首页 > 最新文献

IEEE Magnetics Letters最新文献

英文 中文
Construction of Energy Loops Using Magnetic Barkhausen Noise 利用磁巴克豪森噪声构造能量环
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-07-15 DOI: 10.1109/LMAG.2022.3191281
Xiaoge Meng;Lin Li;Yanzhao Hou
Magnetic Barkhausen noise (MBN), which contains microstructure information of materials, is widely used in nondestructive testing (NDT) of magnetic materials. MBN energy (MBNenergy) is a time-independent indicator for NDT, but the initial MBNenergy has no clear physical meaning and cannot be used to explain the relationship to the hysteresis loop. In this letter, based on the physical mechanism of MBN, a proportional relation is built between the MBN voltage signal VB and energy loss, and the signal VB is then related to the energy loss through wall pinning in the Jiles–Atherton hysteresis model. We define a novel magnetic Barkhausen noise energy eigenvalue (MBNE) as the time integral of the product of the absolute value of VB and the sign function sign(dH/dt). We prove that the MBNE is proportional to the irreversible magnetization Mirr. Since Mirr is equal to the saturation magnetization Ms when the magnetization of ferromagnetic material reaches saturation, we scaled the MBNE to make its maximum value equal to Ms and found that MBNE with respect to the magnetic field H, MBNE(H), coincides with the irreversible hysteresis loop Mirr(H). We refer to MBNE(H) as the MBN energy loop. The MBNE(H) and Mirr(H) for two kinds of electrical steel sheets are compared experimentally, which validates the adaptability of the MBNE(H) construction method. The method to obtain Mirr(H) from the MBN raw signal reveals the physical mechanism of MBN and the irreversible magnetization process of magnetic materials.
磁巴克豪森噪声(MBN)包含材料的微观结构信息,广泛应用于磁性材料的无损检测。MBN能量(MBNenergy)是无损检测的一个与时间无关的指标,但初始MBNeenergy没有明确的物理意义,不能用来解释与磁滞回线的关系。在这封信中,基于MBN的物理机制,在MBN电压信号VB和能量损失之间建立了比例关系,然后在Jiles–Atherton磁滞模型中,信号VB与通过壁钉扎的能量损失相关。我们定义了一个新的磁Barkhausen噪声能量特征值(MBNE)为VB的绝对值与符号函数sign(dH/dt)的乘积的时间积分。我们证明了MBNE与不可逆磁化Mirr成正比。由于当铁磁材料的磁化强度达到饱和时,Mirr等于饱和磁化强度Ms,我们缩放MBNE使其最大值等于Ms,并发现MBNE相对于磁场H,MBNE(H),与不可逆磁滞回线Mirr(H)一致。我们将MBNE(H)称为MBN能量回路。对两种电工钢板的MBNE(H)和Mirr(H)进行了实验比较,验证了MBNE(H)施工方法的适应性。从MBN原始信号中获得Mirr(H)的方法揭示了MBN的物理机制和磁性材料的不可逆磁化过程。
{"title":"Construction of Energy Loops Using Magnetic Barkhausen Noise","authors":"Xiaoge Meng;Lin Li;Yanzhao Hou","doi":"10.1109/LMAG.2022.3191281","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3191281","url":null,"abstract":"Magnetic Barkhausen noise (MBN), which contains microstructure information of materials, is widely used in nondestructive testing (NDT) of magnetic materials. MBN energy (MBN\u0000<sub>energy</sub>\u0000) is a time-independent indicator for NDT, but the initial MBN\u0000<sub>energy</sub>\u0000 has no clear physical meaning and cannot be used to explain the relationship to the hysteresis loop. In this letter, based on the physical mechanism of MBN, a proportional relation is built between the MBN voltage signal \u0000<italic>V</i>\u0000<sub>B</sub>\u0000 and energy loss, and the signal \u0000<italic>V</i>\u0000<sub>B</sub>\u0000 is then related to the energy loss through wall pinning in the Jiles–Atherton hysteresis model. We define a novel magnetic Barkhausen noise energy eigenvalue (MBNE\u0000<italic>)</i>\u0000 as the time integral of the product of the absolute value of \u0000<italic>V</i>\u0000<sub>B</sub>\u0000 and the sign function sign(\u0000<italic>dH</i>\u0000/\u0000<italic>dt</i>\u0000). We prove that the MBNE is proportional to the irreversible magnetization \u0000<italic>M</i>\u0000<sub>irr</sub>\u0000. Since \u0000<italic>M</i>\u0000<sub>irr</sub>\u0000 is equal to the saturation magnetization \u0000<italic>M</i>\u0000<sub>s</sub>\u0000 when the magnetization of ferromagnetic material reaches saturation, we scaled the MBNE to make its maximum value equal to \u0000<italic>M</i>\u0000<sub>s</sub>\u0000 and found that MBNE with respect to the magnetic field \u0000<italic>H</i>\u0000, MBNE(\u0000<italic>H</i>\u0000), coincides with the irreversible hysteresis loop \u0000<italic>M</i>\u0000<sub>irr</sub>\u0000(\u0000<italic>H</i>\u0000). We refer to MBNE(\u0000<italic>H</i>\u0000) as the MBN energy loop. The MBNE(\u0000<italic>H</i>\u0000) and \u0000<italic>M</i>\u0000<sub>irr</sub>\u0000(\u0000<italic>H</i>\u0000) for two kinds of electrical steel sheets are compared experimentally, which validates the adaptability of the MBNE(\u0000<italic>H</i>\u0000) construction method. The method to obtain \u0000<italic>M</i>\u0000<sub>irr</sub>\u0000(\u0000<italic>H</i>\u0000) from the MBN raw signal reveals the physical mechanism of MBN and the irreversible magnetization process of magnetic materials.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of a Temperature Sensor Using Spin-Crossover Fe(pyrazine)[Pt(CN)4I] Nanoparticles 利用自旋交叉Fe(吡嗪)[Pt(CN)4I]纳米粒子的温度传感器的研制
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-07-08 DOI: 10.1109/LMAG.2022.3189274
Yunji Eom;Keonmok Kim;Hyeon-Jun Lee;Sri Ramulu Torati;CheolGi Kim
Device miniaturization requires temperature sensors with high resolution and precise calibration for measurements at reduced scale. We developed an optical temperature sensor using Fe2+ spin-crossover (SCO) material that has low and high spin states depending on temperature. We adjusted the operating range of the SCO (295–365 K) with an appropriate concentration of iodine. The color induced by temperature change was observed with a microscope and was converted to the color intensity represented in grayscale. To test the material, we covered the surface of a gold microheater with a layer of Fe(pyrazine)[Pt(CN)4I] SCO nanoparticles and compared optically measured temperatures with those from a conventional temperature sensor. We conclude that the thermochromic temperature sensor is suitable for measuring temperature changes in microdevices, even in ambient light.
设备小型化需要具有高分辨率和精确校准的温度传感器,以便以较小的规模进行测量。我们开发了一种使用Fe2+自旋交叉(SCO)材料的光学温度传感器,该材料根据温度具有低自旋态和高自旋态。我们用适当的碘浓度调整了SCO的工作范围(295–365 K)。用显微镜观察由温度变化引起的颜色,并将其转换为以灰度表示的颜色强度。为了测试该材料,我们在金微加热器的表面覆盖了一层Fe(吡嗪)[Pt(CN)4I]SCO纳米颗粒,并将光学测量的温度与传统温度传感器的温度进行了比较。我们得出的结论是,热致变色温度传感器适用于测量微器件的温度变化,即使在环境光下也是如此。
{"title":"Development of a Temperature Sensor Using Spin-Crossover Fe(pyrazine)[Pt(CN)4I] Nanoparticles","authors":"Yunji Eom;Keonmok Kim;Hyeon-Jun Lee;Sri Ramulu Torati;CheolGi Kim","doi":"10.1109/LMAG.2022.3189274","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3189274","url":null,"abstract":"Device miniaturization requires temperature sensors with high resolution and precise calibration for measurements at reduced scale. We developed an optical temperature sensor using Fe\u0000<sup>2+</sup>\u0000 spin-crossover (SCO) material that has low and high spin states depending on temperature. We adjusted the operating range of the SCO (295–365 K) with an appropriate concentration of iodine. The color induced by temperature change was observed with a microscope and was converted to the color intensity represented in grayscale. To test the material, we covered the surface of a gold microheater with a layer of Fe(pyrazine)[Pt(CN)\u0000<sub>4</sub>\u0000I] SCO nanoparticles and compared optically measured temperatures with those from a conventional temperature sensor. We conclude that the thermochromic temperature sensor is suitable for measuring temperature changes in microdevices, even in ambient light.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normal Stress of a Micro–Nano Magnetorheological Elastomer 微纳米磁流变弹性体的法向应力
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-06-17 DOI: 10.1109/LMAG.2022.3184259
Xuhui Liu;Jinghu Wang;Huina Hu;Ziyun Fang;Bin Xu;Yan Wu;Lei Gao;Meiling Pu
A micro–nano magnetorheological elastomer (MRE) containing Fe3O4 nanoparticles was prepared, and its mechanical properties were analyzed. A microscopic static force model was used for MREs with different concentrations of nanomagnetic particles. To investigate the mechanical properties, an experimental platform was built, and its magnetic field flux was simulated with finite-element software. The results show that the maximum compressive elastic modulus for MREs containing 10% Fe3O4 nanoparticles is 2.89 MPa, which is 149% that of a traditional MRE under the same magnetic field. The normal stress of micro–nano MRE was significantly improved, which could be useful in the development of high-performance MREs.
制备了含有Fe3O4纳米粒子的微纳磁流变弹性体,并对其力学性能进行了分析。使用微观静态力模型对具有不同浓度纳米磁性颗粒的MRE进行了研究。为了研究其力学性能,搭建了实验平台,并用有限元软件对其磁场通量进行了模拟。结果表明,在相同磁场下,含10%Fe3O4纳米颗粒的磁流变材料的最大压缩弹性模量为2.89MPa,是传统磁流变材料压缩弹性模量的149%。微纳MRE的法向应力得到了显著改善,这可能有助于开发高性能的MRE。
{"title":"Normal Stress of a Micro–Nano Magnetorheological Elastomer","authors":"Xuhui Liu;Jinghu Wang;Huina Hu;Ziyun Fang;Bin Xu;Yan Wu;Lei Gao;Meiling Pu","doi":"10.1109/LMAG.2022.3184259","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3184259","url":null,"abstract":"A micro–nano magnetorheological elastomer (MRE) containing Fe\u0000<sub>3</sub>\u0000O\u0000<sub>4</sub>\u0000 nanoparticles was prepared, and its mechanical properties were analyzed. A microscopic static force model was used for MREs with different concentrations of nanomagnetic particles. To investigate the mechanical properties, an experimental platform was built, and its magnetic field flux was simulated with finite-element software. The results show that the maximum compressive elastic modulus for MREs containing 10% Fe\u0000<sub>3</sub>\u0000O\u0000<sub>4</sub>\u0000 nanoparticles is 2.89 MPa, which is 149% that of a traditional MRE under the same magnetic field. The normal stress of micro–nano MRE was significantly improved, which could be useful in the development of high-performance MREs.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Optimized Magnet Circuit Design to Reduce Power Consumption for Torsional Electromagnetic Actuators 降低扭转电磁执行器功耗的优化磁路设计
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-06-16 DOI: 10.1109/LMAG.2022.3183493
Xian Shi;Guifu Ding
A torsional electromagnetic actuator that is actuated by the torque applied to a planar coil in an external magnetic field is designed, modeled, and analyzed in this letter. The analytical model of the magnetic torque is established. A magnet combination consisting of a rectangular magnet and a square-ring magnet magnetized in opposite directions is developed. A novel magnetic circuit is designed and analyzed to increase the driving torque. The electromagnetic and mechanical responses of the device are characterized by finite element simulation. In the case study, the power consumption of the actuator is significantly reduced by 54.3%, and down to 3.05 mW at the mechanical torsion angle of 11°. The effect of air gap on power consumption is also studied quantitatively.
本文设计、建模和分析了一种扭转电磁致动器,该致动器由施加在外磁场中的平面线圈上的扭矩驱动。建立了磁转矩的分析模型。开发了一种由矩形磁体和方环磁体组成的磁体组合,该磁体在相反方向上磁化。为了提高驱动转矩,设计并分析了一种新型磁路。通过有限元模拟对该装置的电磁和机械响应进行了表征。在案例研究中,致动器的功耗显著降低了54.3%,在机械扭转角为11°时,功耗降至3.05 mW。定量研究了气隙对功耗的影响。
{"title":"An Optimized Magnet Circuit Design to Reduce Power Consumption for Torsional Electromagnetic Actuators","authors":"Xian Shi;Guifu Ding","doi":"10.1109/LMAG.2022.3183493","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3183493","url":null,"abstract":"A torsional electromagnetic actuator that is actuated by the torque applied to a planar coil in an external magnetic field is designed, modeled, and analyzed in this letter. The analytical model of the magnetic torque is established. A magnet combination consisting of a rectangular magnet and a square-ring magnet magnetized in opposite directions is developed. A novel magnetic circuit is designed and analyzed to increase the driving torque. The electromagnetic and mechanical responses of the device are characterized by finite element simulation. In the case study, the power consumption of the actuator is significantly reduced by 54.3%, and down to 3.05 mW at the mechanical torsion angle of 11°. The effect of air gap on power consumption is also studied quantitatively.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Phase Transitions in GdH0.15: Some Peculiarities in the Behavior of Magnetocaloric and Magnetostrictive Effects GdH0.15的磁相变:磁热效应和磁致伸缩效应的一些特性
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-04-28 DOI: 10.1109/LMAG.2022.3171089
Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev
The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH0.15 was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH0.15 due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants $lambda_{rm ij}^{alpha}$.
研究了用改进的Czochralski方法生长的氢化Gd单晶在有序和无序磁相变中的磁热效应和磁致伸缩行为异常。使用Sievert型设备获得组合物GdH0.15。虽然母体Gd在有序-无序相变时表现出各向同性MCE,但由于局部各向异性的出现,GdH0.15中的效应是各向异性的。我们详细研究了纵向、横向、体积和各向异性磁致伸缩的温度变化。发现氢化同时影响磁致伸缩常数$lambda_{rm-ij}^{alpha}$的大小和符号。
{"title":"Magnetic Phase Transitions in GdH0.15: Some Peculiarities in the Behavior of Magnetocaloric and Magnetostrictive Effects","authors":"Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev","doi":"10.1109/LMAG.2022.3171089","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3171089","url":null,"abstract":"The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH\u0000<sub>0.15</sub>\u0000 was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH\u0000<sub>0.15</sub>\u0000 due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants \u0000<inline-formula><tex-math>$lambda_{rm ij}^{alpha}$</tex-math></inline-formula>\u0000.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67901202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Anomalous Nernst Angle in Co2MnGa Thin Film Co2MnGa薄膜中的大异常能斯特角
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-04-13 DOI: 10.1109/LMAG.2022.3167332
Junfeng Hu;Yao Zhang;Xiayu Huo;Ningsheng Li;Song Liu;Dapeng Yu;Jean-Philippe Ansermet;Simon Granville;Haiming Yu
The new trends for anomalous Nernst effect (ANE)-based thermoelectric devices require materials with large ANE values to realize the scalable generation of voltage. Recently, very large ANE values have been observed in single crystals of some novel magnetic materials. However, to allow work to proceed on developing ANE-based devices, these materials need to be produced in thin-film form, and to date, thin films have not achieved the same large ANE values as bulk materials. In this letter, we report a large ANE in a 50 nm thick film of ferromagnetic Heusler alloy Co2MnGa, matching the values achieved in the bulk material. By systematically mapping the thermoelectric transport properties, we extracted an anomalous Nernst angle in the range of 11.5% –14.2% at 300 K.
基于反常能斯特效应(ANE)的热电器件的新趋势需要具有大ANE值的材料来实现电压的可扩展生成。最近,在一些新型磁性材料的单晶中观察到非常大的ANE值。然而,为了使开发基于ANE的器件的工作得以进行,这些材料需要以薄膜形式生产,并且到目前为止,薄膜还没有达到与大块材料相同的大ANE值。在这封信中,我们报道了在50 nm厚的铁磁Heusler合金Co2MnGa膜中的大ANE,与在体材料中获得的值相匹配。通过系统地绘制热电输运特性,我们在300 K下提取了11.5%-14.2%范围内的异常能斯特角。
{"title":"Large Anomalous Nernst Angle in Co2MnGa Thin Film","authors":"Junfeng Hu;Yao Zhang;Xiayu Huo;Ningsheng Li;Song Liu;Dapeng Yu;Jean-Philippe Ansermet;Simon Granville;Haiming Yu","doi":"10.1109/LMAG.2022.3167332","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3167332","url":null,"abstract":"The new trends for anomalous Nernst effect (ANE)-based thermoelectric devices require materials with large ANE values to realize the scalable generation of voltage. Recently, very large ANE values have been observed in single crystals of some novel magnetic materials. However, to allow work to proceed on developing ANE-based devices, these materials need to be produced in thin-film form, and to date, thin films have not achieved the same large ANE values as bulk materials. In this letter, we report a large ANE in a 50 nm thick film of ferromagnetic Heusler alloy Co\u0000<sub>2</sub>\u0000MnGa, matching the values achieved in the bulk material. By systematically mapping the thermoelectric transport properties, we extracted an anomalous Nernst angle in the range of 11.5% –14.2% at 300 K.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Magnetic Composite Coatings FeC and NiC Synthesized With Arabinogalactan 阿拉伯半乳聚糖合成磁性复合涂层FeC和NiC
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-04-04 DOI: 10.1109/LMAG.2022.3164631
Sergey V. Stolyar;Irina G. Vazhenina;Roman N. Yaroslavtsev;Lidia A. Chekanova;Elena V. Cheremiskina;Yuri L. Mikhlin
In this work, we investigated the ferromagnetic resonance spectra of metal/carbon composite coatings. FeC and NiC coatings were synthesized by electroless deposition using polysaccharide arabinogalactan. An analysis of the angular dependences of the resonance field showed that the coatings consist of three magnetic phases separated by a nonmagnetic phase of carbon.
在这项工作中,我们研究了金属/碳复合涂层的铁磁共振光谱。以阿拉伯半乳聚糖多糖为原料,采用化学沉积法合成了FeC和NiC涂层。对共振场的角度依赖性的分析表明,涂层由三个磁相组成,三个磁相和一个非磁碳相分离。
{"title":"Magnetic Composite Coatings FeC and NiC Synthesized With Arabinogalactan","authors":"Sergey V. Stolyar;Irina G. Vazhenina;Roman N. Yaroslavtsev;Lidia A. Chekanova;Elena V. Cheremiskina;Yuri L. Mikhlin","doi":"10.1109/LMAG.2022.3164631","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3164631","url":null,"abstract":"In this work, we investigated the ferromagnetic resonance spectra of metal/carbon composite coatings. FeC and NiC coatings were synthesized by electroless deposition using polysaccharide arabinogalactan. An analysis of the angular dependences of the resonance field showed that the coatings consist of three magnetic phases separated by a nonmagnetic phase of carbon.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of NdFeB Magnetic Particles With High (BH)max From Their Optimized Oxide Powders Through Reduction–Diffusion Method 还原-扩散法制备高(BH)max NdFeB磁性粒子
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-30 DOI: 10.1109/LMAG.2022.3178667
Rambabu Kuchi;Vitalii Galkin;Seunghyun Kim;Jong-Ryul Jeong;Soon-jik Hong;Dongsoo Kim
Neodymium–iron–boron (NdFeB) magnetic particles with high (BH)max were obtained using optimized ball-milled (BM) NdFeB oxide powders, instead of unmilled NdFeB oxide powders, through combined chemical processes comprising the spray drying and reduction-diffusion (RD) methods. The NdFeB oxide particles were subjected to the BM process to control their structural properties, including shape and size of the particles. The oxide powders were critical to make the NdFeB magnetic particles with enhanced properties by the RD process. In general, the controlled structural properties of the NdFeB oxide particles have a significant impact on the properties of final NdFeB magnetic particles. This has been explored through the NdFeB magnetic particles synthesized by utilizing BM oxide powders (0, 1, 2, and 4 h) at different time intervals. One-hour BM oxide powders yielded NdFeB magnetic particles with higher magnetic properties: (BH)max of 14.06 MG·Oe, coercivity (HC) of 3.9 kOe, and remanence (MR) of 101 emu/g. This was attributed to minimal shape defects and phase purity with high crystallinity for the optimized BM oxide powders. Thus, NdFeB oxide particles directed the final intermetallic NdFeB magnetic particles structural properties, which strongly affected their magnetic properties. This study on oxide powders BM will be useful for the preparation of other intermetallic alloys with enhanced properties.
使用优化的球磨(BM)NdFeB氧化物粉末代替未研磨的NdFeB氧化粉末,通过包括喷雾干燥和还原扩散(RD)方法在内的组合化学工艺,获得了具有高(BH)max的钕铁硼(NdFeB)磁性颗粒。对NdFeB氧化物颗粒进行BM工艺以控制其结构性质,包括颗粒的形状和尺寸。氧化物粉末对于通过RD工艺制备性能增强的NdFeB磁性颗粒至关重要。通常,NdFeB氧化物颗粒的受控结构性能对最终NdFeB磁性颗粒的性能有显著影响。这已经通过在不同时间间隔使用BM氧化物粉末(0、1、2和4h)合成的NdFeB磁性颗粒进行了探索。经过1小时的BM氧化物粉末制备出具有较高磁性的NdFeB磁性粒子:(BH)max为14.06 MG·Oe,矫顽力(HC)为3.9kOe,剩磁(MR)为101emu/g。这归因于优化的BM氧化物粉末的最小形状缺陷和具有高结晶度的相纯度。因此,NdFeB氧化物颗粒指导了最终的金属间NdFeB磁性颗粒的结构性能,这强烈影响了它们的磁性性能。对氧化物粉末BM的研究将有助于制备其他具有增强性能的金属间合金。
{"title":"Synthesis of NdFeB Magnetic Particles With High (BH)max From Their Optimized Oxide Powders Through Reduction–Diffusion Method","authors":"Rambabu Kuchi;Vitalii Galkin;Seunghyun Kim;Jong-Ryul Jeong;Soon-jik Hong;Dongsoo Kim","doi":"10.1109/LMAG.2022.3178667","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3178667","url":null,"abstract":"Neodymium–iron–boron (NdFeB) magnetic particles with high (\u0000<italic>BH</i>\u0000)\u0000<sub>max</sub>\u0000 were obtained using optimized ball-milled (BM) NdFeB oxide powders, instead of unmilled NdFeB oxide powders, through combined chemical processes comprising the spray drying and reduction-diffusion (RD) methods. The NdFeB oxide particles were subjected to the BM process to control their structural properties, including shape and size of the particles. The oxide powders were critical to make the NdFeB magnetic particles with enhanced properties by the RD process. In general, the controlled structural properties of the NdFeB oxide particles have a significant impact on the properties of final NdFeB magnetic particles. This has been explored through the NdFeB magnetic particles synthesized by utilizing BM oxide powders (0, 1, 2, and 4 h) at different time intervals. One-hour BM oxide powders yielded NdFeB magnetic particles with higher magnetic properties: (\u0000<italic>BH</i>\u0000)\u0000<sub>max</sub>\u0000 of 14.06 MG·Oe, coercivity (\u0000<italic>H<sub>C</sub></i>\u0000) of 3.9 kOe, and remanence (\u0000<italic>M<sub>R</sub></i>\u0000) of 101 emu/g. This was attributed to minimal shape defects and phase purity with high crystallinity for the optimized BM oxide powders. Thus, NdFeB oxide particles directed the final intermetallic NdFeB magnetic particles structural properties, which strongly affected their magnetic properties. This study on oxide powders BM will be useful for the preparation of other intermetallic alloys with enhanced properties.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67902630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Novel Radiation Hardened Magnetic Full Adder Using Spin-Orbit Torque for Multinode Upset 用于多节点镦粗的新型辐射硬化自旋轨道力矩磁性全加器
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-30 DOI: 10.1109/LMAG.2022.3178627
Alok Kumar Shukla;Arshid Nisar;Seema Dhull;Brajesh Kumar Kaushik
Spintronic-based integrated circuits have been extensively explored as viable contenders for space use since magnetic tunnel junctions (MTJs) are intrinsically immune to radiation effects. On the other hand, their complementary metal–oxide semiconductor (CMOS) peripheral circuitry is still susceptible to radiation-induced single-event upset (SEU) and multinode upset (MNU) caused by charge sharing. It results in localized ionization and flips the data state of memory cells or other logic circuits. To ensure a fault-free operation, this letter proposes a novel radiation-hardened (RH) CMOS peripheral circuitry for a magnetic full adder (MFA) using spin-orbit torque MTJs. The circuit can recover from SEUs as well as MNUs regardless of the accumulated charge. Moreover, the read time and read energy of the circuit are improved by 17.6% and 64%, respectively, when compared to the previously reported RH MFA.
基于自旋电子的集成电路已被广泛探索为太空使用的可行竞争者,因为磁性隧道结(MTJ)本质上对辐射效应免疫。另一方面,它们的互补金属氧化物半导体(CMOS)外围电路仍然容易受到电荷共享引起的辐射诱导的单事件扰乱(SEU)和多节点扰乱(MNU)的影响。它导致局部电离,并翻转存储单元或其他逻辑电路的数据状态。为了确保无故障操作,本文提出了一种新的辐射硬化(RH)CMOS外围电路,用于使用自旋轨道转矩MTJs的磁性全加器(MFA)。电路可以从SEU以及MNU中恢复,而与累积的电荷无关。此外,与先前报道的RH MFA相比,电路的读取时间和读取能量分别提高了17.6%和64%。
{"title":"Novel Radiation Hardened Magnetic Full Adder Using Spin-Orbit Torque for Multinode Upset","authors":"Alok Kumar Shukla;Arshid Nisar;Seema Dhull;Brajesh Kumar Kaushik","doi":"10.1109/LMAG.2022.3178627","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3178627","url":null,"abstract":"Spintronic-based integrated circuits have been extensively explored as viable contenders for space use since magnetic tunnel junctions (MTJs) are intrinsically immune to radiation effects. On the other hand, their complementary metal–oxide semiconductor (CMOS) peripheral circuitry is still susceptible to radiation-induced single-event upset (SEU) and multinode upset (MNU) caused by charge sharing. It results in localized ionization and flips the data state of memory cells or other logic circuits. To ensure a fault-free operation, this letter proposes a novel radiation-hardened (RH) CMOS peripheral circuitry for a magnetic full adder (MFA) using spin-orbit torque MTJs. The circuit can recover from SEUs as well as MNUs regardless of the accumulated charge. Moreover, the read time and read energy of the circuit are improved by 17.6% and 64%, respectively, when compared to the previously reported RH MFA.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Magnetic Properties of 3d Metal Rods With Composition Gradients Produced by Electroless Deposition 化学沉积复合梯度三维金属棒的磁性能
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-03-29 DOI: 10.1109/LMAG.2022.3163015
Elena A. Denisova;Lidia A. Chekanova;Sergey V. Komogortsev;Svetlana A. Satsuk;Ivan V. Nemtsev;Rauf S. Iskhakov;Sergey V. Semenov
A comparative study of the magnetic properties of arrays of Co–Ni rods with different composition gradients (smooth or step-like) along the rod axes was carried out. Ordered arrays of Co–Ni nanorods with diameters up to 400 nm and 8 µm length were prepared by electroless plating into a porous nuclear-track-etched polycarbonate membrane. The gradient in Co and Ni composition was confirmed by energy-dispersive X-ray analysis. The variation of Co–Ni contents along the long axis of the rods correlates with the gradient of the magnetization within the rod. Magnetization reversal was studied by analyzing the angular dependence of coercivity and using micromagnetic simulations. For both types of gradient rods, reversal occurs by curling. The local magnetic anisotropy field of rods with a step-type gradient is significantly higher than that for rods with a smooth gradient.
对沿棒轴具有不同成分梯度(光滑或阶梯状)的Co–Ni棒阵列的磁性能进行了比较研究。通过在多孔核轨迹蚀刻聚碳酸酯膜上化学镀制备直径高达400 nm、长度为8µm的Co–Ni纳米棒有序阵列。通过能量色散X射线分析证实了Co和Ni成分的梯度。Co–Ni含量沿棒长轴的变化与棒内磁化强度的梯度相关。通过分析矫顽力的角度依赖性并使用微磁模拟来研究磁化反转。对于这两种类型的梯度棒,通过卷曲发生反转。阶梯型梯度棒的局部磁各向异性场明显高于光滑梯度棒的。
{"title":"Magnetic Properties of 3d Metal Rods With Composition Gradients Produced by Electroless Deposition","authors":"Elena A. Denisova;Lidia A. Chekanova;Sergey V. Komogortsev;Svetlana A. Satsuk;Ivan V. Nemtsev;Rauf S. Iskhakov;Sergey V. Semenov","doi":"10.1109/LMAG.2022.3163015","DOIUrl":"https://doi.org/10.1109/LMAG.2022.3163015","url":null,"abstract":"A comparative study of the magnetic properties of arrays of Co–Ni rods with different composition gradients (smooth or step-like) along the rod axes was carried out. Ordered arrays of Co–Ni nanorods with diameters up to 400 nm and 8 µm length were prepared by electroless plating into a porous nuclear-track-etched polycarbonate membrane. The gradient in Co and Ni composition was confirmed by energy-dispersive X-ray analysis. The variation of Co–Ni contents along the long axis of the rods correlates with the gradient of the magnetization within the rod. Magnetization reversal was studied by analyzing the angular dependence of coercivity and using micromagnetic simulations. For both types of gradient rods, reversal occurs by curling. The local magnetic anisotropy field of rods with a step-type gradient is significantly higher than that for rods with a smooth gradient.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67741638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Magnetics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1