首页 > 最新文献

IEEE Magnetics Letters最新文献

英文 中文
An Optimized Magnet Circuit Design to Reduce Power Consumption for Torsional Electromagnetic Actuators 降低扭转电磁执行器功耗的优化磁路设计
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-06-16 DOI: 10.1109/LMAG.2022.3183493
Xian Shi;Guifu Ding
A torsional electromagnetic actuator that is actuated by the torque applied to a planar coil in an external magnetic field is designed, modeled, and analyzed in this letter. The analytical model of the magnetic torque is established. A magnet combination consisting of a rectangular magnet and a square-ring magnet magnetized in opposite directions is developed. A novel magnetic circuit is designed and analyzed to increase the driving torque. The electromagnetic and mechanical responses of the device are characterized by finite element simulation. In the case study, the power consumption of the actuator is significantly reduced by 54.3%, and down to 3.05 mW at the mechanical torsion angle of 11°. The effect of air gap on power consumption is also studied quantitatively.
本文设计、建模和分析了一种扭转电磁致动器,该致动器由施加在外磁场中的平面线圈上的扭矩驱动。建立了磁转矩的分析模型。开发了一种由矩形磁体和方环磁体组成的磁体组合,该磁体在相反方向上磁化。为了提高驱动转矩,设计并分析了一种新型磁路。通过有限元模拟对该装置的电磁和机械响应进行了表征。在案例研究中,致动器的功耗显著降低了54.3%,在机械扭转角为11°时,功耗降至3.05 mW。定量研究了气隙对功耗的影响。
{"title":"An Optimized Magnet Circuit Design to Reduce Power Consumption for Torsional Electromagnetic Actuators","authors":"Xian Shi;Guifu Ding","doi":"10.1109/LMAG.2022.3183493","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3183493","url":null,"abstract":"A torsional electromagnetic actuator that is actuated by the torque applied to a planar coil in an external magnetic field is designed, modeled, and analyzed in this letter. The analytical model of the magnetic torque is established. A magnet combination consisting of a rectangular magnet and a square-ring magnet magnetized in opposite directions is developed. A novel magnetic circuit is designed and analyzed to increase the driving torque. The electromagnetic and mechanical responses of the device are characterized by finite element simulation. In the case study, the power consumption of the actuator is significantly reduced by 54.3%, and down to 3.05 mW at the mechanical torsion angle of 11°. The effect of air gap on power consumption is also studied quantitatively.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Phase Transitions in GdH0.15: Some Peculiarities in the Behavior of Magnetocaloric and Magnetostrictive Effects GdH0.15的磁相变:磁热效应和磁致伸缩效应的一些特性
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-04-28 DOI: 10.1109/LMAG.2022.3171089
Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev
The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH0.15 was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH0.15 due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants $lambda_{rm ij}^{alpha}$.
研究了用改进的Czochralski方法生长的氢化Gd单晶在有序和无序磁相变中的磁热效应和磁致伸缩行为异常。使用Sievert型设备获得组合物GdH0.15。虽然母体Gd在有序-无序相变时表现出各向同性MCE,但由于局部各向异性的出现,GdH0.15中的效应是各向异性的。我们详细研究了纵向、横向、体积和各向异性磁致伸缩的温度变化。发现氢化同时影响磁致伸缩常数$lambda_{rm-ij}^{alpha}$的大小和符号。
{"title":"Magnetic Phase Transitions in GdH0.15: Some Peculiarities in the Behavior of Magnetocaloric and Magnetostrictive Effects","authors":"Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev","doi":"10.1109/LMAG.2022.3171089","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3171089","url":null,"abstract":"The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH\u0000<sub>0.15</sub>\u0000 was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH\u0000<sub>0.15</sub>\u0000 due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants \u0000<inline-formula><tex-math>$lambda_{rm ij}^{alpha}$</tex-math></inline-formula>\u0000.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67901202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Anomalous Nernst Angle in Co2MnGa Thin Film Co2MnGa薄膜中的大异常能斯特角
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-04-13 DOI: 10.1109/LMAG.2022.3167332
Junfeng Hu;Yao Zhang;Xiayu Huo;Ningsheng Li;Song Liu;Dapeng Yu;Jean-Philippe Ansermet;Simon Granville;Haiming Yu
The new trends for anomalous Nernst effect (ANE)-based thermoelectric devices require materials with large ANE values to realize the scalable generation of voltage. Recently, very large ANE values have been observed in single crystals of some novel magnetic materials. However, to allow work to proceed on developing ANE-based devices, these materials need to be produced in thin-film form, and to date, thin films have not achieved the same large ANE values as bulk materials. In this letter, we report a large ANE in a 50 nm thick film of ferromagnetic Heusler alloy Co2MnGa, matching the values achieved in the bulk material. By systematically mapping the thermoelectric transport properties, we extracted an anomalous Nernst angle in the range of 11.5% –14.2% at 300 K.
基于反常能斯特效应(ANE)的热电器件的新趋势需要具有大ANE值的材料来实现电压的可扩展生成。最近,在一些新型磁性材料的单晶中观察到非常大的ANE值。然而,为了使开发基于ANE的器件的工作得以进行,这些材料需要以薄膜形式生产,并且到目前为止,薄膜还没有达到与大块材料相同的大ANE值。在这封信中,我们报道了在50 nm厚的铁磁Heusler合金Co2MnGa膜中的大ANE,与在体材料中获得的值相匹配。通过系统地绘制热电输运特性,我们在300 K下提取了11.5%-14.2%范围内的异常能斯特角。
{"title":"Large Anomalous Nernst Angle in Co2MnGa Thin Film","authors":"Junfeng Hu;Yao Zhang;Xiayu Huo;Ningsheng Li;Song Liu;Dapeng Yu;Jean-Philippe Ansermet;Simon Granville;Haiming Yu","doi":"10.1109/LMAG.2022.3167332","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3167332","url":null,"abstract":"The new trends for anomalous Nernst effect (ANE)-based thermoelectric devices require materials with large ANE values to realize the scalable generation of voltage. Recently, very large ANE values have been observed in single crystals of some novel magnetic materials. However, to allow work to proceed on developing ANE-based devices, these materials need to be produced in thin-film form, and to date, thin films have not achieved the same large ANE values as bulk materials. In this letter, we report a large ANE in a 50 nm thick film of ferromagnetic Heusler alloy Co\u0000<sub>2</sub>\u0000MnGa, matching the values achieved in the bulk material. By systematically mapping the thermoelectric transport properties, we extracted an anomalous Nernst angle in the range of 11.5% –14.2% at 300 K.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Magnetic Composite Coatings FeC and NiC Synthesized With Arabinogalactan 阿拉伯半乳聚糖合成磁性复合涂层FeC和NiC
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-04-04 DOI: 10.1109/LMAG.2022.3164631
Sergey V. Stolyar;Irina G. Vazhenina;Roman N. Yaroslavtsev;Lidia A. Chekanova;Elena V. Cheremiskina;Yuri L. Mikhlin
In this work, we investigated the ferromagnetic resonance spectra of metal/carbon composite coatings. FeC and NiC coatings were synthesized by electroless deposition using polysaccharide arabinogalactan. An analysis of the angular dependences of the resonance field showed that the coatings consist of three magnetic phases separated by a nonmagnetic phase of carbon.
在这项工作中,我们研究了金属/碳复合涂层的铁磁共振光谱。以阿拉伯半乳聚糖多糖为原料,采用化学沉积法合成了FeC和NiC涂层。对共振场的角度依赖性的分析表明,涂层由三个磁相组成,三个磁相和一个非磁碳相分离。
{"title":"Magnetic Composite Coatings FeC and NiC Synthesized With Arabinogalactan","authors":"Sergey V. Stolyar;Irina G. Vazhenina;Roman N. Yaroslavtsev;Lidia A. Chekanova;Elena V. Cheremiskina;Yuri L. Mikhlin","doi":"10.1109/LMAG.2022.3164631","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3164631","url":null,"abstract":"In this work, we investigated the ferromagnetic resonance spectra of metal/carbon composite coatings. FeC and NiC coatings were synthesized by electroless deposition using polysaccharide arabinogalactan. An analysis of the angular dependences of the resonance field showed that the coatings consist of three magnetic phases separated by a nonmagnetic phase of carbon.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of NdFeB Magnetic Particles With High (BH)max From Their Optimized Oxide Powders Through Reduction–Diffusion Method 还原-扩散法制备高(BH)max NdFeB磁性粒子
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-30 DOI: 10.1109/LMAG.2022.3178667
Rambabu Kuchi;Vitalii Galkin;Seunghyun Kim;Jong-Ryul Jeong;Soon-jik Hong;Dongsoo Kim
Neodymium–iron–boron (NdFeB) magnetic particles with high (BH)max were obtained using optimized ball-milled (BM) NdFeB oxide powders, instead of unmilled NdFeB oxide powders, through combined chemical processes comprising the spray drying and reduction-diffusion (RD) methods. The NdFeB oxide particles were subjected to the BM process to control their structural properties, including shape and size of the particles. The oxide powders were critical to make the NdFeB magnetic particles with enhanced properties by the RD process. In general, the controlled structural properties of the NdFeB oxide particles have a significant impact on the properties of final NdFeB magnetic particles. This has been explored through the NdFeB magnetic particles synthesized by utilizing BM oxide powders (0, 1, 2, and 4 h) at different time intervals. One-hour BM oxide powders yielded NdFeB magnetic particles with higher magnetic properties: (BH)max of 14.06 MG·Oe, coercivity (HC) of 3.9 kOe, and remanence (MR) of 101 emu/g. This was attributed to minimal shape defects and phase purity with high crystallinity for the optimized BM oxide powders. Thus, NdFeB oxide particles directed the final intermetallic NdFeB magnetic particles structural properties, which strongly affected their magnetic properties. This study on oxide powders BM will be useful for the preparation of other intermetallic alloys with enhanced properties.
使用优化的球磨(BM)NdFeB氧化物粉末代替未研磨的NdFeB氧化粉末,通过包括喷雾干燥和还原扩散(RD)方法在内的组合化学工艺,获得了具有高(BH)max的钕铁硼(NdFeB)磁性颗粒。对NdFeB氧化物颗粒进行BM工艺以控制其结构性质,包括颗粒的形状和尺寸。氧化物粉末对于通过RD工艺制备性能增强的NdFeB磁性颗粒至关重要。通常,NdFeB氧化物颗粒的受控结构性能对最终NdFeB磁性颗粒的性能有显著影响。这已经通过在不同时间间隔使用BM氧化物粉末(0、1、2和4h)合成的NdFeB磁性颗粒进行了探索。经过1小时的BM氧化物粉末制备出具有较高磁性的NdFeB磁性粒子:(BH)max为14.06 MG·Oe,矫顽力(HC)为3.9kOe,剩磁(MR)为101emu/g。这归因于优化的BM氧化物粉末的最小形状缺陷和具有高结晶度的相纯度。因此,NdFeB氧化物颗粒指导了最终的金属间NdFeB磁性颗粒的结构性能,这强烈影响了它们的磁性性能。对氧化物粉末BM的研究将有助于制备其他具有增强性能的金属间合金。
{"title":"Synthesis of NdFeB Magnetic Particles With High (BH)max From Their Optimized Oxide Powders Through Reduction–Diffusion Method","authors":"Rambabu Kuchi;Vitalii Galkin;Seunghyun Kim;Jong-Ryul Jeong;Soon-jik Hong;Dongsoo Kim","doi":"10.1109/LMAG.2022.3178667","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3178667","url":null,"abstract":"Neodymium–iron–boron (NdFeB) magnetic particles with high (\u0000<italic>BH</i>\u0000)\u0000<sub>max</sub>\u0000 were obtained using optimized ball-milled (BM) NdFeB oxide powders, instead of unmilled NdFeB oxide powders, through combined chemical processes comprising the spray drying and reduction-diffusion (RD) methods. The NdFeB oxide particles were subjected to the BM process to control their structural properties, including shape and size of the particles. The oxide powders were critical to make the NdFeB magnetic particles with enhanced properties by the RD process. In general, the controlled structural properties of the NdFeB oxide particles have a significant impact on the properties of final NdFeB magnetic particles. This has been explored through the NdFeB magnetic particles synthesized by utilizing BM oxide powders (0, 1, 2, and 4 h) at different time intervals. One-hour BM oxide powders yielded NdFeB magnetic particles with higher magnetic properties: (\u0000<italic>BH</i>\u0000)\u0000<sub>max</sub>\u0000 of 14.06 MG·Oe, coercivity (\u0000<italic>H<sub>C</sub></i>\u0000) of 3.9 kOe, and remanence (\u0000<italic>M<sub>R</sub></i>\u0000) of 101 emu/g. This was attributed to minimal shape defects and phase purity with high crystallinity for the optimized BM oxide powders. Thus, NdFeB oxide particles directed the final intermetallic NdFeB magnetic particles structural properties, which strongly affected their magnetic properties. This study on oxide powders BM will be useful for the preparation of other intermetallic alloys with enhanced properties.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67902630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Novel Radiation Hardened Magnetic Full Adder Using Spin-Orbit Torque for Multinode Upset 用于多节点镦粗的新型辐射硬化自旋轨道力矩磁性全加器
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-30 DOI: 10.1109/LMAG.2022.3178627
Alok Kumar Shukla;Arshid Nisar;Seema Dhull;Brajesh Kumar Kaushik
Spintronic-based integrated circuits have been extensively explored as viable contenders for space use since magnetic tunnel junctions (MTJs) are intrinsically immune to radiation effects. On the other hand, their complementary metal–oxide semiconductor (CMOS) peripheral circuitry is still susceptible to radiation-induced single-event upset (SEU) and multinode upset (MNU) caused by charge sharing. It results in localized ionization and flips the data state of memory cells or other logic circuits. To ensure a fault-free operation, this letter proposes a novel radiation-hardened (RH) CMOS peripheral circuitry for a magnetic full adder (MFA) using spin-orbit torque MTJs. The circuit can recover from SEUs as well as MNUs regardless of the accumulated charge. Moreover, the read time and read energy of the circuit are improved by 17.6% and 64%, respectively, when compared to the previously reported RH MFA.
基于自旋电子的集成电路已被广泛探索为太空使用的可行竞争者,因为磁性隧道结(MTJ)本质上对辐射效应免疫。另一方面,它们的互补金属氧化物半导体(CMOS)外围电路仍然容易受到电荷共享引起的辐射诱导的单事件扰乱(SEU)和多节点扰乱(MNU)的影响。它导致局部电离,并翻转存储单元或其他逻辑电路的数据状态。为了确保无故障操作,本文提出了一种新的辐射硬化(RH)CMOS外围电路,用于使用自旋轨道转矩MTJs的磁性全加器(MFA)。电路可以从SEU以及MNU中恢复,而与累积的电荷无关。此外,与先前报道的RH MFA相比,电路的读取时间和读取能量分别提高了17.6%和64%。
{"title":"Novel Radiation Hardened Magnetic Full Adder Using Spin-Orbit Torque for Multinode Upset","authors":"Alok Kumar Shukla;Arshid Nisar;Seema Dhull;Brajesh Kumar Kaushik","doi":"10.1109/LMAG.2022.3178627","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3178627","url":null,"abstract":"Spintronic-based integrated circuits have been extensively explored as viable contenders for space use since magnetic tunnel junctions (MTJs) are intrinsically immune to radiation effects. On the other hand, their complementary metal–oxide semiconductor (CMOS) peripheral circuitry is still susceptible to radiation-induced single-event upset (SEU) and multinode upset (MNU) caused by charge sharing. It results in localized ionization and flips the data state of memory cells or other logic circuits. To ensure a fault-free operation, this letter proposes a novel radiation-hardened (RH) CMOS peripheral circuitry for a magnetic full adder (MFA) using spin-orbit torque MTJs. The circuit can recover from SEUs as well as MNUs regardless of the accumulated charge. Moreover, the read time and read energy of the circuit are improved by 17.6% and 64%, respectively, when compared to the previously reported RH MFA.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Magnetic Properties of 3d Metal Rods With Composition Gradients Produced by Electroless Deposition 化学沉积复合梯度三维金属棒的磁性能
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-29 DOI: 10.1109/LMAG.2022.3163015
Elena A. Denisova;Lidia A. Chekanova;Sergey V. Komogortsev;Svetlana A. Satsuk;Ivan V. Nemtsev;Rauf S. Iskhakov;Sergey V. Semenov
A comparative study of the magnetic properties of arrays of Co–Ni rods with different composition gradients (smooth or step-like) along the rod axes was carried out. Ordered arrays of Co–Ni nanorods with diameters up to 400 nm and 8 µm length were prepared by electroless plating into a porous nuclear-track-etched polycarbonate membrane. The gradient in Co and Ni composition was confirmed by energy-dispersive X-ray analysis. The variation of Co–Ni contents along the long axis of the rods correlates with the gradient of the magnetization within the rod. Magnetization reversal was studied by analyzing the angular dependence of coercivity and using micromagnetic simulations. For both types of gradient rods, reversal occurs by curling. The local magnetic anisotropy field of rods with a step-type gradient is significantly higher than that for rods with a smooth gradient.
对沿棒轴具有不同成分梯度(光滑或阶梯状)的Co–Ni棒阵列的磁性能进行了比较研究。通过在多孔核轨迹蚀刻聚碳酸酯膜上化学镀制备直径高达400 nm、长度为8µm的Co–Ni纳米棒有序阵列。通过能量色散X射线分析证实了Co和Ni成分的梯度。Co–Ni含量沿棒长轴的变化与棒内磁化强度的梯度相关。通过分析矫顽力的角度依赖性并使用微磁模拟来研究磁化反转。对于这两种类型的梯度棒,通过卷曲发生反转。阶梯型梯度棒的局部磁各向异性场明显高于光滑梯度棒的。
{"title":"Magnetic Properties of 3d Metal Rods With Composition Gradients Produced by Electroless Deposition","authors":"Elena A. Denisova;Lidia A. Chekanova;Sergey V. Komogortsev;Svetlana A. Satsuk;Ivan V. Nemtsev;Rauf S. Iskhakov;Sergey V. Semenov","doi":"10.1109/LMAG.2022.3163015","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3163015","url":null,"abstract":"A comparative study of the magnetic properties of arrays of Co–Ni rods with different composition gradients (smooth or step-like) along the rod axes was carried out. Ordered arrays of Co–Ni nanorods with diameters up to 400 nm and 8 µm length were prepared by electroless plating into a porous nuclear-track-etched polycarbonate membrane. The gradient in Co and Ni composition was confirmed by energy-dispersive X-ray analysis. The variation of Co–Ni contents along the long axis of the rods correlates with the gradient of the magnetization within the rod. Magnetization reversal was studied by analyzing the angular dependence of coercivity and using micromagnetic simulations. For both types of gradient rods, reversal occurs by curling. The local magnetic anisotropy field of rods with a step-type gradient is significantly higher than that for rods with a smooth gradient.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-Free Line Magnetic Particle Imaging Magnet Design Using Nested Halbach Cylinders 基于嵌套Halbach圆柱的无场线磁粉成像磁体设计
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-15 DOI: 10.1109/LMAG.2022.3159446
Melike Ergor;Ayhan Bingolbali
Magnetic particle imaging (MPI) is a novel imaging technique that is a promising candidate for practical use in the medical field. The field-free line (FFL) selection field method in MPI provides spatial encoding along a line, resulting in a faster acquisition time and enhanced sensitivity with increased signal-to-noise ratio. To obtain FFL, a magnet system was designed using nested Halbach rings with octagonal-shaped permanent magnets. In this specific study, simulation studies were implemented using this magnet system for a real case. For this purpose, gradient values and stabilities of the magnet system were calculated. In this investigation, a gradient field within 60 mm stability was obtained along each axis. The gradient field attained values up to 6.1 T/m, which is a highly important parameter for spatial resolution in MPI systems.
磁粉成像(MPI)是一种新的成像技术,在医学领域具有很好的应用前景。MPI中的无场线(FFL)选择场方法提供沿线的空间编码,导致更快的采集时间和增强的灵敏度,同时提高了信噪比。为了获得FFL,使用带有八边形永磁体的嵌套Halbach环设计了磁体系统。在这项具体研究中,使用该磁体系统对实际情况进行了模拟研究。为此,计算了磁体系统的梯度值和稳定性。在这项研究中,沿着每个轴获得了稳定性在60mm以内的梯度场。梯度场的值高达6.1T/m,这是MPI系统中空间分辨率的一个非常重要的参数。
{"title":"Field-Free Line Magnetic Particle Imaging Magnet Design Using Nested Halbach Cylinders","authors":"Melike Ergor;Ayhan Bingolbali","doi":"10.1109/LMAG.2022.3159446","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3159446","url":null,"abstract":"Magnetic particle imaging (MPI) is a novel imaging technique that is a promising candidate for practical use in the medical field. The field-free line (FFL) selection field method in MPI provides spatial encoding along a line, resulting in a faster acquisition time and enhanced sensitivity with increased signal-to-noise ratio. To obtain FFL, a magnet system was designed using nested Halbach rings with octagonal-shaped permanent magnets. In this specific study, simulation studies were implemented using this magnet system for a real case. For this purpose, gradient values and stabilities of the magnet system were calculated. In this investigation, a gradient field within 60 mm stability was obtained along each axis. The gradient field attained values up to 6.1 T/m, which is a highly important parameter for spatial resolution in MPI systems.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Logical and Physical Reversibility of Conservative Skyrmion Logic 保守Skyrmion逻辑的逻辑可逆性和物理可逆性
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-11 DOI: 10.1109/LMAG.2022.3174514
Xuan Hu;Benjamin W. Walker;Felipe García-Sánchez;Alexander J. Edwards;Peng Zhou;Jean Anne C. Incorvia;Alexandru Paler;Michael P. Frank;Joseph S. Friedman
Magnetic skyrmions are nanoscale whirls of magnetism that can be propagated with electrical currents. The repulsion between skyrmions inspires their use for reversible computing based on the elastic billiard ball collisions proposed for conservative logic in 1982. In this letter, we evaluate the logical and physical reversibility of this skyrmion logic paradigm, as well as the limitations that must be addressed before dissipation-free computation can be realized.
磁性skyrmions是纳米级的磁性漩涡,可以通过电流传播。skyrmions之间的排斥激发了它们在1982年为保守逻辑提出的弹性台球碰撞的基础上用于可逆计算。在这封信中,我们评估了这种skyrmion逻辑范式的逻辑和物理可逆性,以及在实现无耗散计算之前必须解决的限制。
{"title":"Logical and Physical Reversibility of Conservative Skyrmion Logic","authors":"Xuan Hu;Benjamin W. Walker;Felipe García-Sánchez;Alexander J. Edwards;Peng Zhou;Jean Anne C. Incorvia;Alexandru Paler;Michael P. Frank;Joseph S. Friedman","doi":"10.1109/LMAG.2022.3174514","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3174514","url":null,"abstract":"Magnetic skyrmions are nanoscale whirls of magnetism that can be propagated with electrical currents. The repulsion between skyrmions inspires their use for reversible computing based on the elastic billiard ball collisions proposed for conservative logic in 1982. In this letter, we evaluate the logical and physical reversibility of this skyrmion logic paradigm, as well as the limitations that must be addressed before dissipation-free computation can be realized.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Technological Approach for Miniaturization of Three-Dimensional Inductive Levitation Microsuspensions 三维诱导悬浮微悬浮液小型化的技术途径
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-11 DOI: 10.1109/LMAG.2022.3174522
Emil R. Mamleyev;Achim Voigt;Ali Moazenzadeh;Jan G. Korvink;Manfred Kohl;Kirill Poletkin
In this letter, we report on a technological approach for miniaturization of a inductive levitating microsuspension based on nested three-dimensional (3-D) microcoil structures. In the developed approach, each 3-D microcoil is fabricated separately, beginning with the innermost and thus the smallest coil diameter of the nested microstructure. This helps to overcome fabrication restrictions due to the wire-bonding process and is primarily caused by the size of the bond-head and provides the opportunity to fabricate smaller nested 3-D microcoil structures. We fabricated a nested two-microcoil structure, the inner coil having a diameter of 1000 $mu$m and 14 windings, the outer coil with a diameter of 1900 $mu$m and eight windings, and demonstrated its application as an inductive levitating microsuspension. In particular, a fabricated 3-D inductive levitating microsuspension was able to levitate a 1100 $mu$m diameter disc-shaped proof mass at a height up to 45 $mu$m.
在这封信中,我们报道了一种基于嵌套三维(3-D)微线圈结构的感应悬浮微悬架的小型化技术方法。在所开发的方法中,每个三维微线圈都是单独制造的,从嵌套微结构的最内层开始,因此是最小的线圈直径。这有助于克服由引线键合工艺引起的制造限制,并且主要由键合头的尺寸引起,并且提供了制造更小的嵌套3-D微线圈结构的机会。我们制作了一个嵌套的两个微线圈结构,内部线圈直径为1000$mu$m,有14个绕组,外部线圈直径为1900$mu$m,有8个绕组,并展示了其作为感应悬浮微悬浮的应用。特别地,制造的三维感应悬浮微悬浮液能够将直径1100$mu$m的圆盘形检验质量悬浮在高达45$mu$m的高度。
{"title":"A Technological Approach for Miniaturization of Three-Dimensional Inductive Levitation Microsuspensions","authors":"Emil R. Mamleyev;Achim Voigt;Ali Moazenzadeh;Jan G. Korvink;Manfred Kohl;Kirill Poletkin","doi":"10.1109/LMAG.2022.3174522","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3174522","url":null,"abstract":"In this letter, we report on a technological approach for miniaturization of a inductive levitating microsuspension based on nested three-dimensional (3-D) microcoil structures. In the developed approach, each 3-D microcoil is fabricated separately, beginning with the innermost and thus the smallest coil diameter of the nested microstructure. This helps to overcome fabrication restrictions due to the wire-bonding process and is primarily caused by the size of the bond-head and provides the opportunity to fabricate smaller nested 3-D microcoil structures. We fabricated a nested two-microcoil structure, the inner coil having a diameter of 1000 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m and 14 windings, the outer coil with a diameter of 1900 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m and eight windings, and demonstrated its application as an inductive levitating microsuspension. In particular, a fabricated 3-D inductive levitating microsuspension was able to levitate a 1100 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m diameter disc-shaped proof mass at a height up to 45 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5165412/9656771/09772963.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Magnetics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1