on stimulus level and were best for shorter analysis binwidths. This study sheds light on how the auditory midbrain represents speech sounds and provides baseline data with which responses to electro-acoustic speech sounds in partially deafened animals can be compared.
{"title":"Ensemble responses of auditory midbrain neurons in the cat to speech stimuli at different signal-to-noise ratios.","authors":"Anu Sabu, Dexter Irvine, David B Grayden, James Fallon","doi":"10.1016/j.heares.2024.109163","DOIUrl":"https://doi.org/10.1016/j.heares.2024.109163","url":null,"abstract":"<p><p>Originally reserved for those who are profoundly deaf, cochlear implantation is now common for people with partial hearing loss, particularly when combined with a hearing aid. This combined intervention enhances speech comprehension and sound quality when compared to electrical stimulation alone, particularly in noisy environments, but the physiological basis for the benefits is not well understood. Our long-term aim is to elucidate the underlying physiological mechanisms of this improvement, and as a first step in this process, we have investigated in normal hearing cats, the degree to which the patterns of neural activity evoked in the inferior colliculus (IC) by speech sounds in various levels of noise allows discrimination between those sounds. Neuronal responses were recorded simultaneously from 32 sites across the tonotopic axis of the IC in anaesthetised normal hearing cats (n = 7). Speech sounds were presented at 20, 40 and 60 dB SPL in quiet and with increasing levels of additive noise (signal-to-noise ratios (SNRs) -20, -15, -10, -5, 0, +5, +10, +15, +20 dB). Neural discrimination was assessed using a Euclidean measure of distance between neural responses, resulting in a function reflecting speech sound differentiation across various SNRs. Responses of IC neurons reliably encoded the speech stimuli when presented in quiet, with optimal performance when an analysis bin-width of 5-10 ms was used. Discrimination thresholds did not depend on stimulus level and were best for shorter analysis binwidths. This study sheds light on how the auditory midbrain represents speech sounds and provides baseline data with which responses to electro-acoustic speech sounds in partially deafened animals can be compared.</p>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"456 ","pages":"109163"},"PeriodicalIF":2.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1016/j.heares.2024.109164
Jongwoo Lim, Namkeun Kim, Yong-Jin Yoon
A comprehensive understanding of the effects of bone conduction (BC) input force is essential for elucidating BC hearing mechanisms. However, this area remains underexplored due to the inherent difficulties in controlling input forces when BC transducers are anchored to the bone. In this study, the effects of both unilateral and bilateral BC input forces were investigated using a three-dimensional finite element (FE) model of the human head, which allows precise manipulation of input forces. For unilateral input, 16 distinct directions were created by combining eight in-plane vectors with two tilt angles based on the normal direction of the input force location, and the resulting promontory velocities were compared. Although the magnitude differences between input directions remained within 10 dB, anti-resonance shifts were observed between 1 and 3 kHz. In the bilateral case, phase differences of 0°, 90°, and 180° were applied between input forces at the right and left mastoid positions, and basilar membrane velocities were compared to examine the complex interactions between input forces. These findings provide deeper insights into the effects of input force direction and phase on BC hearing, advancing the understanding of BC hearing mechanisms.
全面了解骨传导(BC)输入力的影响对于阐明BC听力机制至关重要。然而,由于骨传导传感器固定在骨头上时难以控制输入力,因此这一领域的研究仍然不足。在本研究中,我们使用可精确控制输入力的人体头部三维有限元(FE)模型研究了单侧和双侧 BC 输入力的影响。对于单侧输入,根据输入力位置的法线方向,将八个平面内矢量与两个倾斜角相结合,创建了 16 个不同的方向,并对由此产生的海角速度进行了比较。虽然输入方向之间的幅度差保持在 10 dB 以内,但在 1 至 3 kHz 之间观察到了反共振偏移。在双侧情况下,在左右乳突位置的输入力之间施加 0°、90° 和 180°的相位差,并比较基底膜速度,以检查输入力之间复杂的相互作用。这些发现深入揭示了输入力的方向和相位对基底膜听力的影响,有助于加深对基底膜听力机制的理解。
{"title":"Exploring the impact of force direction and phase on bone conduction hearing with bone conduction actuator.","authors":"Jongwoo Lim, Namkeun Kim, Yong-Jin Yoon","doi":"10.1016/j.heares.2024.109164","DOIUrl":"https://doi.org/10.1016/j.heares.2024.109164","url":null,"abstract":"<p><p>A comprehensive understanding of the effects of bone conduction (BC) input force is essential for elucidating BC hearing mechanisms. However, this area remains underexplored due to the inherent difficulties in controlling input forces when BC transducers are anchored to the bone. In this study, the effects of both unilateral and bilateral BC input forces were investigated using a three-dimensional finite element (FE) model of the human head, which allows precise manipulation of input forces. For unilateral input, 16 distinct directions were created by combining eight in-plane vectors with two tilt angles based on the normal direction of the input force location, and the resulting promontory velocities were compared. Although the magnitude differences between input directions remained within 10 dB, anti-resonance shifts were observed between 1 and 3 kHz. In the bilateral case, phase differences of 0°, 90°, and 180° were applied between input forces at the right and left mastoid positions, and basilar membrane velocities were compared to examine the complex interactions between input forces. These findings provide deeper insights into the effects of input force direction and phase on BC hearing, advancing the understanding of BC hearing mechanisms.</p>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"456 ","pages":"109164"},"PeriodicalIF":2.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.heares.2024.109151
Zeming Fu , Liping Zhao , Yingyuan Guo , Jingpu Yang
Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.
{"title":"Gene therapy for hereditary hearing loss","authors":"Zeming Fu , Liping Zhao , Yingyuan Guo , Jingpu Yang","doi":"10.1016/j.heares.2024.109151","DOIUrl":"10.1016/j.heares.2024.109151","url":null,"abstract":"<div><div>Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"455 ","pages":"Article 109151"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.heares.2024.109148
Po-Hsuan Wu , Wu-Chia Lo , Chih-Ming Chang , Po-Wen Cheng , Shing-Hwa Liu
Objectives
Currently, there are no approved therapeutics for noise-induced hearing loss (NIHL). Both oxidative stress and cochlear inflammation play important roles in the mechanism of NIHL. In this study, we evaluate the effect of D-methionine (D-met) and methylprednisolone (MP) on noise-induced hearing loss of guinea pigs.
Design
One hundred and thirty-two male guinea pigs were evenly divided into eleven groups: control, saline, MP (15, 30, 45 mg/kg), D-met (200, 400, 600 mg/kg), and combinations of MP (15, 30, 45 mg/kg) with D-met (200, 400, 600 mg/kg) in increasing doses. Sixty minutes following a 6-hour exposure to continuous broadband white noise at a sound pressure level of 105 ± 2 dB, treatments were given every 12 h over the course of 3 days. Click-evoked auditory brainstem responses were evaluated one day before and fourteen days after noise exposure. The animals in the combination group were sacrificed 14 days after noise exposure, and cochlear lateral wall Na+, K+-ATPase and Ca2+-ATPase activities, and lipid peroxidation (LPO) were evaluated.
Results
The mean permanent threshold shift (PTS) showed a dose-dependent rescue effect from low to high doses in both MP and D-met treatment groups. In the combination treatment groups, MP (45 mg/kg) with D-met (600 mg/kg) demonstrated a complete rescue response without a significant difference in PTS compared to the control group. The noise-induced decreases in Na+, K+-ATPase and Ca2+-ATPase activities demonstrated dose-dependent recoveries from the low to high dose combination groups. Specifically, the MP (45 mg/kg) with D-met (600 mg/kg) group achieved 84.8% and 95.5% recovery of Na+, K+-ATPase and Ca2+-ATPase activity levels, respectively, compared to the control group. The noise-induced increase in LPO levels exhibited dose-dependent alleviation from the low to high dose combination groups, showing only a 12.3% LPO increment in the MP (45 mg/kg) with D-met (600 mg/kg) group.
Conclusions
Noise-induced hearing loss was completely rescued in the MP (45 mg/kg) with D-met (600 mg/kg) treatment group. Significant decreases in cochlear lateral wall oxidative stress were demonstrated, along with the reversal of Na+, K+-ATPase and Ca2+-ATPase activity levels.
{"title":"The therapeutic effect and underlying biochemical mechanism of methylprednisolone and D-methionine in “rescuing” noise-induced hearing loss in guinea pigs","authors":"Po-Hsuan Wu , Wu-Chia Lo , Chih-Ming Chang , Po-Wen Cheng , Shing-Hwa Liu","doi":"10.1016/j.heares.2024.109148","DOIUrl":"10.1016/j.heares.2024.109148","url":null,"abstract":"<div><h3>Objectives</h3><div>Currently, there are no approved therapeutics for noise-induced hearing loss (NIHL). Both oxidative stress and cochlear inflammation play important roles in the mechanism of NIHL. In this study, we evaluate the effect of D-methionine (D-met) and methylprednisolone (MP) on noise-induced hearing loss of guinea pigs.</div></div><div><h3>Design</h3><div>One hundred and thirty-two male guinea pigs were evenly divided into eleven groups: control, saline, MP (15, 30, 45 mg/kg), D-met (200, 400, 600 mg/kg), and combinations of MP (15, 30, 45 mg/kg) with D-met (200, 400, 600 mg/kg) in increasing doses. Sixty minutes following a 6-hour exposure to continuous broadband white noise at a sound pressure level of 105 ± 2 dB, treatments were given every 12 h over the course of 3 days. Click-evoked auditory brainstem responses were evaluated one day before and fourteen days after noise exposure. The animals in the combination group were sacrificed 14 days after noise exposure, and cochlear lateral wall Na<sup>+</sup>, K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-ATPase activities, and lipid peroxidation (LPO) were evaluated.</div></div><div><h3>Results</h3><div>The mean permanent threshold shift (PTS) showed a dose-dependent rescue effect from low to high doses in both MP and D-met treatment groups. In the combination treatment groups, MP (45 mg/kg) with D-met (600 mg/kg) demonstrated a complete rescue response without a significant difference in PTS compared to the control group. The noise-induced decreases in Na<sup>+</sup>, K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-ATPase activities demonstrated dose-dependent recoveries from the low to high dose combination groups. Specifically, the MP (45 mg/kg) with D-met (600 mg/kg) group achieved 84.8% and 95.5% recovery of Na<sup>+</sup>, K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-ATPase activity levels, respectively, compared to the control group. The noise-induced increase in LPO levels exhibited dose-dependent alleviation from the low to high dose combination groups, showing only a 12.3% LPO increment in the MP (45 mg/kg) with D-met (600 mg/kg) group.</div></div><div><h3>Conclusions</h3><div>Noise-induced hearing loss was completely rescued in the MP (45 mg/kg) with D-met (600 mg/kg) treatment group. Significant decreases in cochlear lateral wall oxidative stress were demonstrated, along with the reversal of Na<sup>+</sup>, K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-ATPase activity levels.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"454 ","pages":"Article 109148"},"PeriodicalIF":2.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.heares.2024.109149
Meghan Graeca, Randy Kulesza
Paracetamol is an analgesic and antipyretic medication regarded as the safest over-the-counter pain and fever relief option during pregnancy. Paracetamol and its metabolites are known to reach the developing fetus through direct placental transfer and can cross the blood brain barrier. Several recent, large-scale epidemiologic studies suggest that in utero paracetamol exposure can increase the risk of neurodevelopmental conditions, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and developmental delay (DD). Since auditory processing deficits are a common feature of ASD, we hypothesized that animals exposed to paracetamol in utero will have impaired auditory brainstem function. We investigated this hypothesis by recording and analyzing click-evoked auditory brainstem responses (ABR) at postnatal day 21 and 29 in Sprague-Dawley rats. In utero exposure to high dose paracetamol exposure had no impact on body or brain weight. However, high dose paracetamol exposure did significantly delay ear opening and resulted in elevated ABR thresholds, and longer wave and interwave latencies. These changes in wave latency extended to the highest click intensity tested but were most severe near threshold. This data suggests that development and function of the auditory brainstem may be impacted by high dose paracetamol exposure and that simple, non-invasive tests of auditory function have utility as an early screening tool for neurodevelopmental disorders.
扑热息痛是一种镇痛和退烧药,被认为是孕期最安全的非处方止痛和退烧药。众所周知,扑热息痛及其代谢物可通过胎盘直接转移到达发育中的胎儿体内,并可穿过血脑屏障。最近的几项大规模流行病学研究表明,子宫内接触扑热息痛会增加患神经发育疾病的风险,包括自闭症谱系障碍(ASD)、注意缺陷多动障碍(ADHD)和发育迟缓(DD)。由于听觉处理缺陷是自闭症谱系障碍的常见特征,我们假设在子宫内暴露于扑热息痛的动物会出现听觉脑干功能受损。我们通过记录和分析 Sprague-Dawley 大鼠出生后第 21 天和第 29 天的点击诱发听性脑干反应(ABR)来研究这一假设。子宫内暴露于高剂量扑热息痛不会影响大鼠的体重或脑重。然而,接触高剂量扑热息痛确实会明显延迟耳朵张开的时间,并导致 ABR 阈值升高、波潜伏期和波间潜伏期延长。波潜伏期的这些变化延伸到测试的最高点击强度,但在阈值附近最为严重。这些数据表明,听觉脑干的发育和功能可能会受到接触高剂量扑热息痛的影响,而简单、无创的听觉功能测试可作为神经发育障碍的早期筛查工具。
{"title":"Impaired brainstem auditory evoked potentials after in utero exposure to high dose paracetamol exposure","authors":"Meghan Graeca, Randy Kulesza","doi":"10.1016/j.heares.2024.109149","DOIUrl":"10.1016/j.heares.2024.109149","url":null,"abstract":"<div><div>Paracetamol is an analgesic and antipyretic medication regarded as the safest over-the-counter pain and fever relief option during pregnancy. Paracetamol and its metabolites are known to reach the developing fetus through direct placental transfer and can cross the blood brain barrier. Several recent, large-scale epidemiologic studies suggest that <em>in utero</em> paracetamol exposure can increase the risk of neurodevelopmental conditions, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and developmental delay (DD). Since auditory processing deficits are a common feature of ASD, we hypothesized that animals exposed to paracetamol <em>in utero</em> will have impaired auditory brainstem function. We investigated this hypothesis by recording and analyzing click-evoked auditory brainstem responses (ABR) at postnatal day 21 and 29 in Sprague-Dawley rats. <em>In utero</em> exposure to high dose paracetamol exposure had no impact on body or brain weight. However, high dose paracetamol exposure did significantly delay ear opening and resulted in elevated ABR thresholds, and longer wave and interwave latencies. These changes in wave latency extended to the highest click intensity tested but were most severe near threshold. This data suggests that development and function of the auditory brainstem may be impacted by high dose paracetamol exposure and that simple, non-invasive tests of auditory function have utility as an early screening tool for neurodevelopmental disorders.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"454 ","pages":"Article 109149"},"PeriodicalIF":2.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.heares.2024.109150
Michael Nieratschker , Pavel Mistrik , Zdenek Petrasek , Erdem Yildiz , Anselm J. Gadenstaetter , Matthias Gerlitz , Anne-Margarethe Kramer , Monika Kwiatkowska , Susanne Braun , Reimar Schlingensiepen , Clemens Honeder , Christoph Arnoldner
Cochlear implant users with residual hearing benefit synergistically from combined electrical stimulation via the cochlear implant and preserved residual hearing after surgery. However, direct mechanical trauma and subsequent inflammation may deteriorate hearing function. AC102, a novel otoprotective pyridoindole with anti-apoptotic and anti-oxidative properties significantly improved hearing recovery following cochlear implantation when administered intratympanically prior to surgery. Additionally, AC102 exerts neurotrophic effects, possibly aiding in the preservation of auditory nerve fibers and spiral ganglion neurons. Rapid clearance of the drug, however, might be a limiting factor to further attenuate the inflammatory response and maintain neuronal health. The aim of the current study was to design an AC102-loaded electrode array for sustained drug delivery and investigate its effects in hearing preservation cochlear implantation.
First, the release-kinetics of AC102 were investigated in vitro and modelled by the Higuchi equation of drug release. An electrode array coated with 10 % AC102 was manufactured, its release kinetics evaluated, and subsequently tested in vivo. 20 normal hearing Mongolian gerbils were unilaterally implanted with an AC102-loaded or an unloaded control electrode. Compound action potentials were measured prior to cochlear implantation and serially over 28 days. Hair cells, inner hair cell synapses, and auditory nerve fibers were quantified in cochlear whole-mounts by immunofluorescence staining.
AC102 release from silicone coating could be predictably modelled by the Higuchi equation of drug release. The electrode array with an AC102-silicone depot enabled non-linear sustained drug release with initially higher release concentrations. In vivo, the AC102-loaded electrode array significantly recovered auditory threshold shifts near the maximum insertion depth over 28 days. In the apical region, a significant recovery was noticed only until day 14, after which threshold shifts aligned between groups. Histologically, AC102-loaded electrodes significantly preserved outer hair cells apical of the maximum insertion depth and inner hair cells and neuronal structures at the tip of the inserted electrode.
In conclusion, the drug-loaded electrode arrays could predictably release AC102 over a period of 28 days. AC102 enabled the restoration of auditory thresholds near the area of maximum insertion, which is the desired region to be preserved in cochlear implant recipients with residual hearing.
{"title":"Silicone-based AC102-loaded cochlear implant coatings protect residual hearing in an animal model of cochlear implantation","authors":"Michael Nieratschker , Pavel Mistrik , Zdenek Petrasek , Erdem Yildiz , Anselm J. Gadenstaetter , Matthias Gerlitz , Anne-Margarethe Kramer , Monika Kwiatkowska , Susanne Braun , Reimar Schlingensiepen , Clemens Honeder , Christoph Arnoldner","doi":"10.1016/j.heares.2024.109150","DOIUrl":"10.1016/j.heares.2024.109150","url":null,"abstract":"<div><div>Cochlear implant users with residual hearing benefit synergistically from combined electrical stimulation via the cochlear implant and preserved residual hearing after surgery. However, direct mechanical trauma and subsequent inflammation may deteriorate hearing function. AC102, a novel otoprotective pyridoindole with anti-apoptotic and anti-oxidative properties significantly improved hearing recovery following cochlear implantation when administered intratympanically prior to surgery. Additionally, AC102 exerts neurotrophic effects, possibly aiding in the preservation of auditory nerve fibers and spiral ganglion neurons. Rapid clearance of the drug, however, might be a limiting factor to further attenuate the inflammatory response and maintain neuronal health. The aim of the current study was to design an AC102-loaded electrode array for sustained drug delivery and investigate its effects in hearing preservation cochlear implantation.</div><div>First, the release-kinetics of AC102 were investigated <em>in vitro</em> and modelled by the Higuchi equation of drug release. An electrode array coated with 10 % AC102 was manufactured, its release kinetics evaluated, and subsequently tested <em>in vivo</em>. 20 normal hearing Mongolian gerbils were unilaterally implanted with an AC102-loaded or an unloaded control electrode. Compound action potentials were measured prior to cochlear implantation and serially over 28 days. Hair cells, inner hair cell synapses, and auditory nerve fibers were quantified in cochlear whole-mounts by immunofluorescence staining.</div><div>AC102 release from silicone coating could be predictably modelled by the Higuchi equation of drug release. The electrode array with an AC102-silicone depot enabled non-linear sustained drug release with initially higher release concentrations. <em>In vivo</em>, the AC102-loaded electrode array significantly recovered auditory threshold shifts near the maximum insertion depth over 28 days. In the apical region, a significant recovery was noticed only until day 14, after which threshold shifts aligned between groups. Histologically, AC102-loaded electrodes significantly preserved outer hair cells apical of the maximum insertion depth and inner hair cells and neuronal structures at the tip of the inserted electrode.</div><div>In conclusion, the drug-loaded electrode arrays could predictably release AC102 over a period of 28 days. AC102 enabled the restoration of auditory thresholds near the area of maximum insertion, which is the desired region to be preserved in cochlear implant recipients with residual hearing.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"454 ","pages":"Article 109150"},"PeriodicalIF":2.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1016/j.heares.2024.109147
Charlotte Bigras , Victoria Duda , Sylvie Hébert
Traditional psychoacoustic measures often lack accuracy in diagnosing hyperacusis and other sound tolerance disorders, possibly due to their reliance on artificial stimuli and unidimensional scales. The aim of this study was to assess loudness across sensory and affective dimensions using natural sounds, drawing on pain research wherein intensity and unpleasantness are assessed separately. We hypothesized that similar distinctions apply to loudness perception. A total of 102 young adults with normal to mild hearing loss rated 32 sound stimuli (pleasant, unpleasant, neutral, and artificial) at 10 intensities (40 to 100 dBA) on sensory and affective scales. They also completed the Hyperacusis Questionnaire, the Noise Sensitivity Scale, and the Hospital Anxiety and Depression Scale. Mixed linear models indicated both correlations and dissociations between scales that varied according to intensity and valence. Louder stimuli were rated as more unpleasant, but only at high intensities. On the sensory scale, sounds were perceived as louder with increasing intensity; however, at low to moderate intensities, pleasant and neutral sounds were rated as louder, whereas at higher intensities, artificial and unpleasant stimuli were rated as louder. On the affective scale, the perception of unpleasantness also increased with intensity, but less steeply. At high intensities, artificial stimuli were rated similarly to unpleasant stimuli. Noise sensitivity scores predicted louder and more unpleasant ratings, whereas depression scores were associated with softer and less pleasant perceptions. This study highlights the need for multidimensional approaches in audiology and suggests that the integration of sensory and affective scales with natural stimuli may improve the diagnosis and treatment of sound tolerance disorders.
{"title":"Sensory and affective dimensions in loudness perception: Insights from young adults","authors":"Charlotte Bigras , Victoria Duda , Sylvie Hébert","doi":"10.1016/j.heares.2024.109147","DOIUrl":"10.1016/j.heares.2024.109147","url":null,"abstract":"<div><div>Traditional psychoacoustic measures often lack accuracy in diagnosing hyperacusis and other sound tolerance disorders, possibly due to their reliance on artificial stimuli and unidimensional scales. The aim of this study was to assess loudness across sensory and affective dimensions using natural sounds, drawing on pain research wherein intensity and unpleasantness are assessed separately. We hypothesized that similar distinctions apply to loudness perception. A total of 102 young adults with normal to mild hearing loss rated 32 sound stimuli (pleasant, unpleasant, neutral, and artificial) at 10 intensities (40 to 100 dBA) on sensory and affective scales. They also completed the Hyperacusis Questionnaire, the Noise Sensitivity Scale, and the Hospital Anxiety and Depression Scale. Mixed linear models indicated both correlations and dissociations between scales that varied according to intensity and valence. Louder stimuli were rated as more unpleasant, but only at high intensities. On the sensory scale, sounds were perceived as louder with increasing intensity; however, at low to moderate intensities, pleasant and neutral sounds were rated as louder, whereas at higher intensities, artificial and unpleasant stimuli were rated as louder. On the affective scale, the perception of unpleasantness also increased with intensity, but less steeply. At high intensities, artificial stimuli were rated similarly to unpleasant stimuli. Noise sensitivity scores predicted louder and more unpleasant ratings, whereas depression scores were associated with softer and less pleasant perceptions. This study highlights the need for multidimensional approaches in audiology and suggests that the integration of sensory and affective scales with natural stimuli may improve the diagnosis and treatment of sound tolerance disorders.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"454 ","pages":"Article 109147"},"PeriodicalIF":2.5,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.heares.2024.109137
George W.S. Burwood , Tianying Ren , Alfred L. Nuttall , Anders Fridberger
Low-frequency hearing is critically important for speech and music perception. However, technical and anatomical limitations previously made it difficult to study the mechanics of the low-frequency parts of the cochlea, but this changed with the introduction of optical coherence tomography vibrometry. With this technique, sound-evoked vibration can be measured from the apex of a fully intact cochlea. Results of such measurements generated controversy because conventional traveling waves, the hallmark of which is longer group delay closer to the helicotrema, were absent within the apical 20% of the guinea pig cochlea (Burwood et al, Science Advances 8:eabq2773, 2022). The validity of this result was questioned, primarily because group delays were calculated from phase values averaged across many points within the organ of Corti. Here we show that variations in phase across the organ of Corti are minor and does not affect the group delay significantly. We also assess the precision of phase measurements with optical coherence tomography. An artificial target with reflectivity similar to the organ of Corti was used. These measurements revealed that a commonly used commercial optical coherence tomography system produces half-cycle errors in 1-5 % of pixels, leading to a bimodal distribution of phase values. This problem can be easily addressed by using medians when computing averages, as was done by Burwood et al (2022). Hence, neither averaging across pixels nor technical factors can explain the apparent lack of conventional traveling waves at the apex of the guinea pig cochlea at low stimulus levels. The physiological mechanisms that operate at the apex apparently differ from other cochlear regions.
{"title":"On the phase consistency of apical organ of Corti vibrations","authors":"George W.S. Burwood , Tianying Ren , Alfred L. Nuttall , Anders Fridberger","doi":"10.1016/j.heares.2024.109137","DOIUrl":"10.1016/j.heares.2024.109137","url":null,"abstract":"<div><div>Low-frequency hearing is critically important for speech and music perception. However, technical and anatomical limitations previously made it difficult to study the mechanics of the low-frequency parts of the cochlea, but this changed with the introduction of optical coherence tomography vibrometry. With this technique, sound-evoked vibration can be measured from the apex of a fully intact cochlea. Results of such measurements generated controversy because conventional traveling waves, the hallmark of which is longer group delay closer to the helicotrema, were absent within the apical 20% of the guinea pig cochlea (Burwood <em>et al</em>, Science Advances 8:eabq2773, 2022). The validity of this result was questioned, primarily because group delays were calculated from phase values averaged across many points within the organ of Corti. Here we show that variations in phase across the organ of Corti are minor and does not affect the group delay significantly. We also assess the precision of phase measurements with optical coherence tomography. An artificial target with reflectivity similar to the organ of Corti was used. These measurements revealed that a commonly used commercial optical coherence tomography system produces half-cycle errors in 1-5 % of pixels, leading to a bimodal distribution of phase values. This problem can be easily addressed by using medians when computing averages, as was done by Burwood <em>et al</em> (2022). Hence, neither averaging across pixels nor technical factors can explain the apparent lack of conventional traveling waves at the apex of the guinea pig cochlea at low stimulus levels. The physiological mechanisms that operate at the apex apparently differ from other cochlear regions.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"454 ","pages":"Article 109137"},"PeriodicalIF":2.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}