Pub Date : 2025-12-01Epub Date: 2025-01-02DOI: 10.1080/19490976.2024.2447814
Dexi Zhou, Shengjie Li, Gang Hu, Yufan Wang, Zhanghua Qi, Xuan Xu, Jing Wei, Qiong Liu, Tingtao Chen
Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects. However, its limitation lies in its short plasma half-life, necessitating the continuous intravenous injection of GLP-1 drugs to achieve efficacy. Here, we engineered Clostridium butyricum to continuously express and deliver GLP-1 (denoted as Cb-GLP-1), and assessed its therapeutic efficacy in type 2 diabetes mellitus (T2DM) mice. We demonstrated that administration of Cb-GLP-1 effectively lowered blood glucose levels, regulated dyslipidemia, and ameliorated hepatic impairment in T2DM mice. Furthermore, Cb-GLP-1 treatment facilitated insulin secretion by retarding islet cell apoptosis and activating the glucagon-like peptide 1 receptor/adenylate cyclase/protein kinase A (GLP-1 R/AC/PKA) signaling pathway. Gut microbiota analysis revealed that Cb-GLP-1 restored gut homeostasis disrupted in T2DM mice, as indicated by the decreased abundance of Lactobacillus and Providencia genera in response to Cb-GLP-1 treatment. Collectively, the intestinal microbiota regulation and hypoglycemic effect of the engineered strain Cb-GLP-1 presents a promising approach for diabetes management.
{"title":"Hypoglycemic effect of <i>C. butyricum</i>-pMTL007-GLP-1 engineered probiotics on type 2 diabetes mellitus.","authors":"Dexi Zhou, Shengjie Li, Gang Hu, Yufan Wang, Zhanghua Qi, Xuan Xu, Jing Wei, Qiong Liu, Tingtao Chen","doi":"10.1080/19490976.2024.2447814","DOIUrl":"https://doi.org/10.1080/19490976.2024.2447814","url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects. However, its limitation lies in its short plasma half-life, necessitating the continuous intravenous injection of GLP-1 drugs to achieve efficacy. Here, we engineered <i>Clostridium butyricum</i> to continuously express and deliver GLP-1 (denoted as Cb-GLP-1), and assessed its therapeutic efficacy in type 2 diabetes mellitus (T2DM) mice. We demonstrated that administration of Cb-GLP-1 effectively lowered blood glucose levels, regulated dyslipidemia, and ameliorated hepatic impairment in T2DM mice. Furthermore, Cb-GLP-1 treatment facilitated insulin secretion by retarding islet cell apoptosis and activating the glucagon-like peptide 1 receptor/adenylate cyclase/protein kinase A (GLP-1 R/AC/PKA) signaling pathway. Gut microbiota analysis revealed that Cb-GLP-1 restored gut homeostasis disrupted in T2DM mice, as indicated by the decreased abundance of <i>Lactobacillus</i> and <i>Providencia</i> genera in response to Cb-GLP-1 treatment. Collectively, the intestinal microbiota regulation and hypoglycemic effect of the engineered strain Cb-GLP-1 presents a promising approach for diabetes management.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2447814"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-12DOI: 10.1080/19490976.2024.2446423
Izabella Sall, Randi Foxall, Lindsey Felth, Soren Maret, Zachary Rosa, Anirudh Gaur, Jennifer Calawa, Nadia Pavlik, Jennifer L Whistler, Cheryl A Whistler
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
{"title":"Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine.","authors":"Izabella Sall, Randi Foxall, Lindsey Felth, Soren Maret, Zachary Rosa, Anirudh Gaur, Jennifer Calawa, Nadia Pavlik, Jennifer L Whistler, Cheryl A Whistler","doi":"10.1080/19490976.2024.2446423","DOIUrl":"10.1080/19490976.2024.2446423","url":null,"abstract":"<p><p>The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2446423"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-22DOI: 10.1080/19490976.2024.2441356
Chaoran Yang, Leticia Camargo Tavares, Han-Chung Lee, Joel R Steele, Rosilene V Ribeiro, Anna L Beale, Stephanie Yiallourou, Melinda J Carrington, David M Kaye, Geoffrey A Head, Ralf B Schittenhelm, Francine Z Marques
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance. However, unsupervised human protein-based clustering analysis revealed two distinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk group had lower angiotensin-converting enzymes, inflammatory proteins associated with neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, the low-risk group had higher expression of phosphate acetyltransferase that produces SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across phenotypes in heart failure patients and long-term risk of cardiovascular events in a large population-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may underlie risk factors for CVD.
{"title":"Faecal metaproteomics analysis reveals a high cardiovascular risk profile across healthy individuals and heart failure patients.","authors":"Chaoran Yang, Leticia Camargo Tavares, Han-Chung Lee, Joel R Steele, Rosilene V Ribeiro, Anna L Beale, Stephanie Yiallourou, Melinda J Carrington, David M Kaye, Geoffrey A Head, Ralf B Schittenhelm, Francine Z Marques","doi":"10.1080/19490976.2024.2441356","DOIUrl":"https://doi.org/10.1080/19490976.2024.2441356","url":null,"abstract":"<p><p>The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance. However, unsupervised human protein-based clustering analysis revealed two distinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk group had lower angiotensin-converting enzymes, inflammatory proteins associated with neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, the low-risk group had higher expression of phosphate acetyltransferase that produces SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across phenotypes in heart failure patients and long-term risk of cardiovascular events in a large population-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may underlie risk factors for CVD.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2441356"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions. Here, using a repeated restraint stress (RRS) rat model, we show that sequential transplantation of the cecal contents of different RRS stages to normal rats reproduced RRS-induced core phenotypes, including abnormal behaviors, increased peripheral blood corticosterone and inflammatory cytokines, and a unique gut microbial phenotype. This core phenotypic development was effectively inhibited with probiotic supplement. The RRS-induced unique gut microbial phenotypes at the genus level were positively or negatively associated with the levels of 20 plasma metabolites, including vitamin B6 metabolites 4-pyridoxic acid and 4-pyridoxate. Vitamin B6 supplement during RRS alleviated weight loss, abnormal behaviors, peripheral inflammation, and neuroinflammation, but did not affect the peripheral corticosterone levels in chronic stressed rats. Dampening inflammatory signaling via knocking out caspase 11 or caspase 1 inhibitor abolished RRS-induced abnormal behaviors and peripheral and neuroinflammation but did not decrease peripheral corticosterone in mice. These findings show that gut dysbiosis-induced vitamin B6 metabolism disorder is a new non-hypothalamic-pituitary-adrenal axis mechanism of chronic stress-related brain disorders. Both probiotics and vitamin B6 supplement have potential to be developed as therapeutic strategies for preventing and/or treating chronic stress-related illness.
{"title":"Gut dysbiosis-induced vitamin B6 metabolic disorder contributes to chronic stress-related abnormal behaviors in a cortisol-independent manner.","authors":"Wenxiang Qing, Huimin Chen, Xin Ma, Jie Chen, Yuan Le, Hui Chen, Jianhua Tong, Kaiming Duan, Daqing Ma, Wen Ouyang, Jianbin Tong","doi":"10.1080/19490976.2024.2447824","DOIUrl":"10.1080/19490976.2024.2447824","url":null,"abstract":"<p><p>Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions. Here, using a repeated restraint stress (RRS) rat model, we show that sequential transplantation of the cecal contents of different RRS stages to normal rats reproduced RRS-induced core phenotypes, including abnormal behaviors, increased peripheral blood corticosterone and inflammatory cytokines, and a unique gut microbial phenotype. This core phenotypic development was effectively inhibited with probiotic supplement. The RRS-induced unique gut microbial phenotypes at the genus level were positively or negatively associated with the levels of 20 plasma metabolites, including vitamin B6 metabolites 4-pyridoxic acid and 4-pyridoxate. Vitamin B6 supplement during RRS alleviated weight loss, abnormal behaviors, peripheral inflammation, and neuroinflammation, but did not affect the peripheral corticosterone levels in chronic stressed rats. Dampening inflammatory signaling via knocking out caspase 11 or caspase 1 inhibitor abolished RRS-induced abnormal behaviors and peripheral and neuroinflammation but did not decrease peripheral corticosterone in mice. These findings show that gut dysbiosis-induced vitamin B6 metabolism disorder is a new non-hypothalamic-pituitary-adrenal axis mechanism of chronic stress-related brain disorders. Both probiotics and vitamin B6 supplement have potential to be developed as therapeutic strategies for preventing and/or treating chronic stress-related illness.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2447824"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of Candida albicans, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of Candida albicans were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated in vivo to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased Candida albicans abundance. Moreover, Candida albicans promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited Candida albicans growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced ZO-1 and Occludin mRNA expression, reduced Candida albicans abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced Candida albicans abundance to alleviate islet inflammation.
{"title":"The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind <i>Candida albicans</i> abundance and macrophage polarization.","authors":"Yayu Zhang, Xiaoguo Ji, Kunlin Chang, Hao Yin, Mengyao Zhao, Liming Zhao","doi":"10.1080/19490976.2024.2442051","DOIUrl":"10.1080/19490976.2024.2442051","url":null,"abstract":"<p><p>Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of <i>Candida albicans</i>, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of <i>Candida albicans</i> were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated <i>in vivo</i> to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased <i>Candida albicans</i> abundance. Moreover, <i>Candida albicans</i> promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited <i>Candida albicans</i> growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced <i>ZO-1</i> and <i>Occludin</i> mRNA expression, reduced <i>Candida albicans</i> abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced <i>Candida albicans</i> abundance to alleviate islet inflammation.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2442051"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-22DOI: 10.1080/19490976.2024.2442037
Fangfang Chen, Songhe Guo, Yiqiu Li, Yongfan Lu, Le Liu, Shengxin Chen, Jun An, Ge Zhang
The intracellular bacterium Fusobacterium nucleatum (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1+ PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice via intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H2S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1+PD-L1+ phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1+PD-L1+ PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1+PD-L1+ PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.
{"title":"<i>Fusobacterium nucleatum</i>-driven CX3CR1<sup>+</sup> PD-L1<sup>+</sup> phagocytes route to tumor tissues and reshape tumor microenvironment.","authors":"Fangfang Chen, Songhe Guo, Yiqiu Li, Yongfan Lu, Le Liu, Shengxin Chen, Jun An, Ge Zhang","doi":"10.1080/19490976.2024.2442037","DOIUrl":"https://doi.org/10.1080/19490976.2024.2442037","url":null,"abstract":"<p><p>The intracellular bacterium <i>Fusobacterium nucleatum</i> (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1<sup>+</sup> PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice <i>via</i> intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H<sub>2</sub>S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1<sup>+</sup>PD-L1<sup>+</sup> phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1<sup>+</sup>PD-L1<sup>+</sup> PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1<sup>+</sup>PD-L1<sup>+</sup> PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2442037"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-15DOI: 10.1080/19490976.2025.2450207
Jill O'Sullivan, Shriram Patel, Gabriel E Leventhal, Rachel S Fitzgerald, Emilio J Laserna-Mendieta, Chloe E Huseyin, Nina Konstantinidou, Erica Rutherford, Aonghus Lavelle, Karim Dabbagh, Todd Z DeSantis, Fergus Shanahan, Andriy Temko, Shoko Iwai, Marcus J Claesson
Crohn's disease (CD) and ulcerative colitis (UC) are chronic relapsing inflammatory bowel disorders (IBD), the pathogenesis of which is uncertain but includes genetic susceptibility factors, immune-mediated tissue injury and environmental influences, most of which appear to act via the gut microbiome. We hypothesized that host-microbe alterations could be used to prognostically stratify patients experiencing relapses up to four years after endoscopy. We therefore examined multiple omics data, including published and new datasets, generated from paired inflamed and non-inflamed mucosal biopsies from 142 patients with IBD (54 CD; 88 UC) and from 34 control (non-diseased) biopsies. The relapse-predictive potential of 16S rRNA gene and transcript amplicons (standing and active microbiota) were investigated along with host transcriptomics, epigenomics and genetics. While standard single-omics analysis could not distinguish between patients who relapsed and those that remained in remission within four years of colonoscopy, we did find an association between the number of flares and a patient's succinotype. Our multi-omics machine learning approach was also able to predict relapse when combining features from the microbiome and human host. Therefore multi-omics, rather than single omics, better predicts relapse within 4 years of colonoscopy, while a patient's succinotype is associated with a higher frequency of relapses.
{"title":"Host-microbe multi-omics and succinotype profiling have prognostic value for future relapse in patients with inflammatory bowel disease.","authors":"Jill O'Sullivan, Shriram Patel, Gabriel E Leventhal, Rachel S Fitzgerald, Emilio J Laserna-Mendieta, Chloe E Huseyin, Nina Konstantinidou, Erica Rutherford, Aonghus Lavelle, Karim Dabbagh, Todd Z DeSantis, Fergus Shanahan, Andriy Temko, Shoko Iwai, Marcus J Claesson","doi":"10.1080/19490976.2025.2450207","DOIUrl":"https://doi.org/10.1080/19490976.2025.2450207","url":null,"abstract":"<p><p>Crohn's disease (CD) and ulcerative colitis (UC) are chronic relapsing inflammatory bowel disorders (IBD), the pathogenesis of which is uncertain but includes genetic susceptibility factors, immune-mediated tissue injury and environmental influences, most of which appear to act via the gut microbiome. We hypothesized that host-microbe alterations could be used to prognostically stratify patients experiencing relapses up to four years after endoscopy. We therefore examined multiple omics data, including published and new datasets, generated from paired inflamed and non-inflamed mucosal biopsies from 142 patients with IBD (54 CD; 88 UC) and from 34 control (non-diseased) biopsies. The relapse-predictive potential of 16S rRNA gene and transcript amplicons (standing and active microbiota) were investigated along with host transcriptomics, epigenomics and genetics. While standard single-omics analysis could not distinguish between patients who relapsed and those that remained in remission within four years of colonoscopy, we did find an association between the number of flares and a patient's succinotype. Our multi-omics machine learning approach was also able to predict relapse when combining features from the microbiome and human host. Therefore multi-omics, rather than single omics, better predicts relapse within 4 years of colonoscopy, while a patient's succinotype is associated with a higher frequency of relapses.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2450207"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation. In this study, we analyzed 110 athletes undergoing closed training and found that fecal lactate levels were significantly associated with anxiety indicators. We observed a significant negative correlation between Akkermansia abundance and anxiety levels in athletes. Co-supplementation with lactate and Akkermansia muciniphila (A. muciniphila) modulated tryptophan metabolism by increasing key enzyme TPH1 and reducing IDO1, thus shifting metabolism from kynurenine (Kyn) to 5-HT. In addition, lactate enhanced the propionate production capacity of A. muciniphila, potentially contributing to anxiety reduction in mice. Taken together, these findings suggest that enteric lactate and A. muciniphila collaboratively restore the imbalance in tryptophan metabolism, leading to increased 5-HT activity and alleviating anxiety phenotypes. This study highlights the intricate interplay between gut metabolites and anxiety regulation, offering potential avenues for microbiota-targeted therapeutic strategies for anxiety.
{"title":"Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via <i>Akkermansia muciniphila</i>.","authors":"Miaomiao Pan, Chenglang Qian, Shaoye Huo, Yuchen Wu, Xinyi Zhao, Yueming Ying, Boyu Wang, Hao Yang, Anaguli Yeerken, Tongyao Wang, Mengwei Fu, Lihong Wang, Yuhuan Wei, Yunhua Zhao, Chunhai Shao, Huijing Wang, Chao Zhao","doi":"10.1080/19490976.2024.2447834","DOIUrl":"10.1080/19490976.2024.2447834","url":null,"abstract":"<p><p>The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation. In this study, we analyzed 110 athletes undergoing closed training and found that fecal lactate levels were significantly associated with anxiety indicators. We observed a significant negative correlation between <i>Akkermansia</i> abundance and anxiety levels in athletes. Co-supplementation with lactate and <i>Akkermansia muciniphila</i> (<i>A. muciniphila</i>) modulated tryptophan metabolism by increasing key enzyme TPH1 and reducing IDO1, thus shifting metabolism from kynurenine (Kyn) to 5-HT. In addition, lactate enhanced the propionate production capacity of <i>A. muciniphila</i>, potentially contributing to anxiety reduction in mice. Taken together, these findings suggest that enteric lactate and <i>A. muciniphila</i> collaboratively restore the imbalance in tryptophan metabolism, leading to increased 5-HT activity and alleviating anxiety phenotypes. This study highlights the intricate interplay between gut metabolites and anxiety regulation, offering potential avenues for microbiota-targeted therapeutic strategies for anxiety.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2447834"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-08DOI: 10.1080/19490976.2024.2446378
Levi M Teigen, Austin Hoeg, Hijab Zehra, Priyali Shah, Remy Johnson, Kristen Hutchison, Megan Kocher, Annie W Lin, Abigail J Johnson, Byron P Vaughn
Diet constitutes a major source of nutrient flow to the gut microbes. As such, it can be used to help shape the gut microbiome. Fecal microbiota transplantation (FMT) is an increasingly promising therapy in disease states beyond recurrent Clostridioides difficile infection, but diet is largely overlooked for its potential to help optimize this therapy. Therefore, the aim of this scoping review is to present the literature landscape that captures pre- and post-FMT dietary intake in humans, identify research gaps, and provide recommendations for future research. A comprehensive search strategy was developed and searches were run in five databases. Studies were included if they discussed adults who underwent FMT for any recognized treatment indication and had dietary intake as a study objective, this search encompassed studies with interventions that included foods and dietary supplements. The initial screening identified a total of 7721 articles, of which 18 met the inclusion criteria for this review. Studies were heterogeneous, but taken together, they introduce a framework that defines important nutritional considerations for both donors and FMT recipients in the period around FMT dosing. This framework is summarized with this review and highlights the opportunities available to develop FMT-based precision nutrition strategies to optimize its clinical efficacy.
{"title":"Nutritional optimization of fecal microbiota transplantation in humans: a scoping review.","authors":"Levi M Teigen, Austin Hoeg, Hijab Zehra, Priyali Shah, Remy Johnson, Kristen Hutchison, Megan Kocher, Annie W Lin, Abigail J Johnson, Byron P Vaughn","doi":"10.1080/19490976.2024.2446378","DOIUrl":"10.1080/19490976.2024.2446378","url":null,"abstract":"<p><p>Diet constitutes a major source of nutrient flow to the gut microbes. As such, it can be used to help shape the gut microbiome. Fecal microbiota transplantation (FMT) is an increasingly promising therapy in disease states beyond recurrent <i>Clostridioides difficile</i> infection, but diet is largely overlooked for its potential to help optimize this therapy. Therefore, the aim of this scoping review is to present the literature landscape that captures pre- and post-FMT dietary intake in humans, identify research gaps, and provide recommendations for future research. A comprehensive search strategy was developed and searches were run in five databases. Studies were included if they discussed adults who underwent FMT for any recognized treatment indication and had dietary intake as a study objective, this search encompassed studies with interventions that included foods and dietary supplements. The initial screening identified a total of 7721 articles, of which 18 met the inclusion criteria for this review. Studies were heterogeneous, but taken together, they introduce a framework that defines important nutritional considerations for both donors and FMT recipients in the period around FMT dosing. This framework is summarized with this review and highlights the opportunities available to develop FMT-based precision nutrition strategies to optimize its clinical efficacy.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2446378"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1080/19490976.2024.2446403
Dongqing Xu,Fengyi Wan
Establishment of the gut microbiota during infancy is critical for host health with long-lasting implications. In this orchestrated process, microbial assembly is influenced by an increasing number of genetic and environmental factors, among which breastfeeding is considered as one of the most significant drivers for infant gut microbiota development. As the optimal diet for the infants, maternal milk provides numerous nutritional, microbial, and bioactive components to ensure the most adequate microbial growth and development of a 'healthy' gut microbiota during early life. This review will summarize the available evidence, particularly the recent progress, on how various bioactive compounds supplied in maternal milk affect the establishment of early-life gut microbiota during infancy and promote further interest and investigation in this important area.
{"title":"Breastfeeding and infant gut microbiota: influence of bioactive components.","authors":"Dongqing Xu,Fengyi Wan","doi":"10.1080/19490976.2024.2446403","DOIUrl":"https://doi.org/10.1080/19490976.2024.2446403","url":null,"abstract":"Establishment of the gut microbiota during infancy is critical for host health with long-lasting implications. In this orchestrated process, microbial assembly is influenced by an increasing number of genetic and environmental factors, among which breastfeeding is considered as one of the most significant drivers for infant gut microbiota development. As the optimal diet for the infants, maternal milk provides numerous nutritional, microbial, and bioactive components to ensure the most adequate microbial growth and development of a 'healthy' gut microbiota during early life. This review will summarize the available evidence, particularly the recent progress, on how various bioactive compounds supplied in maternal milk affect the establishment of early-life gut microbiota during infancy and promote further interest and investigation in this important area.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"31 1","pages":"2446403"},"PeriodicalIF":12.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}