Pub Date : 2024-07-05DOI: 10.1016/j.heares.2024.109076
Tine Arras , An Boudewyns , Ingeborg Dhooge , Andrzej Zarowski , Birgit Philips , Christian Desloovere , Jan Wouters , Astrid van Wieringen
As part of a longitudinal study regarding the benefit of early cochlear implantation for children with single-sided deafness, the current work explored the children's daily device use, potential barriers to full-time device use, and the children's ability to understand speech with the cochlear implant (CI). Data were collected from 20 children with prelingual SSD who received a CI before the age of 2.5 years, from the initial activation of the sound processor until the children were 4.8 to 11.0 years old. Daily device use was extracted from the CI's data logging, while word perception in quiet was assessed using direct audio input to the children's sound processor. The children's caregivers completed a questionnaire about habits, motivations, and barriers to device use.
The children with SSD and a CI used their device on average 8.3 h per day, corresponding to 63 % of their time spent awake. All children except one could understand speech through the CI, with an average score of 59 % on a closed-set test and 73 % on an open-set test. More device use was associated with higher speech perception scores. Parents were happy with their decision to pursue a CI for their child. Certain habits, like taking off the sound processor during illness, were associated with lower device use. Providing timely counselling to the children's parents, focused on SSD-specific challenges, may be helpful to improve daily device use in these children.
作为一项关于单侧耳聋儿童早期植入人工耳蜗的益处的纵向研究的一部分,本研究探讨了儿童的日常设备使用情况、全日制设备使用的潜在障碍以及儿童使用人工耳蜗(CI)理解语言的能力。我们收集了 20 名在 2.5 岁前接受 CI 的舌前 SSD 儿童的数据,这些儿童从最初激活声音处理器到 4.8 至 11.0 岁。从人工耳蜗的数据记录中提取了设备的日常使用情况,同时使用直接输入到儿童声音处理器的音频对安静环境中的字词感知进行了评估。患有 SSD 并配有 CI 的儿童平均每天使用设备 8.3 小时,相当于其清醒时间的 63%。除一名儿童外,所有儿童都能通过 CI 理解语音,在封闭集测试中的平均得分为 59%,在开放集测试中的平均得分为 73%。使用设备越多,语言感知得分越高。家长们对为孩子安装人工耳蜗的决定感到满意。某些习惯(如生病时关闭声音处理器)与设备使用率较低有关。为儿童的父母提供及时的辅导,重点关注额外听力障碍的具体挑战,可能有助于提高这些儿童的日常设备使用率。
{"title":"Duration of cochlear implant use in children with prelingual single-sided deafness is a predictor of word perception in the CI ear","authors":"Tine Arras , An Boudewyns , Ingeborg Dhooge , Andrzej Zarowski , Birgit Philips , Christian Desloovere , Jan Wouters , Astrid van Wieringen","doi":"10.1016/j.heares.2024.109076","DOIUrl":"https://doi.org/10.1016/j.heares.2024.109076","url":null,"abstract":"<div><p>As part of a longitudinal study regarding the benefit of early cochlear implantation for children with single-sided deafness, the current work explored the children's daily device use, potential barriers to full-time device use, and the children's ability to understand speech with the cochlear implant (CI). Data were collected from 20 children with prelingual SSD who received a CI before the age of 2.5 years, from the initial activation of the sound processor until the children were 4.8 to 11.0 years old. Daily device use was extracted from the CI's data logging, while word perception in quiet was assessed using direct audio input to the children's sound processor. The children's caregivers completed a questionnaire about habits, motivations, and barriers to device use.</p><p>The children with SSD and a CI used their device on average 8.3 h per day, corresponding to 63 % of their time spent awake. All children except one could understand speech through the CI, with an average score of 59 % on a closed-set test and 73 % on an open-set test. More device use was associated with higher speech perception scores. Parents were happy with their decision to pursue a CI for their child. Certain habits, like taking off the sound processor during illness, were associated with lower device use. Providing timely counselling to the children's parents, focused on SSD-specific challenges, may be helpful to improve daily device use in these children.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109076"},"PeriodicalIF":2.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.heares.2024.109074
Geo Kartheiser , Kayla Cormier , Don Bell-Souder , Matthew Dye , Anu Sharma
Many children with profound hearing loss have received cochlear implants (CI) to help restore some sense of hearing. There is, however, limited research on long-term neurocognitive outcomes in young adults who have grown up hearing through a CI. This study compared the cognitive outcomes of early-implanted (n = 20) and late-implanted (n = 21) young adult CI users, and typically hearing (TH) controls (n=56), all of whom were enrolled in college. Cognitive fluidity, nonverbal intelligence, and American Sign Language (ASL) comprehension were assessed, revealing no significant differences in cognition and nonverbal intelligence between the early and late-implanted groups. However, there was a difference in ASL comprehension, with the late-implanted group having significantly higher ASL comprehension. Although young adult CI users showed significantly lower scores in a working memory and processing speed task than TH age-matched controls, there were no significant differences in tasks involving executive function shifting, inhibitory control, and episodic memory between young adult CI and young adult TH participants. In an exploratory analysis of a subset of CI participants (n = 17) in whom we were able to examine crossmodal plasticity, we saw greater evidence of crossmodal recruitment from the visual system in late-implanted compared with early-implanted CI young adults. However, cortical visual evoked potential latency biomarkers of crossmodal plasticity were not correlated with cognitive measures or ASL comprehension. The results suggest that in the late-implanted CI users, early access to sign language may have served as a scaffold for appropriate cognitive development, while in the early-implanted group early access to oral language benefited cognitive development. Furthermore, our results suggest that the persistence of crossmodal neuroplasticity into adulthood does not necessarily impact cognitive development. In conclusion, early access to language – spoken or signed – may be important for cognitive development, with no observable effect of crossmodal plasticity on cognitive outcomes.
许多患有深度听力损失的儿童都接受了人工耳蜗植入(CI),以帮助他们恢复一定程度的听觉。然而,对通过 CI 获得听力的年轻成人的长期神经认知结果的研究却很有限。本研究比较了早期植入(20 人)和晚期植入(21 人)的年轻成年 CI 使用者与典型听力(TH)对照组(56 人)的认知结果,所有这些人都在大学就读。对认知流畅性、非语言智能和美国手语(ASL)理解能力进行了评估,结果显示早期植入组和晚期植入组在认知和非语言智能方面没有显著差异。然而,美国手语(ASL)的理解能力存在差异,晚植入组的美国手语(ASL)理解能力明显较高。虽然年轻的成年 CI 使用者在工作记忆和处理速度任务中的得分明显低于与 TH 年龄匹配的对照组,但在涉及执行功能转移、抑制控制和外显记忆的任务中,年轻的成年 CI 参与者和年轻的成年 TH 参与者之间没有明显差异。在对能够检查跨模态可塑性的一部分 CI 参与者(n = 17)进行的探索性分析中,我们发现与早期植入 CI 的年轻人相比,晚期植入 CI 的年轻人视觉系统的跨模态招募证据更多。然而,皮层视觉诱发电位潜伏期的跨模态可塑性生物标记与认知测量或 ASL 理解能力并不相关。这些结果表明,在晚期植入 CI 的使用者中,早期接触手语可能是适当认知发展的支架,而在早期植入 CI 的群体中,早期接触口语则有利于认知发展。此外,我们的研究结果表明,跨模态神经可塑性持续到成年并不一定会影响认知发展。总之,早期接触语言--口语或手语--可能对认知发展很重要,而跨模态可塑性对认知结果没有明显影响。
{"title":"Neurocognitive outcomes in young adults with cochlear implants: The role of early language access and crossmodal plasticity","authors":"Geo Kartheiser , Kayla Cormier , Don Bell-Souder , Matthew Dye , Anu Sharma","doi":"10.1016/j.heares.2024.109074","DOIUrl":"10.1016/j.heares.2024.109074","url":null,"abstract":"<div><p>Many children with profound hearing loss have received cochlear implants (CI) to help restore some sense of hearing. There is, however, limited research on long-term neurocognitive outcomes in young adults who have grown up hearing through a CI. This study compared the cognitive outcomes of early-implanted (n = 20) and late-implanted (n = 21) young adult CI users, and typically hearing (TH) controls (n=56), all of whom were enrolled in college. Cognitive fluidity, nonverbal intelligence, and American Sign Language (ASL) comprehension were assessed, revealing no significant differences in cognition and nonverbal intelligence between the early and late-implanted groups. However, there was a difference in ASL comprehension, with the late-implanted group having significantly higher ASL comprehension. Although young adult CI users showed significantly lower scores in a working memory and processing speed task than TH age-matched controls, there were no significant differences in tasks involving executive function shifting, inhibitory control, and episodic memory between young adult CI and young adult TH participants. In an exploratory analysis of a subset of CI participants (n = 17) in whom we were able to examine crossmodal plasticity, we saw greater evidence of crossmodal recruitment from the visual system in late-implanted compared with early-implanted CI young adults. However, cortical visual evoked potential latency biomarkers of crossmodal plasticity were not correlated with cognitive measures or ASL comprehension. The results suggest that in the late-implanted CI users, early access to sign language may have served as a scaffold for appropriate cognitive development, while in the early-implanted group early access to oral language benefited cognitive development. Furthermore, our results suggest that the persistence of crossmodal neuroplasticity into adulthood does not necessarily impact cognitive development. In conclusion, early access to language – spoken or signed – may be important for cognitive development, with no observable effect of crossmodal plasticity on cognitive outcomes.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"451 ","pages":"Article 109074"},"PeriodicalIF":2.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.heares.2024.109075
Niyazi O. Arslan, Xin Luo
Contemporary cochlear implants (CIs) use cathodic-leading symmetric biphasic (C-BP) pulses for electrical stimulation. It remains unclear whether asymmetric pulses emphasizing the anodic or cathodic phase may improve spectral and temporal coding with CIs. This study tested place- and temporal-pitch sensitivity with C-BP, anodic-centered triphasic (A-TP), and cathodic-centered triphasic (C-TP) pulse trains on apical, middle, and basal electrodes in 10 implanted ears. Virtual channel ranking (VCR) thresholds (for place-pitch sensitivity) were measured at both a low and a high pulse rate of 99 (Experiment 1) and 1000 (Experiment 2) pulses per second (pps), and amplitude modulation frequency ranking (AMFR) thresholds (for temporal-pitch sensitivity) were measured at a 1000-pps pulse rate in Experiment 3. All stimuli were presented in monopolar mode. Results of all experiments showed that detection thresholds, most comfortable levels (MCLs), VCR thresholds, and AMFR thresholds were higher on more basal electrodes. C-BP pulses had longer active phase duration and thus lower detection thresholds and MCLs than A-TP and C-TP pulses. Compared to C-TP pulses, A-TP pulses had lower detection thresholds at the 99-pps but not the 1000-pps pulse rate, and had lower MCLs at both pulse rates. A-TP pulses led to lower VCR thresholds than C-BP pulses, and in turn than C-TP pulses, at the 1000-pps pulse rate. However, pulse shape did not affect VCR thresholds at the 99-pps pulse rate (possibly due to the fixed temporal pitch) or AMFR thresholds at the 1000-pps pulse rate (where the overall high performance may have reduced the changes with different pulse shapes). Notably, stronger polarity effect on VCR thresholds (or more improvement in VCR with A-TP than with C-TP pulses) at the 1000-pps pulse rate was associated with stronger polarity effect on detection thresholds at the 99-pps pulse rate (consistent with more degeneration of auditory nerve peripheral processes). The results suggest that A-TP pulses may improve place-pitch sensitivity or spectral coding for CI users, especially in situations with peripheral process degeneration.
{"title":"Effects of pulse shape on pitch sensitivity of cochlear implant users","authors":"Niyazi O. Arslan, Xin Luo","doi":"10.1016/j.heares.2024.109075","DOIUrl":"10.1016/j.heares.2024.109075","url":null,"abstract":"<div><p>Contemporary cochlear implants (CIs) use cathodic-leading symmetric biphasic (C-BP) pulses for electrical stimulation. It remains unclear whether asymmetric pulses emphasizing the anodic or cathodic phase may improve spectral and temporal coding with CIs. This study tested place- and temporal-pitch sensitivity with C-BP, anodic-centered triphasic (A-TP), and cathodic-centered triphasic (C-TP) pulse trains on apical, middle, and basal electrodes in 10 implanted ears. Virtual channel ranking (VCR) thresholds (for place-pitch sensitivity) were measured at both a low and a high pulse rate of 99 (Experiment 1) and 1000 (Experiment 2) pulses per second (pps), and amplitude modulation frequency ranking (AMFR) thresholds (for temporal-pitch sensitivity) were measured at a 1000-pps pulse rate in Experiment 3. All stimuli were presented in monopolar mode. Results of all experiments showed that detection thresholds, most comfortable levels (MCLs), VCR thresholds, and AMFR thresholds were higher on more basal electrodes. C-BP pulses had longer active phase duration and thus lower detection thresholds and MCLs than A-TP and C-TP pulses. Compared to C-TP pulses, A-TP pulses had lower detection thresholds at the 99-pps but not the 1000-pps pulse rate, and had lower MCLs at both pulse rates. A-TP pulses led to lower VCR thresholds than C-BP pulses, and in turn than C-TP pulses, at the 1000-pps pulse rate. However, pulse shape did not affect VCR thresholds at the 99-pps pulse rate (possibly due to the fixed temporal pitch) or AMFR thresholds at the 1000-pps pulse rate (where the overall high performance may have reduced the changes with different pulse shapes). Notably, stronger polarity effect on VCR thresholds (or more improvement in VCR with A-TP than with C-TP pulses) at the 1000-pps pulse rate was associated with stronger polarity effect on detection thresholds at the 99-pps pulse rate (consistent with more degeneration of auditory nerve peripheral processes). The results suggest that A-TP pulses may improve place-pitch sensitivity or spectral coding for CI users, especially in situations with peripheral process degeneration.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109075"},"PeriodicalIF":2.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.heares.2024.109072
Essence DeVine Williams , María Eulalia Rubio
There is controversy regarding the association and etiopathogenesis of diabetes mellitus (DM) and sensorineural hearing loss (SNHL). Some studies support that SNHL develops because of angiopathy and/or neuropathy caused by DM, but many of the findings have been inconsistent. This review aims to highlight a select number of studies that effectively describe the relationship between DM and SNHL, thus bringing more attention and awareness to this area of research. This review also describes animal models to understand better the mechanisms of DM contributing to SNHL in the inner ear. The goal of this narrative review is for researchers and healthcare professionals to further their understanding and investigation of the etiopathogenesis of both DM and SNHL, therefore leading to the development of effective treatments for diabetic patients displaying symptoms of SNHL.
{"title":"Associations between diabetes mellitus and sensorineural hearing loss from humans and animal studies","authors":"Essence DeVine Williams , María Eulalia Rubio","doi":"10.1016/j.heares.2024.109072","DOIUrl":"10.1016/j.heares.2024.109072","url":null,"abstract":"<div><p>There is controversy regarding the association and etiopathogenesis of diabetes mellitus (DM) and sensorineural hearing loss (SNHL). Some studies support that SNHL develops because of angiopathy and/or neuropathy caused by DM, but many of the findings have been inconsistent. This review aims to highlight a select number of studies that effectively describe the relationship between DM and SNHL, thus bringing more attention and awareness to this area of research. This review also describes animal models to understand better the mechanisms of DM contributing to SNHL in the inner ear. The goal of this narrative review is for researchers and healthcare professionals to further their understanding and investigation of the etiopathogenesis of both DM and SNHL, therefore leading to the development of effective treatments for diabetic patients displaying symptoms of SNHL.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109072"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.heares.2024.109071
Ashley L. Schormans, Brian L. Allman
Following adult-onset hearing impairment, crossmodal plasticity can occur within various sensory cortices, often characterized by increased neural responses to visual stimulation in not only the auditory cortex, but also in the visual and audiovisual cortices. In the present study, we used an established model of loud noise exposure in rats to examine, for the first time, whether the crossmodal plasticity in the audiovisual cortex that occurs following a relatively mild degree of hearing loss emerges solely from altered intracortical processing or if thalamocortical changes also contribute to the crossmodal effects. Using a combination of an established pharmacological ‘cortical silencing’ protocol and current source density analysis of the laminar activity recorded across the layers of the audiovisual cortex (i.e., the lateral extrastriate visual cortex, V2L), we observed layer-specific changes post-silencing in the strength of the residual visual, but not auditory, input in the noise exposed rats with mild hearing loss compared to rats with normal hearing. Furthermore, based on a comparison of the laminar profiles pre- versus post-silencing in both groups, we can conclude that noise exposure caused a re-allocation of the strength of visual inputs across the layers of the V2L cortex, including enhanced visual-evoked activity in the granular layer; findings consistent with thalamocortical plasticity. Finally, we confirmed that audiovisual integration within the V2L cortex depends on intact processing within intracortical circuits, and that this form of multisensory processing is vulnerable to disruption by noise-induced hearing loss. Ultimately, the present study furthers our understanding of the contribution of intracortical and thalamocortical processing to crossmodal plasticity as well as to audiovisual integration under both normal and mildly-impaired hearing conditions.
{"title":"Layer-specific enhancement of visual-evoked activity in the audiovisual cortex following a mild degree of hearing loss in adult rats","authors":"Ashley L. Schormans, Brian L. Allman","doi":"10.1016/j.heares.2024.109071","DOIUrl":"10.1016/j.heares.2024.109071","url":null,"abstract":"<div><p>Following adult-onset hearing impairment, crossmodal plasticity can occur within various sensory cortices, often characterized by increased neural responses to visual stimulation in not only the auditory cortex, but also in the visual and audiovisual cortices. In the present study, we used an established model of loud noise exposure in rats to examine, for the first time, whether the crossmodal plasticity in the audiovisual cortex that occurs following a relatively mild degree of hearing loss emerges solely from altered intracortical processing or if thalamocortical changes also contribute to the crossmodal effects. Using a combination of an established pharmacological ‘cortical silencing’ protocol and current source density analysis of the laminar activity recorded across the layers of the audiovisual cortex (i.e., the lateral extrastriate visual cortex, V2L), we observed layer-specific changes post-silencing in the strength of the residual visual, but not auditory, input in the noise exposed rats with mild hearing loss compared to rats with normal hearing. Furthermore, based on a comparison of the laminar profiles pre- versus post-silencing in both groups, we can conclude that noise exposure caused a re-allocation of the strength of visual inputs across the layers of the V2L cortex, including enhanced visual-evoked activity in the granular layer; findings consistent with thalamocortical plasticity. Finally, we confirmed that audiovisual integration within the V2L cortex depends on intact processing within intracortical circuits, and that this form of multisensory processing is vulnerable to disruption by noise-induced hearing loss. Ultimately, the present study furthers our understanding of the contribution of intracortical and thalamocortical processing to crossmodal plasticity as well as to audiovisual integration under both normal and mildly-impaired hearing conditions.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109071"},"PeriodicalIF":2.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524001242/pdfft?md5=b7b80c1adb567143d0b47cde57a44d46&pid=1-s2.0-S0378595524001242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1016/j.heares.2024.109047
Chonglin Guan , Muhammad Shaikh , Athanasia Warnecke , Barbara Vona , Joerg T Albert
Hearing impairment is the most prevalent sensory disease in humans and can have dramatic effects on the development, and preservation, of our cognitive abilities and social interactions. Currently 20 % of the world's population suffer from a form of hearing impairment; this is predicted to rise to 25 % by 2050. Despite this staggering disease load, and the vast damage it inflicts on the social, medical and economic fabric of humankind, our ability to predict, or prevent, the loss of hearing is very poor indeed. We here make the case for a paradigm shift in our approach to studying deafness. By exploiting more forcefully the molecular-genetic conservation between human hearing and hearing in morphologically distinct models, such as the fruit fly Drosophila melanogaster, we believe, a deeper understanding of hearing and deafness can be achieved. An understanding that moves beyond the surface of the ‘deafness genes’ to probe the underlying bedrock of hearing, which is shared across taxa, and partly shared across modalities. When it comes to understanding the workings (and failings) of human sensory function, a simple fruit fly has a lot to offer and a fly eye might sometimes be a powerful model for a human ear. Particularly the use of fly avatars, in which specific molecular (genetic or proteomic) states of humans (e.g. specific patients) are experimentally reproduced, in order to study the corresponding molecular mechanisms (e.g. specific diseases) in a controlled yet naturalistic environment, is a tool that promises multiple unprecedented insights. The use of the fly – and fly avatars – would benefit humans and will help enhance the power of other scientific models, such as the mouse.
{"title":"A burden shared: The evolutionary case for studying human deafness in Drosophila","authors":"Chonglin Guan , Muhammad Shaikh , Athanasia Warnecke , Barbara Vona , Joerg T Albert","doi":"10.1016/j.heares.2024.109047","DOIUrl":"10.1016/j.heares.2024.109047","url":null,"abstract":"<div><p>Hearing impairment is the most prevalent sensory disease in humans and can have dramatic effects on the development, and preservation, of our cognitive abilities and social interactions. Currently 20 % of the world's population suffer from a form of hearing impairment; this is predicted to rise to 25 % by 2050. Despite this staggering disease load, and the vast damage it inflicts on the social, medical and economic fabric of humankind, our ability to predict, or prevent, the loss of hearing is very poor indeed. We here make the case for a paradigm shift in our approach to studying deafness. By exploiting more forcefully the molecular-genetic conservation between human hearing and hearing in morphologically distinct models, such as the fruit fly <em>Drosophila melanogaster</em>, we believe, a deeper understanding of hearing and deafness can be achieved. An understanding that moves beyond the surface of the ‘deafness genes’ to probe the underlying bedrock of hearing, which is shared across taxa, and partly shared across modalities. When it comes to understanding the workings (and failings) of human sensory function, a simple fruit fly has a lot to offer and a fly eye might sometimes be a powerful model for a human ear. Particularly the use of <em>fly avatars</em>, in which specific molecular (genetic or proteomic) states of humans (e.g. specific patients) are experimentally reproduced, in order to study the corresponding molecular mechanisms (e.g. specific diseases) in a controlled yet naturalistic environment, is a tool that promises multiple unprecedented insights. The use of the fly – and fly avatars – would benefit humans and will help enhance the power of other scientific models, such as the mouse.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109047"},"PeriodicalIF":2.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037859552400100X/pdfft?md5=7d4cc85610845043f3fdfac5e126541f&pid=1-s2.0-S037859552400100X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.heares.2024.109069
William G. Kronenberger , Irina Castellanos , David B. Pisoni
Spoken language development after pediatric cochlear implantation requires rapid and efficient processing of novel, degraded auditory signals and linguistic information. These demands for rapid adaptation tax the information processing speed ability of children who receive cochlear implants. This study investigated the association of speed of information processing ability with spoken language outcomes after cochlear implantation in prelingually deaf children aged 4–6 years. Two domain-general (visual, non-linguistic) speed of information processing measures were administered to 21 preschool-aged children with cochlear implants and 23 normal-hearing peers. Measures of speech recognition, language (vocabulary and comprehension), nonverbal intelligence, and executive functioning skills were also obtained from each participant. Speed of information processing was positively associated with speech recognition and language skills in preschool-aged children with cochlear implants but not in normal-hearing peers. This association remained significant after controlling for hearing group, age, nonverbal intelligence, and executive functioning skills. These findings are consistent with models suggesting that domain-general, fast-efficient information processing speed underlies adaptation to speech perception and language learning following implantation. Assessment and intervention strategies targeting speed of information processing may provide better understanding and development of speech-language skills after cochlear implantation.
{"title":"Association of domain-general speed of information processing with spoken language outcomes in prelingually-deaf children with cochlear implants","authors":"William G. Kronenberger , Irina Castellanos , David B. Pisoni","doi":"10.1016/j.heares.2024.109069","DOIUrl":"10.1016/j.heares.2024.109069","url":null,"abstract":"<div><p>Spoken language development after pediatric cochlear implantation requires rapid and efficient processing of novel, degraded auditory signals and linguistic information. These demands for rapid adaptation tax the information processing speed ability of children who receive cochlear implants. This study investigated the association of speed of information processing ability with spoken language outcomes after cochlear implantation in prelingually deaf children aged 4–6 years. Two domain-general (visual, non-linguistic) speed of information processing measures were administered to 21 preschool-aged children with cochlear implants and 23 normal-hearing peers. Measures of speech recognition, language (vocabulary and comprehension), nonverbal intelligence, and executive functioning skills were also obtained from each participant. Speed of information processing was positively associated with speech recognition and language skills in preschool-aged children with cochlear implants but not in normal-hearing peers. This association remained significant after controlling for hearing group, age, nonverbal intelligence, and executive functioning skills. These findings are consistent with models suggesting that domain-general, fast-efficient information processing speed underlies adaptation to speech perception and language learning following implantation. Assessment and intervention strategies targeting speed of information processing may provide better understanding and development of speech-language skills after cochlear implantation.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109069"},"PeriodicalIF":2.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141411736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (p < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.
胆碱能信号对于介导听觉脉冲前抑制(PPI)至关重要,PPI 是感觉运动门控的一种操作性测量方法,指的是在声学惊吓刺激(ASR)开始之前出现低强度、非惊吓性声学刺激(脉冲前抑制)时,声学惊吓反射(ASR)的减弱。耳蜗根神经元(CRNs)是 ASR 回路中最先接收到来自梯形体腹侧核非耳蜗神经元胆碱能输入的细胞,并随后降低其神经元活动以对听觉预脉冲做出反应。然而,VNTB-CRNs通路对PPI的中介作用尚未完全阐明。在本研究中,我们使用免疫毒素抗胆碱乙酰转移酶(ChAT)-saporin以及电解损伤内侧耳蜗束来选择性地消除胆碱能VNTB神经元,然后评估ASR和PPI范式。逆行追踪实验精确确定了投射到CRN的VNTB神经元的病变部位。此外,还通过听觉脑反应测试、ChAT和FOS免疫组化评估了VNTB病变的影响和听觉通路的完整性。因此,我们设立了三个实验组:1)完好无损的对照组大鼠(未受损伤);2)双侧耳蜗束损伤的大鼠(OCB-受损);3)双侧耳蜗束和 VNTB 均受免疫损伤的大鼠(OCB/VNTB-受损)。所有实验组都在病变前和病变后 7、14 和 21 天的几个刺激间期进行了 ASR 和 PPI 测试。我们的结果表明,所有实验组的 ASR 振幅在病变前后均未受到影响,这表明 VNTB 对 ASR 没有贡献。在各评估时间点上,对照组和 OCB 病损组的 PPI 百分比均有所增加,而 OCB/VNTB 病损组的 PPI 百分比则没有增加。在 50 ms 的 ISI 时,OCB 缺损组的%PPI 显著增加(p < 0.01),而 OCB/VNTB 缺损组没有出现这种情况。因此,OCB/VNTB 缺损组中胆碱能非耳蜗神经元的消融表明,这些神经元通过其向 CRN 的胆碱能投射,在 50 ms ISI 时对听觉 PPI 的调解做出了贡献。我们的研究有力地证实了这一观点,即听觉 PPI 包含一种自上而下的胆碱能调节的复杂机制,可在多个通路中有效地减弱不同刺激间期的 ASR。
{"title":"The role of the Ventral Nucleus of the Trapezoid Body in the auditory prepulse inhibition of the acoustic startle reflex","authors":"N.O. Barioni , R.S. Beduschi , A.V. da Silva , M.G. Martins , C.C.D. Almeida-Francia , S.A. Rodrigues , D.E. López , R. Gómez-Nieto , J.A.C. Horta-Júnior","doi":"10.1016/j.heares.2024.109070","DOIUrl":"10.1016/j.heares.2024.109070","url":null,"abstract":"<div><p>Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (<em>p</em> < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109070"},"PeriodicalIF":2.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141405053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.heares.2024.109068
R.Z. Alemu , J. Gorodensky , S. Gill , S.L. Cushing , B.C. Papsin , K.A. Gordon
Background & rationale
In prior work using non-speech stimuli, children with hearing loss show impaired perception of binaural cues and no significant change in cortical responses to bilateral versus unilateral stimulation. Aims of the present study were to: 1) identify bilateral responses to envelope and spectral components of a speech syllable using the frequency-following response (FFR), 2) determine if abnormalities in the bilateral FFR occur in children with hearing loss, and 3) assess functional consequences of abnormal bilateral FFR responses on perception of binaural timing cues.
Methods
A single-syllable speech stimulus (/dα/) was presented to each ear individually and bilaterally. Participants were 9 children with normal hearing (MAge = 12.1 ± 2.5 years) and 6 children with bilateral hearing loss who were experienced bilateral hearing aid users (MAge = 14.0 ± 2.6 years). FFR temporal and spectral peak amplitudes were compared between listening conditions and groups using linear mixed model regression analyses. Behavioral sensitivity to binaural cues were measured by lateralization responses as coming from the right or left side of the head.
Results
Both temporal and spectral peaks in FFR responses increased in amplitude in the bilateral compared to unilateral listening conditions in children with normal hearing. These measures of “bilateral advantage” were reduced in the group of children with bilateral hearing loss and associated with decreased sensitivity to interaural timing differences.
Conclusion
This study is the first to show that bilateral responses in both temporal and spectral domains can be measured in children using the FFR and is altered in children with hearing loss with consequences to binaural hearing.
{"title":"Binaural responses to a speech syllable are altered in children with hearing loss: Evidence from the frequency-following response","authors":"R.Z. Alemu , J. Gorodensky , S. Gill , S.L. Cushing , B.C. Papsin , K.A. Gordon","doi":"10.1016/j.heares.2024.109068","DOIUrl":"10.1016/j.heares.2024.109068","url":null,"abstract":"<div><h3>Background & rationale</h3><p>In prior work using non-speech stimuli, children with hearing loss show impaired perception of binaural cues and no significant change in cortical responses to bilateral versus unilateral stimulation. Aims of the present study were to: 1) identify bilateral responses to envelope and spectral components of a speech syllable using the frequency-following response (FFR), 2) determine if abnormalities in the bilateral FFR occur in children with hearing loss, and 3) assess functional consequences of abnormal bilateral FFR responses on perception of binaural timing cues.</p></div><div><h3>Methods</h3><p>A single-syllable speech stimulus (/dα/) was presented to each ear individually and bilaterally. Participants were 9 children with normal hearing (<em>M</em><sub>Age</sub> = 12.1 ± 2.5 years) and 6 children with bilateral hearing loss who were experienced bilateral hearing aid users (<em>M</em><sub>Age</sub> = 14.0 ± 2.6 years). FFR temporal and spectral peak amplitudes were compared between listening conditions and groups using linear mixed model regression analyses. Behavioral sensitivity to binaural cues were measured by lateralization responses as coming from the right or left side of the head.</p></div><div><h3>Results</h3><p>Both temporal and spectral peaks in FFR responses increased in amplitude in the bilateral compared to unilateral listening conditions in children with normal hearing. These measures of “bilateral advantage” were reduced in the group of children with bilateral hearing loss and associated with decreased sensitivity to interaural timing differences.</p></div><div><h3>Conclusion</h3><p>This study is the first to show that bilateral responses in both temporal and spectral domains can be measured in children using the FFR and is altered in children with hearing loss with consequences to binaural hearing.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109068"},"PeriodicalIF":2.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1016/j.heares.2024.109066
Philip X Joris , Eric Verschooten
Many neurons in the central nucleus of the inferior colliculus (IC) show sensitivity to interaural time differences (ITDs), which is thought to be relayed from the brainstem. However, studies with interaural phase modulation of pure tones showed that IC neurons have a sensitivity to changes in ITD that is not present at the level of the brainstem. This sensitivity has been interpreted as a form of sensitivity to motion.
A new type of stimulus is used here to study the sensitivity of IC neurons to dynamic changes in ITD, in which broad- or narrowband stimuli are swept through a range of ITDs with arbitrary start-ITD, end-ITD, speed, and direction. Extracellular recordings were obtained under barbiturate anesthesia in the cat. We applied the same analyses as previously introduced for the study of responses to tones.
We find effects of motion which are similar to those described in response to interaural phase modulation of tones. The size of the effects strongly depended on the motion parameters but was overall smaller than reported for tones. We found that the effects of motion could largely be explained by the temporal response pattern of the neuron such as adaptation and build-up. Our data add to previous evidence questioning true coding of motion at the level of the IC.
{"title":"Midbrain sensitivity to auditory motion studied with dichotic sweeps of broadband noise","authors":"Philip X Joris , Eric Verschooten","doi":"10.1016/j.heares.2024.109066","DOIUrl":"10.1016/j.heares.2024.109066","url":null,"abstract":"<div><p>Many neurons in the central nucleus of the inferior colliculus (IC) show sensitivity to interaural time differences (ITDs), which is thought to be relayed from the brainstem. However, studies with interaural phase modulation of pure tones showed that IC neurons have a sensitivity to <u>changes</u> in ITD that is not present at the level of the brainstem. This sensitivity has been interpreted as a form of sensitivity to motion.</p><p>A new type of stimulus is used here to study the sensitivity of IC neurons to dynamic changes in ITD, in which broad- or narrowband stimuli are swept through a range of ITDs with arbitrary start-ITD, end-ITD, speed, and direction. Extracellular recordings were obtained under barbiturate anesthesia in the cat. We applied the same analyses as previously introduced for the study of responses to tones.</p><p>We find effects of motion which are similar to those described in response to interaural phase modulation of tones. The size of the effects strongly depended on the motion parameters but was overall smaller than reported for tones. We found that the effects of motion could largely be explained by the temporal response pattern of the neuron such as adaptation and build-up. Our data add to previous evidence questioning true coding of motion at the level of the IC.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109066"},"PeriodicalIF":2.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}