Hypercholesterolemia is a major risk factor for atherosclerotic cardiovascular disease; however, current therapeutic options such as statins are limited by issues including hepatotoxicity and patient intolerance. Probiotics and their metabolites show promise in modulating cholesterol metabolism through the gut‒liver axis, yet the specific commensal bacteria and molecular mechanisms underlying these effects remain poorly understood. In this study, we isolated and characterized EPS-D1, a novel exopolysaccharide (15.003 kDa) derived from Lactiplantibacillus plantarum H6, which is composed primarily of mannose (46.10%) and glucose (33.98%) and features a highly branched structure (branching degree of 29.5%). The administration of EPS-D1 significantly reduced the serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) by 40.31%, 37.55%, and 43.15%, respectively, in high-cholesterol diet (HCD) mice. Additionally, it improved hepatic steatosis and reduced markers of liver injury. Through 16S rRNA sequencing and fecal microbiota transplantation (FMT), we identified Muribaculum as the key commensal bacterium enriched by EPS-D1. Direct administration of Muribaculum (Muribaculum intestinale) replicated the cholesterol-lowering effects, decreasing ileal and fecal cholesterol levels by 74.79% and 53.16%, respectively. Mechanistically, both EPS-D1 and M. intestinale activated the enterohepatic FXR‒FGF15 axis, which resulted in the upregulation of hepatic cholesterol 7α-hydroxylase (CYP7A1) expression and the downregulation of ileal ASBT and NPC1L1, thereby promoting bile acid synthesis and inhibiting cholesterol absorption. Furthermore, M. intestinale increased intestinal short-chain fatty acids (SCFAs), particularly acetic acid and caproic acid, by 37.88% while also modulating the composition of the bile acid pool. These findings establish M. intestinale as a precise microbial target for cholesterol management and demonstrate that EPS-D1 from L. plantarum H6 enhances cholesterol metabolism through microbiota-mediated activation of the enterohepatic FXR‒FGF15 axis, providing a novel therapeutic strategy for managing hypercholesterolemia.
{"title":"A novel exopolysaccharide from <i>Lactiplantibacillus plantarum</i> H6 improves cholesterol metabolism via <i>Muribaculum-</i>mediated activation of the enterohepatic FXR-FGF15 axis.","authors":"Yue Li, Jialin Wang, Hailing Wang, Xin Ma, Dayong Ren, Binghua Wang","doi":"10.1080/19490976.2026.2623578","DOIUrl":"10.1080/19490976.2026.2623578","url":null,"abstract":"<p><p>Hypercholesterolemia is a major risk factor for atherosclerotic cardiovascular disease; however, current therapeutic options such as statins are limited by issues including hepatotoxicity and patient intolerance. Probiotics and their metabolites show promise in modulating cholesterol metabolism through the gut‒liver axis, yet the specific commensal bacteria and molecular mechanisms underlying these effects remain poorly understood. In this study, we isolated and characterized EPS-D1, a novel exopolysaccharide (15.003 kDa) derived from <i>Lactiplantibacillus plantarum</i> H6, which is composed primarily of mannose (46.10%) and glucose (33.98%) and features a highly branched structure (branching degree of 29.5%). The administration of EPS-D1 significantly reduced the serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) by 40.31%, 37.55%, and 43.15%, respectively, in high-cholesterol diet (HCD) mice. Additionally, it improved hepatic steatosis and reduced markers of liver injury. Through 16S rRNA sequencing and fecal microbiota transplantation (FMT), we identified <i>Muribaculum</i> as the key commensal bacterium enriched by EPS-D1. Direct administration of <i>Muribaculum</i> (<i>Muribaculum intestinale</i>) replicated the cholesterol-lowering effects, decreasing ileal and fecal cholesterol levels by 74.79% and 53.16%, respectively. Mechanistically, both EPS-D1 and <i>M. intestinale</i> activated the enterohepatic FXR‒FGF15 axis, which resulted in the upregulation of hepatic cholesterol 7α-hydroxylase (CYP7A1) expression and the downregulation of ileal ASBT and NPC1L1, thereby promoting bile acid synthesis and inhibiting cholesterol absorption. Furthermore, <i>M. intestinale</i> increased intestinal short-chain fatty acids (SCFAs), particularly acetic acid and caproic acid, by 37.88% while also modulating the composition of the bile acid pool. These findings establish <i>M. intestinale</i> as a precise microbial target for cholesterol management and demonstrate that EPS-D1 from <i>L. plantarum</i> H6 enhances cholesterol metabolism through microbiota-mediated activation of the enterohepatic FXR‒FGF15 axis, providing a novel therapeutic strategy for managing hypercholesterolemia.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2623578"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12867402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-02-16DOI: 10.1080/19490976.2026.2630481
Yao Zeng, Yao Huang, Silin Ye, Effie Yin Tung Lau, Man Chun Chiu, Linda Fenske, Yuting Sun, Liting Jiang, Jiangying Chen, Yanqing Huang, Tingyu Zhou, Jiawei Lu, Jie Zhou, Shu Zheng, Francis Ka Leung Chan, Jessie Qiaoyi Liang
<p><strong>Background: </strong>The bacterial marker 'm3' shows promise for the non-invasive diagnosis of colorectal cancer (CRC) and adenomas. However, the m3-harboring bacterium (M3) had not been successfully cultured.</p><p><strong>Objective: </strong>This study aims to elucidate the functional mechanisms of M3 in CRC.</p><p><strong>Design: </strong>M3 was isolated using a targeted enrichment strategy. Its functional roles were investigated <i>in vitro</i> and <i>in vivo</i>. Bacterial and fecal metabolites were analyzed by untargeted LC-MS and targeted LC/GC-MS. RNA-seq profiled host gene expression altered by M3. Key enzymes were identified through whole-genome sequencing and proteomics.</p><p><strong>Results: </strong>M3 is phylogenetically related to <i>Enterocloster aldenensis</i> but exhibits distinct genetic and phenotypic characteristics. M3 significantly promoted colon tumor development in both <i>Apc</i><sup>Min/+</sup> mice and azoxymethane-treated mice. M3 culture supernatant enhanced colon cancer cell proliferation, migration, and cell cycle progression, accelerated xenograft tumor growth, stimulated intestinal organoid expansion, and disrupted DNA damage repair pathways. M3 produced styrene-a recognized human carcinogen-in both <i>in vitro</i> cultures and mouse models, a function not previously reported in bacteria. Importantly, styrene levels were significantly elevated in feces of CRC patients and exceeded WHO safety limit in mouse gut (12.5 vs. 7.7 μg/kg/d). Moreover, we identified novel bacterial enzymes-aspartate ammonia-lyase and uroporphyrinogen decarboxylase-that convert phenylalanine to styrene.</p><p><strong>Conclusions: </strong>This study identifies M3 as a novel pro-tumorigenic bacterium in CRC, capable of direct biosynthesis of the carcinogenic metabolite styrene. We provide the first evidence of bacterial styrene biosynthesis, unveiling a previously unrecognized mechanism by which gut bacteria may promote colorectal tumorigenesis.<b>WHAT IS ALREADY KNOWN ON THIS TOPIC</b>The bacterial marker m3 has been associated with colorectal cancer, but the bacterium carrying it had not been cultured.Styrene is a recognized environmental carcinogen linked to cancers, and its bacterial biosynthesis had not been reported.<b>WHAT THIS STUDY ADDS</b>We isolated and characterized the novel bacterium M3, which carries the m3 marker. It is phylogenetically related to <i>Enterocloster aldenensis</i> but possesses distinct genetic and phenotypic features.M3 promotes colorectal tumorigenesis through the production of tumor-promoting metabolites, including styrene.Fecal styrene levels are significantly elevated in colorectal cancer patients.We elucidated the mechanism of direct styrene biosynthesis in M3, identifying two novel enzymes-aspartate ammonia-lyase and uroporphyrinogen decarboxylase-that catalyze this process.<b>HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY</b><i>M3 and bacterially derived styrene may serve as novel
{"title":"Novel bacterium <i>Enterocloster</i> sp. M3 promotes colorectal tumorigenesis via the production of the carcinogen styrene.","authors":"Yao Zeng, Yao Huang, Silin Ye, Effie Yin Tung Lau, Man Chun Chiu, Linda Fenske, Yuting Sun, Liting Jiang, Jiangying Chen, Yanqing Huang, Tingyu Zhou, Jiawei Lu, Jie Zhou, Shu Zheng, Francis Ka Leung Chan, Jessie Qiaoyi Liang","doi":"10.1080/19490976.2026.2630481","DOIUrl":"https://doi.org/10.1080/19490976.2026.2630481","url":null,"abstract":"<p><strong>Background: </strong>The bacterial marker 'm3' shows promise for the non-invasive diagnosis of colorectal cancer (CRC) and adenomas. However, the m3-harboring bacterium (M3) had not been successfully cultured.</p><p><strong>Objective: </strong>This study aims to elucidate the functional mechanisms of M3 in CRC.</p><p><strong>Design: </strong>M3 was isolated using a targeted enrichment strategy. Its functional roles were investigated <i>in vitro</i> and <i>in vivo</i>. Bacterial and fecal metabolites were analyzed by untargeted LC-MS and targeted LC/GC-MS. RNA-seq profiled host gene expression altered by M3. Key enzymes were identified through whole-genome sequencing and proteomics.</p><p><strong>Results: </strong>M3 is phylogenetically related to <i>Enterocloster aldenensis</i> but exhibits distinct genetic and phenotypic characteristics. M3 significantly promoted colon tumor development in both <i>Apc</i><sup>Min/+</sup> mice and azoxymethane-treated mice. M3 culture supernatant enhanced colon cancer cell proliferation, migration, and cell cycle progression, accelerated xenograft tumor growth, stimulated intestinal organoid expansion, and disrupted DNA damage repair pathways. M3 produced styrene-a recognized human carcinogen-in both <i>in vitro</i> cultures and mouse models, a function not previously reported in bacteria. Importantly, styrene levels were significantly elevated in feces of CRC patients and exceeded WHO safety limit in mouse gut (12.5 vs. 7.7 μg/kg/d). Moreover, we identified novel bacterial enzymes-aspartate ammonia-lyase and uroporphyrinogen decarboxylase-that convert phenylalanine to styrene.</p><p><strong>Conclusions: </strong>This study identifies M3 as a novel pro-tumorigenic bacterium in CRC, capable of direct biosynthesis of the carcinogenic metabolite styrene. We provide the first evidence of bacterial styrene biosynthesis, unveiling a previously unrecognized mechanism by which gut bacteria may promote colorectal tumorigenesis.<b>WHAT IS ALREADY KNOWN ON THIS TOPIC</b>The bacterial marker m3 has been associated with colorectal cancer, but the bacterium carrying it had not been cultured.Styrene is a recognized environmental carcinogen linked to cancers, and its bacterial biosynthesis had not been reported.<b>WHAT THIS STUDY ADDS</b>We isolated and characterized the novel bacterium M3, which carries the m3 marker. It is phylogenetically related to <i>Enterocloster aldenensis</i> but possesses distinct genetic and phenotypic features.M3 promotes colorectal tumorigenesis through the production of tumor-promoting metabolites, including styrene.Fecal styrene levels are significantly elevated in colorectal cancer patients.We elucidated the mechanism of direct styrene biosynthesis in M3, identifying two novel enzymes-aspartate ammonia-lyase and uroporphyrinogen decarboxylase-that catalyze this process.<b>HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY</b><i>M3 and bacterially derived styrene may serve as novel","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2630481"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146201457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-01-07DOI: 10.1080/19490976.2025.2612428
Kimin Kang, Joong-Yub Kim, Jae-Joon Yim, Donghyun Kim
Mycobacterial lung diseases, including tuberculosis (TB) and nontuberculous mycobacterial pulmonary disease (NTM-PD), are increasingly recognized as disorders influenced not only by host immunity but also by microbiota. Emerging evidence identifies the gut-lung axis (GLA) as a key bidirectional communication network linking intestinal and pulmonary homeostasis. Mycobacterial infection itself induces airway and gut dysbiosis through immune and metabolic disturbances, which is further exacerbated by prolonged antibiotic therapy. Dysbiosis within either site reciprocally affects the other via GLA, leading to reduced microbial diversity, impaired epithelial integrity, and systemic inflammation. These alterations disrupt metabolite-mediated immunoregulation and attenuate IL-22-driven epithelial defense, thereby weakening bacterial clearance and promoting chronic inflammation. Distinct microbial features, such as the depletion of beneficial SCFA-producing taxa and enrichment of pro-inflammatory anaerobes, are observed in both TB and NTM-PD. Moreover, therapy-induced microbiome remodeling influences treatment response and disease relapse. Restoring microbial balance through probiotics, prebiotics, postbiotics, dietary modulation, or fecal microbiota transplantation offers a promising adjunctive strategy. This review integrates current evidence linking microbiome dysbiosis to mycobacterial pathogenesis and highlights microbiome-targeted interventions as an emerging therapeutic frontier in pulmonary mycobacterial diseases.
{"title":"Gut-lung axis and microbiome alterations in mycobacterial infections: from pathogenesis to therapeutic potential.","authors":"Kimin Kang, Joong-Yub Kim, Jae-Joon Yim, Donghyun Kim","doi":"10.1080/19490976.2025.2612428","DOIUrl":"10.1080/19490976.2025.2612428","url":null,"abstract":"<p><p>Mycobacterial lung diseases, including tuberculosis (TB) and nontuberculous mycobacterial pulmonary disease (NTM-PD), are increasingly recognized as disorders influenced not only by host immunity but also by microbiota. Emerging evidence identifies the gut-lung axis (GLA) as a key bidirectional communication network linking intestinal and pulmonary homeostasis. Mycobacterial infection itself induces airway and gut dysbiosis through immune and metabolic disturbances, which is further exacerbated by prolonged antibiotic therapy. Dysbiosis within either site reciprocally affects the other via GLA, leading to reduced microbial diversity, impaired epithelial integrity, and systemic inflammation. These alterations disrupt metabolite-mediated immunoregulation and attenuate IL-22-driven epithelial defense, thereby weakening bacterial clearance and promoting chronic inflammation. Distinct microbial features, such as the depletion of beneficial SCFA-producing taxa and enrichment of pro-inflammatory anaerobes, are observed in both TB and NTM-PD. Moreover, therapy-induced microbiome remodeling influences treatment response and disease relapse. Restoring microbial balance through probiotics, prebiotics, postbiotics, dietary modulation, or fecal microbiota transplantation offers a promising adjunctive strategy. This review integrates current evidence linking microbiome dysbiosis to mycobacterial pathogenesis and highlights microbiome-targeted interventions as an emerging therapeutic frontier in pulmonary mycobacterial diseases.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2612428"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12785239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145917505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-01-09DOI: 10.1080/19490976.2025.2611603
Sohyeon Lee, Yoonho Lee, Ho-Su Lee, Jiyoung Yu, Kyunggon Kim, Tae-Young Kim, Su-Hyun Lee, Yuan Qiao, Seungil Kim, Mi-Na Kweon
The mechanisms by which gut microbiota modulate host immune responses remain incompletely understood. Here, we screened Lactobacillus and Bifidobacterium strains isolated from healthy individuals to identify symbionts capable of suppressing gut inflammation. Among them, Bifidobacterium adolescentis (Bifi-94) induced IL-10 production in mononuclear cells in vitro. Oral administration of Bifi-94 to mice treated with dextran sulfate sodium attenuated weight loss and reduced colonic inflammation scores. In wild-type C57BL/6 mice, Bifi-94 increased IL-10 levels in colonic tissue homogenates without altering the frequency of regulatory T cells. Instead, CD19+CD11b+ regulatory B (Breg) cells emerged as the primary source of IL-10, with their numbers significantly increasing in the peritoneal cavity (PEC) after treatment. IL-10 secretion by PEC cells was robustly activated by live, heat-killed, and formalin-fixed Bifi-94. Bifi-94-derived peptidoglycan (PG) selectively stimulated IL-10 production in CD19⁺CD11b⁺ Breg cells, and multi-omics analyses showed that Bifi-94 exhibits increased expression of PG biosynthetic enzymes (MurE, MurD, Alr, UppP) relative to the type strain. Mechanistically, Bifi-94-derived PG promoted TLR2-dependent activation of ERK and p38 MAPK signaling in Breg cells. Notably, PG similarly enhanced IL-10 production in CD19+ B cells from human colonic tissue. These findings demonstrate that Bifi-94-derived PG promotes IL-10 production in Breg cells via TLR2-mediated signaling, thereby contributing to the attenuation of gut inflammation.
{"title":"<b>Peptidoglycan from</b> <i><b>Bifidobacterium adolescentis</b></i> <b>enhances IL-10 production in regulatory B cells to alleviate gut inflammation</b>.","authors":"Sohyeon Lee, Yoonho Lee, Ho-Su Lee, Jiyoung Yu, Kyunggon Kim, Tae-Young Kim, Su-Hyun Lee, Yuan Qiao, Seungil Kim, Mi-Na Kweon","doi":"10.1080/19490976.2025.2611603","DOIUrl":"10.1080/19490976.2025.2611603","url":null,"abstract":"<p><p>The mechanisms by which gut microbiota modulate host immune responses remain incompletely understood. Here, we screened <i>Lactobacillus</i> and <i>Bifidobacterium</i> strains isolated from healthy individuals to identify symbionts capable of suppressing gut inflammation. Among them, <i>Bifidobacterium adolescentis</i> (Bifi-94) induced IL-10 production in mononuclear cells <i>in vitro</i>. Oral administration of Bifi-94 to mice treated with dextran sulfate sodium attenuated weight loss and reduced colonic inflammation scores. In wild-type C57BL/6 mice, Bifi-94 increased IL-10 levels in colonic tissue homogenates without altering the frequency of regulatory T cells. Instead, CD19<sup>+</sup>CD11b<sup>+</sup> regulatory B (Breg) cells emerged as the primary source of IL-10, with their numbers significantly increasing in the peritoneal cavity (PEC) after treatment. IL-10 secretion by PEC cells was robustly activated by live, heat-killed, and formalin-fixed Bifi-94. Bifi-94-derived peptidoglycan (PG) selectively stimulated IL-10 production in CD19⁺CD11b⁺ Breg cells, and multi-omics analyses showed that Bifi-94 exhibits increased expression of PG biosynthetic enzymes (MurE, MurD, Alr, UppP) relative to the type strain. Mechanistically, Bifi-94-derived PG promoted TLR2-dependent activation of ERK and p38 MAPK signaling in Breg cells. Notably, PG similarly enhanced IL-10 production in CD19<sup>+</sup> B cells from human colonic tissue. These findings demonstrate that Bifi-94-derived PG promotes IL-10 production in Breg cells via TLR2-mediated signaling, thereby contributing to the attenuation of gut inflammation.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2611603"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12795277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145933099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2025-12-30DOI: 10.1080/19490976.2025.2606486
Daisuke Maruyama, Xiaoli Tian, Thien N M Doan, Wen-I Liao, Tomohiro Chaki, Hiroki Taenaka, Mazharul Maishan, Michael A Matthay, Arun Prakash
Responses to lung injury can vary between individuals with the diet and gut microbiome representing two underappreciated sources for this variability. The gut microbiome can influence lung injury outcomes through the gut‒lung axis, but exactly how diet and its effects on the microbiota are involved remains unclear. We hypothesized that dietary fiber interventions would favor the presence of short-chain fatty acid (SCFA)-producing fermentative bacteria presence in the gut microbiome, thereby influencing the resting lung immunometabolic tone as well as influencing downstream responses to lung injury and infection. To test this hypothesis, we fed mice fiber-rich (FR) and fiber-free (FF) diets, and observed changes in the steady-state transcriptional programming of alveolar macrophages (AM). Next, we examined the effects of the FR and FF diets on murine responses to sterile and infectious lung injury in vivo while simultaneously profiling the gut microbiota and SCFA levels transmitted along the gut‒lung axis. Finally, we validated our in vivo observations with mechanistic studies of the metabolic, signaling, and chromatin-modifying effects of specific SCFAs on lung AM ex vivo and in vitro. Overall, our fiber-rich diet reprogrammed AMs and attenuated lung inflammation after sterile injury while exacerbating lung infection. This effect of FR diets could be transferred to germ-free (GF) mice by fecal microbiome transplantation (FMT) and depended on the ability of the microbiota to produce propionate. Mechanistically, SCFAs altered the metabolic programming of AMs and lung tissue ex vivo without a clear role for free fatty acid receptors (FFAR) or chromatin remodeling. These findings demonstrate that the gut‒lung axis can regulate resting lung metabolic tone through dietary fiber intake and the enrichment of SCFA-producing gut bacteria, as well as influence sterile and non-sterile lung injury responses. These results provide evidence to support the development of therapeutic dietary interventions to preserve or enhance specific aspects of host pulmonary immunity.
{"title":"Gut microbiome-derived propionate reprograms alveolar macrophages metabolically and regulates lung injury responses in mice.","authors":"Daisuke Maruyama, Xiaoli Tian, Thien N M Doan, Wen-I Liao, Tomohiro Chaki, Hiroki Taenaka, Mazharul Maishan, Michael A Matthay, Arun Prakash","doi":"10.1080/19490976.2025.2606486","DOIUrl":"10.1080/19490976.2025.2606486","url":null,"abstract":"<p><p>Responses to lung injury can vary between individuals with the diet and gut microbiome representing two underappreciated sources for this variability. The gut microbiome can influence lung injury outcomes through the gut‒lung axis, but exactly how diet and its effects on the microbiota are involved remains unclear. We hypothesized that dietary fiber interventions would favor the presence of short-chain fatty acid (SCFA)-producing fermentative bacteria presence in the gut microbiome, thereby influencing the resting lung immunometabolic tone as well as influencing downstream responses to lung injury and infection. To test this hypothesis, we fed mice fiber-rich (FR) and fiber-free (FF) diets, and observed changes in the steady-state transcriptional programming of alveolar macrophages (AM). Next, we examined the effects of the FR and FF diets on murine responses to sterile and infectious lung injury <i>in vivo</i> while simultaneously profiling the gut microbiota and SCFA levels transmitted along the gut‒lung axis. Finally, we validated our <i>in vivo</i> observations with mechanistic studies of the metabolic, signaling, and chromatin-modifying effects of specific SCFAs on lung AM <i>ex vivo</i> and <i>in vitro</i>. Overall, our fiber-rich diet reprogrammed AMs and attenuated lung inflammation after sterile injury while exacerbating lung infection. This effect of FR diets could be transferred to germ-free (GF) mice by fecal microbiome transplantation (FMT) and depended on the ability of the microbiota to produce propionate. Mechanistically, SCFAs altered the metabolic programming of AMs and lung tissue <i>ex vivo</i> without a clear role for free fatty acid receptors (FFAR) or chromatin remodeling. These findings demonstrate that the gut‒lung axis can regulate resting lung metabolic tone through dietary fiber intake and the enrichment of SCFA-producing gut bacteria, as well as influence sterile and non-sterile lung injury responses. These results provide evidence to support the development of therapeutic dietary interventions to preserve or enhance specific aspects of host pulmonary immunity.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2606486"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12758369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145855473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-01-07DOI: 10.1080/19490976.2025.2610597
Giada De Palma, Anna Costanzini, Vidhyalakshmi Mohan, Sacha Sidani, Zarwa Saqib, Marc Pigrau, Jun Lu, Natalia Causada Calo, Ines Pinto-Sanchez, Elena F Verdu, Margaret Marcon, Giovanni Barbara, Vincenzo Stanghellini, Roberto De Giorgio, Stephen M Collins, Premysl Bercik
Chronic intestinal pseudo-obstruction (CIPO) is characterized by bowel dilation and obstructive symptoms without any structural blockage. Although the microbiota is known to affect gastrointestinal function, its role in CIPO is poorly understood. We aimed to characterize the CIPO microbiota, investigate its role in disease expression and explore the therapeutic role of fecal microbiota transplantation (FMT). CIPO patients (n = 14) and healthy controls (HC, n = 12) were recruited from Italy and Canada. Microbiota profiles and functions were assessed by 16S rRNA sequencing and PICRUSt. Germ-free NIH Swiss mice were colonized with HC and CIPO microbiota, their intestinal transit and bowel distension were assessed by videofluoroscopy and computed tomography (CT), and the expression of host genes by NanoString®. The CIPO microbiota exhibited reduced microbial diversity with dominance of Proteobacteria and altered metabolic function. Mice with CIPO microbiota developed marked bowel distension and slow intestinal transit associated with altered expression of multiple genes related to immunity, the intestinal barrier and neuromuscular function. FMT from a HC improved the microbiota profile, intestinal transit and bowel distension in both CIPO mice and a selected CIPO patient, in whom a marked clinical improvement was sustained for 8 y. Thus, our findings support the use of microbiota-directed therapies to induce clinical improvement in CIPO patients.
慢性假性肠梗阻(CIPO)以肠扩张和梗阻症状为特征,无任何结构性阻塞。虽然已知微生物群影响胃肠道功能,但其在CIPO中的作用尚不清楚。我们的目的是表征CIPO微生物群,研究其在疾病表达中的作用,并探讨粪便微生物群移植(FMT)的治疗作用。CIPO患者(n = 14)和健康对照(HC, n = 12)来自意大利和加拿大。通过16S rRNA测序和PICRUSt评估微生物群特征和功能。用HC和CIPO菌群定植无菌NIH瑞士小鼠,通过显像透视和计算机断层扫描(CT)评估其肠道运输和肠道膨胀,并通过NanoString®检测宿主基因的表达。CIPO微生物群表现出微生物多样性降低,变形菌群占主导地位,代谢功能改变。携带CIPO菌群的小鼠出现明显的肠道膨胀和肠道运输缓慢,这与免疫、肠屏障和神经肌肉功能相关的多种基因表达改变有关。来自HC的FMT改善了CIPO小鼠和选定的CIPO患者的微生物群特征,肠道运输和肠道膨胀,其中显着的临床改善持续了8年。因此,我们的研究结果支持使用微生物群导向疗法来诱导CIPO患者的临床改善。
{"title":"The role of gut microbiota in chronic intestinal pseudo-obstruction: exploring fecal microbiota transplantation as a treatment option.","authors":"Giada De Palma, Anna Costanzini, Vidhyalakshmi Mohan, Sacha Sidani, Zarwa Saqib, Marc Pigrau, Jun Lu, Natalia Causada Calo, Ines Pinto-Sanchez, Elena F Verdu, Margaret Marcon, Giovanni Barbara, Vincenzo Stanghellini, Roberto De Giorgio, Stephen M Collins, Premysl Bercik","doi":"10.1080/19490976.2025.2610597","DOIUrl":"10.1080/19490976.2025.2610597","url":null,"abstract":"<p><p>Chronic intestinal pseudo-obstruction (CIPO) is characterized by bowel dilation and obstructive symptoms without any structural blockage. Although the microbiota is known to affect gastrointestinal function, its role in CIPO is poorly understood. We aimed to characterize the CIPO microbiota, investigate its role in disease expression and explore the therapeutic role of fecal microbiota transplantation (FMT). CIPO patients (<i>n</i> = 14) and healthy controls (HC, <i>n</i> = 12) were recruited from Italy and Canada. Microbiota profiles and functions were assessed by 16S rRNA sequencing and PICRUSt. Germ-free NIH Swiss mice were colonized with HC and CIPO microbiota, their intestinal transit and bowel distension were assessed by videofluoroscopy and computed tomography (CT), and the expression of host genes by NanoString®. The CIPO microbiota exhibited reduced microbial diversity with dominance of Proteobacteria and altered metabolic function. Mice with CIPO microbiota developed marked bowel distension and slow intestinal transit associated with altered expression of multiple genes related to immunity, the intestinal barrier and neuromuscular function. FMT from a HC improved the microbiota profile, intestinal transit and bowel distension in both CIPO mice and a selected CIPO patient, in whom a marked clinical improvement was sustained for 8 y. Thus, our findings support the use of microbiota-directed therapies to induce clinical improvement in CIPO patients.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2610597"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12785189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145917483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-01-02DOI: 10.1080/19490976.2025.2609455
Jingyu Wang, Fuming Zi, Wu Liu, Chengrui Liu, Zhengfeng Zhang, Leilei Kong, Xuan Xu, Jing Wei, Tingtao Chen, Jian Li
Emerging evidence reveals a strong connection between the gut microbiota and cancer. However, the exact role of gut microbiota dysbiosis in multiple myeloma (MM) is poorly understood, and the therapeutic potential of microbiota-targeted interventions represents a promising strategy that demands urgent mechanistic and translational investigation. First, we conducted a comprehensive microbiome-metabolite analysis between MM patients and healthy individuals. The result revealed a marked compositional difference characterized by reduced abundances of butyrate-producing bacteria and diminished butyrate levels in the MM cohort. Subsequent fecal microbiota transplantation demonstrated that the gut microbiota critically modulates MM progression, with healthy donor-derived microbiota reducing the tumor burden and concomitantly elevating serum butyrate. Furthermore, through function-based culturomics screening, Clostridium butyricum (C. butyricum) was identified as a key butyrate-producing specialist. C. butyricum or its metabolite butyrate significantly reduced the systemic tumor burden in 5TGM1 mice. Notably, C. butyricum and butyrate alleviated bone marrow inflammation and osteolytic lesions by suppressing Th17 cells and IL-17 levels in the bone marrow. Moreover, cellular assays and transcriptome sequencing further revealed that butyrate could induce MM cells' apoptosis via HDAC inhibition-mediated upregulation of PPARγ, leading to sequential suppression of the PI3K/AKT pathway and antiapoptotic BCL-2 expression. This apoptotic signaling cascade was reversed by PPARγ antagonism. The direct antitumor effect was further confirmed in M-NSG mice. Our research systematically verifies the specific role of the gut microbiota in MM and provides the first evidence of the immune and molecular mechanisms by which C. butyricum alleviates MM progression, offering preclinical support for probiotic-based therapies against MM.
{"title":"<i>Clostridium butyricum</i> alleviates multiple myeloma by remodeling the bone marrow microenvironment and inhibiting PI3K/AKT pathway through the gut‒bone axis.","authors":"Jingyu Wang, Fuming Zi, Wu Liu, Chengrui Liu, Zhengfeng Zhang, Leilei Kong, Xuan Xu, Jing Wei, Tingtao Chen, Jian Li","doi":"10.1080/19490976.2025.2609455","DOIUrl":"10.1080/19490976.2025.2609455","url":null,"abstract":"<p><p>Emerging evidence reveals a strong connection between the gut microbiota and cancer. However, the exact role of gut microbiota dysbiosis in multiple myeloma (MM) is poorly understood, and the therapeutic potential of microbiota-targeted interventions represents a promising strategy that demands urgent mechanistic and translational investigation. First, we conducted a comprehensive microbiome-metabolite analysis between MM patients and healthy individuals. The result revealed a marked compositional difference characterized by reduced abundances of butyrate-producing bacteria and diminished butyrate levels in the MM cohort. Subsequent fecal microbiota transplantation demonstrated that the gut microbiota critically modulates MM progression, with healthy donor-derived microbiota reducing the tumor burden and concomitantly elevating serum butyrate. Furthermore, through function-based culturomics screening, <i>Clostridium butyricum</i> (<i>C. butyricum</i>) was identified as a key butyrate-producing specialist. <i>C. butyricum</i> or its metabolite butyrate significantly reduced the systemic tumor burden in 5TGM1 mice. Notably, <i>C. butyricum</i> and butyrate alleviated bone marrow inflammation and osteolytic lesions by suppressing Th17 cells and IL-17 levels in the bone marrow. Moreover, cellular assays and transcriptome sequencing further revealed that butyrate could induce MM cells' apoptosis via HDAC inhibition-mediated upregulation of PPARγ, leading to sequential suppression of the PI3K/AKT pathway and antiapoptotic BCL-2 expression. This apoptotic signaling cascade was reversed by PPARγ antagonism. The direct antitumor effect was further confirmed in M-NSG mice. Our research systematically verifies the specific role of the gut microbiota in MM and provides the first evidence of the immune and molecular mechanisms by which <i>C. butyricum</i> alleviates MM progression, offering preclinical support for probiotic-based therapies against MM.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2609455"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12773645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145892365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-01-09DOI: 10.1080/19490976.2025.2612580
Paola Paone, Camille Petitfils, Anthony Puel, Dimitris Latousakis, Willem M de Vos, Nathalie M Delzenne, Nathalie Juge, Matthias Van Hul, Patrice D Cani
Objective: This study investigates whether live Akkermansia muciniphila MucT supplementation can counteract obesity and metabolic dysfunctions induced by a high-fat diet (HFD) by modulating intestinal mucus production, secretion and composition.
Design: C57BL/6J mice were fed an HFD with or without live A. muciniphila MucT (2 × 108 CFU per day) supplementation or a control diet for 6 weeks. Body weight, fat mass gain and metabolic markers were measured. Intestinal mucus characteristics were assessed via gene expression analysis of mucins and analysed mucin glycosylation by tandem mass spectrometry (MS/MS).
Results: Mice receiving live A. muciniphila MucT exhibited reduced body weight gain and fat mass accumulation compared to HFD controls, without changes in muscle mass. A. muciniphila improved gut barrier integrity by increasing antimicrobial peptide expression in the jejunum and in the colon of HFD-fed mice. Furthermore, live A. muciniphila MucT influenced markers of goblet cell differentiation and restored the expression of mucin markers altered by HFD. Specifically, live A. muciniphila MucT counteracted HFD-induced mucin 3 (Muc3) expression depletion in the colon. Although the overall mucus thickness was not affected by live A. muciniphila MucT, the bacteria significantly modulated mucin glycans composition. Live A. muciniphila MucT did not change the gut microbiota composition.
Conclusion: These findings highlight the protective effects of live A. muciniphila MucT against diet-induced metabolic dysfunctions by modulating adiposity, mucus layer composition, and glycan profiles. This reinforces its potential as a therapeutic strategy for metabolic disorders associated with gut microbiota alterations.
{"title":"<i><b>Akkermansia muciniphila</b></i> <b>modulates intestinal mucus composition to counteract high-fat diet-induced obesity in mice</b>.","authors":"Paola Paone, Camille Petitfils, Anthony Puel, Dimitris Latousakis, Willem M de Vos, Nathalie M Delzenne, Nathalie Juge, Matthias Van Hul, Patrice D Cani","doi":"10.1080/19490976.2025.2612580","DOIUrl":"10.1080/19490976.2025.2612580","url":null,"abstract":"<p><strong>Objective: </strong>This study investigates whether live <i>Akkermansia muciniphila</i> Muc<sup>T</sup> supplementation can counteract obesity and metabolic dysfunctions induced by a high-fat diet (HFD) by modulating intestinal mucus production, secretion and composition.</p><p><strong>Design: </strong>C57BL/6J mice were fed an HFD with or without live <i>A. muciniphila</i> Muc<sup>T</sup> (2 × 10<sup>8</sup> CFU per day) supplementation or a control diet for 6 weeks. Body weight, fat mass gain and metabolic markers were measured. Intestinal mucus characteristics were assessed via gene expression analysis of mucins and analysed mucin glycosylation by tandem mass spectrometry (MS/MS).</p><p><strong>Results: </strong>Mice receiving live <i>A. muciniphila</i> Muc<sup>T</sup> exhibited reduced body weight gain and fat mass accumulation compared to HFD controls, without changes in muscle mass. <i>A. muciniphila</i> improved gut barrier integrity by increasing antimicrobial peptide expression in the jejunum and in the colon of HFD-fed mice. Furthermore, live <i>A. muciniphila</i> Muc<sup>T</sup> influenced markers of goblet cell differentiation and restored the expression of mucin markers altered by HFD. Specifically, live <i>A. muciniphila</i> Muc<sup>T</sup> counteracted HFD-induced mucin 3 (Muc3) expression depletion in the colon. Although the overall mucus thickness was not affected by live <i>A. muciniphila</i> Muc<sup>T</sup>, the bacteria significantly modulated mucin glycans composition. Live <i>A. muciniphila</i> Muc<sup>T</sup> did not change the gut microbiota composition.</p><p><strong>Conclusion: </strong>These findings highlight the protective effects of live <i>A. muciniphila</i> Muc<sup>T</sup> against diet-induced metabolic dysfunctions by modulating adiposity, mucus layer composition, and glycan profiles. This reinforces its potential as a therapeutic strategy for metabolic disorders associated with gut microbiota alterations.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2612580"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12795273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145933125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emerging evidence underscores bidirectional communication along the microbiota-gut-brain axis in neuropsychiatric disorders. However, the field lacks dedicated metagenomic resources with standardized phenotyping for these conditions. Existing single-cohort studies face inherent limitations due to restricted sample sizes, confounding heterogeneity, and methodological fragmentation, compromising reproducibility and mechanistic insights. To overcome these challenges, we constructed the Gut Microbiome in Multinational Integrated Neuropsychiatric Disorders (GutMIND) database, a comprehensive resource integrating shotgun metagenomic data with harmonized metadata. Adhering to a standardized preprocessing protocol and rigorous quality control workflow, this dataset represents the largest gut-brain microbiome repository to date, encompassing 31 studies across 12 countries (n = 3,492) spanning 14 neuropsychiatric conditions. Utilizing this dataset, we characterized microbial community heterogeneity, which was significantly elevated in patients compared to healthy controls. Subsequently, we developed a computational framework, MetaClassifier, enabling the diagnosis of neuropsychiatric disorders and the identification of microbial biomarkers. Employing a comprehensive two-stage validation strategy, we first assessed the model utilizing taxonomic abundance profiles via nested cross-validation in the high-quality discovery cohort (n = 2,734), achieving a mean AUROC of 0.69 (range: 0.55-0.78) across 8 disorders. Its robustness was further confirmed in an independent platform-extended validation cohort (n = 400), yielding a mean AUROC of 0.71 (range: 0.60-0.76). We also developed the Microbial Gut-Brain Axis Health Index (MGBA-HI), which effectively distinguished neuropsychiatric status in both the high-quality cohort and the platform-extended cohort. Furthermore, integrative analysis of health-abundant species, index-derived biomarkers, and ecological prevalence, we identified 9 core neuropsychiatric-protective microbiota. These species predominantly exhibited metabolic capacities linked to glutamate synthesis and acetate production. Building upon this, the GutMIND framework ensures robust cross-cohort comparability while minimizing technical heterogeneity, thereby enhancing inferential rigor in gut microbiome-neuropsychiatry research. Notably, the MetaClassifier, MGBA-HI, and core microbiota hold translational potential for developing microbiome-based prognostic tools and personalized therapeutic strategies in neuropsychiatric disorders. The source code and usage instructions for MetaClassifier are accessible at https://github.com/juyanmei/MetaClassifier.
{"title":"GutMIND: A multi-cohort machine learning framework for integrative characteristics of the microbiota-gut-brain axis in neuropsychiatric disorders.","authors":"Yanmei Ju, Shutian Lin, Shaohua Hu, Xin Jin, Liang Xiao, Tao Zhang, Yudan Zhang, Liping Zhang, Xiancang Ma, Feng Zhu, Ruijin Guo","doi":"10.1080/19490976.2026.2630563","DOIUrl":"https://doi.org/10.1080/19490976.2026.2630563","url":null,"abstract":"<p><p>Emerging evidence underscores bidirectional communication along the microbiota-gut-brain axis in neuropsychiatric disorders. However, the field lacks dedicated metagenomic resources with standardized phenotyping for these conditions. Existing single-cohort studies face inherent limitations due to restricted sample sizes, confounding heterogeneity, and methodological fragmentation, compromising reproducibility and mechanistic insights. To overcome these challenges, we constructed the Gut Microbiome in Multinational Integrated Neuropsychiatric Disorders (GutMIND) database, a comprehensive resource integrating shotgun metagenomic data with harmonized metadata. Adhering to a standardized preprocessing protocol and rigorous quality control workflow, this dataset represents the largest gut-brain microbiome repository to date, encompassing 31 studies across 12 countries (<i>n</i> = 3,492) spanning 14 neuropsychiatric conditions. Utilizing this dataset, we characterized microbial community heterogeneity, which was significantly elevated in patients compared to healthy controls. Subsequently, we developed a computational framework, MetaClassifier, enabling the diagnosis of neuropsychiatric disorders and the identification of microbial biomarkers. Employing a comprehensive two-stage validation strategy, we first assessed the model utilizing taxonomic abundance profiles via nested cross-validation in the high-quality discovery cohort (<i>n</i> = 2,734), achieving a mean AUROC of 0.69 (range: 0.55-0.78) across 8 disorders. Its robustness was further confirmed in an independent platform-extended validation cohort (<i>n</i> = 400), yielding a mean AUROC of 0.71 (range: 0.60-0.76). We also developed the Microbial Gut-Brain Axis Health Index (MGBA-HI), which effectively distinguished neuropsychiatric status in both the high-quality cohort and the platform-extended cohort. Furthermore, integrative analysis of health-abundant species, index-derived biomarkers, and ecological prevalence, we identified 9 core neuropsychiatric-protective microbiota. These species predominantly exhibited metabolic capacities linked to glutamate synthesis and acetate production. Building upon this, the GutMIND framework ensures robust cross-cohort comparability while minimizing technical heterogeneity, thereby enhancing inferential rigor in gut microbiome-neuropsychiatry research. Notably, the MetaClassifier, MGBA-HI, and core microbiota hold translational potential for developing microbiome-based prognostic tools and personalized therapeutic strategies in neuropsychiatric disorders. The source code and usage instructions for MetaClassifier are accessible at https://github.com/juyanmei/MetaClassifier.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2630563"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146201408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-12-31Epub Date: 2026-01-27DOI: 10.1080/19490976.2026.2620126
Zhendong Sun, Zichuan An, Weichen Hong, Chenpeng He, Jiaxin Liu, Yupu Wang, Chenyu Xue, Na Dong
Intestinal immune homeostasis is crucial for intestinal function and health. Increasing evidence suggests that certain gut microbiota can enhance the host's intestinal immune regulatory capacity. However, the mechanisms by which the microbiota confers beneficial traits and robust immunity to the host, as well as the cross-species reproducibility of these effects, remain unclear. This study, through multi-omics integration comparison and functional validation, revealed that Streptococcus hyointestinalis from Min pigs regulates macrophage polarization homeostasis by targeting and inhibiting the excessive activation of the STING signaling pathway and its downstream pro-inflammatory cascade reactions through its extracellular vesicles (EVs), thereby shifting them toward the M2 phenotype. This process ensures the integrity of the intestinal barrier and alleviates colitis induced by the combined effects of low temperature and sodium sulfate-induced colitis (DSS). Notably, in Sting-/- mice, the EV-mediated intestinal protective effect was eliminated, confirming its targeted efficacy. Our data reveal a microbial EV‒STING‒macrophage axis in which symbiotic bacterial exosomes promote reparative macrophage programs by regulating STING signaling and maintaining intestinal integrity under environmental stress. These findings reveal a novel host-microbiota communication pathway with therapeutic potential for the treatment of inflammation-driven intestinal diseases.
{"title":"Microbial extracellular vesicles from min pigs remodel macrophage polarization via STING to sustain intestinal immune homeostasis.","authors":"Zhendong Sun, Zichuan An, Weichen Hong, Chenpeng He, Jiaxin Liu, Yupu Wang, Chenyu Xue, Na Dong","doi":"10.1080/19490976.2026.2620126","DOIUrl":"10.1080/19490976.2026.2620126","url":null,"abstract":"<p><p>Intestinal immune homeostasis is crucial for intestinal function and health. Increasing evidence suggests that certain gut microbiota can enhance the host's intestinal immune regulatory capacity. However, the mechanisms by which the microbiota confers beneficial traits and robust immunity to the host, as well as the cross-species reproducibility of these effects, remain unclear. This study, through multi-omics integration comparison and functional validation, revealed that <i>Streptococcus hyointestinalis</i> from Min pigs regulates macrophage polarization homeostasis by targeting and inhibiting the excessive activation of the STING signaling pathway and its downstream pro-inflammatory cascade reactions through its extracellular vesicles (EVs), thereby shifting them toward the M2 phenotype. This process ensures the integrity of the intestinal barrier and alleviates colitis induced by the combined effects of low temperature and sodium sulfate-induced colitis (DSS). Notably, in <i>Sting</i><sup><i>-/-</i></sup> mice, the EV-mediated intestinal protective effect was eliminated, confirming its targeted efficacy. Our data reveal a microbial EV‒STING‒macrophage axis in which symbiotic bacterial exosomes promote reparative macrophage programs by regulating STING signaling and maintaining intestinal integrity under environmental stress. These findings reveal a novel host-microbiota communication pathway with therapeutic potential for the treatment of inflammation-driven intestinal diseases.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"18 1","pages":"2620126"},"PeriodicalIF":11.0,"publicationDate":"2026-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12851393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146051655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}